Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 142016 dokumen yang sesuai dengan query
cover
Denny Setiawan
"Skripsi ini membahas proses dan jumlah kitosan yang diproduksi dari cangkang rajungan dan cangkang kepiting hijau, karakterisasi kitosan, dan pengujian kitosan sebagai koagulan jika dibandingkan dengan koagulan PAC (Poly Aluminum Chloride) untuk menjernihkan air sungai Kalimalang. Jumlah kitosan yang diproduksi dari cangkang kepiting hijau sebesar 12.34 gram dari 420 gram cangkang kepiting kering, dan sebesar 21 gram dari 300 gram cangkang rajungan kering. Faktor-faktor yang menyebabkan sedikitnya jumlah kitosan di dalam pembuatan dijelaskan di dalam skripsi ini. Karakterisasi kitosan didapat melalui pengukuran kandungan nitrogen dan derajat deasetilasi. Besar kandungan nitrogen yang didapat dari kitosan cangkang kepiting hijau, kitosan cangkang rajungan produksi 1 dan kitosan cangkang rajungan produksi 2 adalah 6.208 %, 5.5656 %, dan 5.288 %. Besar derajat deasetilasi secara berturut-turut adalah: 53.47 %, 20.57 %, 53.32 %. Penggunaan kitosan sebagai koagulan diuji dengan menggunakan metode Jar Test dibandingkan dengan PAC. Air sampel didapat dari air sungai Kalimalang dengan tingkat kekeruhan sekitar 947 NTU. Efisiensi dosis optimum cangkang kepiting hijau, cangkang rajungan produksi 1, cangkang rajungan produksi 2, dan PAC secara berturut-turut adalah 8, 40, 50, dan 50 ppm. Efisiensi removal mencapai 99 % untuk semua koagulan untuk menurunkan kekeruhan hingga batas di bawah 5 NTU. Selain itu, juga dilakukan penelitian untuk mencoba penggabungan kitosan dengan PAC dalam mengkoagulasi dan flokulasi. Kemampuan kitosan untuk mengkoagulasi juga dipengaruhi oleh nilai pH, dimana pH optimum bagi kitosan untuk mengkoagulasi air sungai Kalimalang adalah pada daerah pH netral dengan batas sekitar 7.5.

The focus of study are discuss about the process and amount of chitosan produced from blue crab shell and mud crab shell, characterization of chitosan, and observe chitosan effectiveness as coagulant compared with PAC (Poly Aluminum Chloride) in clarifying Kalimalang river. The amounts of chitosan produced from mud crab shell are 12.34 gram from 420 gram dry mud crab shell, and 21 gram from 300 gram blue crab shell. Factors affecting amount of chitosan produced explained in this study. Chitosan characterization obtained from measurement of nitrogen content and degree of deacetylation. Nitrogen content from mud crab shell chitosan, blue crab shell chitosan 1, and blue crab shell chitosan 2 are 6.208 %, 5.5656 %, dan 5.288 %. Degrees of deacetylation for each chitosan are 53.47 %, 20.57 %, 53.32 %. Performance of chitosan as coagulant measured using Jar Test method compared with PAC. Water sample obtained from Kalimalang river with turbidity 947 NTU. Optimum dose for chitosan from mud crab shell, blue crab shell 1, blue crab shell 2, and PAC are 8, 40, 50, and 50 ppm. Removal efficiencies reached to 99 % for all type of coagulant, reduced turbidity to the limit under 5 NTU. Furthermore the research also tried to integrate chitosan with PAC in coagulation and flocculation. Chitosan performance in coagulation affected by pH value, where optimum pH for chitosan to coagulate Kalimalang river water sample at neutral pH range with upper limit about 7.5."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S50699
UI - Skripsi Open  Universitas Indonesia Library
cover
"The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is a unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochondral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial."
Journal of Dentistry Indonesia, 2005
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Muhammad Arif Saadilah
"Material Kitosan dibuat dari cangkang kepiting menggunakan metode kimia dengan demineralisasi HCL 1M selama 1 jam, deproteinasi NaOH 1M selama 2 jam dan variasi deasetilasi NaOH 30%, 40%, 50%, 60%, dan 70% selama 45 menit. Dari analisis FTIR didapat Derajat Deasetilasi kitosan terbaik pada NaOH 50%. Waktu reaksi terbaik untuk mendapatkan Derajat Deasetilasi maksimum dalah 30 menit. Hasil kitosan cangkang kepiting merupakan kitosan murni sesuai dengan database program Match!. Adsorbsi Pb dari larutan Pb(NO3)2 dilakukan pada konsentrasi Pb 10, 50, dan 100 ppm dengan pengadukan selama 30 menit. Dalam suasana asam Kitosan menyerap seluruh Pb untuk konsentrasi 10 ppm dan tidak menyerap Pb pada konsetrasi 50 dan 100 ppm. Sedangkan dalam suasana netral konsentrasi Pb 25 ppm terserap semua, pada konsetrasi 50 ppm terserap 44,77 ppm dan pada konsentrasi Pb 100 ppm terserap 97,04 ppm.

Chitosan has been made from the crab shells with a chemical method with 1M HCl demineralization for 1 hour, deproteination 1M NaOH for 2 hours and variations of deacetylation 30% NaOH, 40%, 50%, 60%, and 70% for 45 minutes. An analytical methode from FTIR showed that the best chitosan deacetylation degree obtained at 50% NaOH, and the best reaction time to get the best Chitosan is 30 minutes. Chitosan product from crab shells is a real chitosan agreed with database Match! program. Chitosan is known best Pb adsorption from Pb(NO3)2 solution with concentrations of 10, 50, and 100 ppm acid delution and neutral dilution of 25, 50, and 100 ppm for 30 minutes and tested variations chitosan residual liquid. Chitosan absorbed around 10 ppm Pb acid dilution and 25 ppm neutral dilution. No adsorption at 50 and 100 ppm Pb in acid dilution. Absorption of 44.77 ppm at 50 ppm and 97.04 ppm to 100 ppm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47632
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Lusiana
"Kitin dan kitosan memiliki gugus amina yang bermuatan positif pada rantai sampingnya. Kesamaan struktur kitin dan kitosan dengan DEAE selulosa membuat kedua polimer tersebut berpotensi digunakan sebagai matriks penukar ion untuk fraksinasi protein. Hasil fraksinasi serum dengan matriks kitin dan kitosan dibandingkan dengan hasil fraksinasi dengan matriks  DEAE selulosa. Serum darah sapi diifraksinasi dengan kromatografi kolom dnegan matriks kitin kitosan dan DEAE selulosa dengan fase gerak PBS Ph 7,4, bufer fosfat Ph 6,5 Dan dapar Tris Ph 8,5. Fraksi IgG diuji dengan elektroforesis selulosa asetat, elektroforesis gel poliakrilamida dan imunodifusi radial. fraksinasi degan matriks kitin dan kitosan menunjukkan pola yang sama dengan matriks DEAE selulosa. Hasil elektroforesis gel poliakrilamid menunjukkan adanya pita IgG pada fraksi kitin, kitosan dan DEAE selulosa dengan fase gerak PBS pH 7,4 dan dapar fosfat pH 6,5. Namun hasil fraksinasi dengan dapar tris pH 8,5 tidak menunjukkan adanya pita IgG. Hasil uji dengan imunodifusi radial menunjukkan adanya IgG dengan konsentrasi terbanyak pada fraksi kitosan dengan fase gerak PBS pH 7,4. Kitin dan kitosan berpotensi digunakan sebagai Matriks penukar ion untuk fraksinasi protein serum darah sapi. Fraksi terbaik adalah fraksi kitosan degan fase gerak PBS pH 7,4.

Chitin and chitosan are polymers that naturally have N group on the side chain. The similarity structure between chitin, chitosan and DEAE-cellulose make the two polymer potentially used as ion-exchange matrix to fractionation of blood serum. Bovine serum was fractionated by column chromatography with chitin chitosan matrix and DEAE-cellulose with PBS pH 7.4, Phosphate buffer with pH 6.5 and tris buffer pH 8.5. The IgG fraction was tested by cellulose acetate electrophoresis, polyacrylamide gel electrophoresis and radial immunodiffusion.the results of fractionation using chitin and chitosan matrix showed the same pattern as DEAE-cellulose matrix. The results of polyacrylamide gel electrophoresis showed the presence of IgG bands in the chitin, chitosan and DEAE-cellulose fractions with PBS mobile phase pH 7.4 and phosphate buffer pH 6.5. However, the results of fractionation with tris buffer pH 8.5 did not show any IgG bands. The test results with radial immunodiffusion showed the presence of IgG with the highest concentration in the chitosan fraction with PBS mobile phase pH 7.4. Chitin and chitosan have potential as ion exchange matrix for protein fractionation of bovine serum. chitosan matrix with PBS pH 7.4 mobile phase show the best fraction."
Depok: Fakultas Kedokteran Universitas Indonesia, 2022
TA-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Diwiya Aryyaguna
"ABSTRAK
Scaffold membran kitosan dan kitosan-RGD cangkang kepiting diproduksi oleh BATAN, untuk rekayasa jaringan pada rongga mulut. Sifat arsitektural kedua scaffold belum diteliti. Tujuan: Meneliti sifat arsitektural scaffold membran kitosan dan kitosan-RGD cangkang kepiting. Metode: Jumlah, ukuran, jarak antar pori dan porusitas dengan uji SEM dan analisis ImageJ. Daya serap dengan Swelling test. Hasil: Scaffold kitosan dan kitosan-RGD memiliki 225 dan 237 buah pori, berukuran 176.4mm dan 178.3mm, porusitas sebesar 12.8 dan 12.9 , jarak antar pori sebesar 94.7mm dan 93.3mm, serta daya serap sebesar 10.5mgH2O/mgScaffold dan 19.2mgH2O/mgScaffold. Kesimpulan: Sifat arsitektural scaffold membran kitosan RGD cangkang kepiting cenderung lebih baik.

ABSTRAK
Introduction Crab Shell Chitosan and Chitosan RGD membrane Scaffolds have been made by BATAN, for tissue engineering in oral cavity. Architectural properties of both scaffolds have never been analyzed. Purpose To analyze the architectural properties of both scaffolds. Methods Pore amount, pore size, interpore distance and porosity using SEM test with ImageJ analysis. Water absorption using swelling test. Results Chitosan and Chitosan RGD scaffolds have 225 and 237 pores, 176.4mm and 178.3mm sized pore, porosity of 12.8 and 12.9 , interpore distance of 94.7mm and 93.3mm, with water absorption of 10.5mgH2O mgScaffold dan 19.2mgH2O mgScaffold. Conclusions Crab shell chitosan RGD membrane scaffold has better architectural properties. "
2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vini Paramita Afriadi
"Sirsak merupakan salah satu tanaman yang dikenal memiliki sitotoksisitas yang baik dan berpotensi sebagai antikanker. Suatu senyawa dalam tanaman sirsak merupakan senyawa bioaktif yang bertanggung jawab atas sitotoksisitas tanaman ini. Senyawa bioaktif adalah annonaceous acetogenin yang akan digunakan sebagai obat. Asetogenin digunakan sebagai obat sesuai dengan dosisnya dalam tubuh sehingga tidak mengakibatkan efek samping terhadap pengguna.Mikrosfer kitosan dengan penaut silang dibuat agar dapat melepaskan senyawa asetogenin secara terkendali pada sistem pencernaan.
Simulasi profil pelepasan dilakukan dengan buffer pH: 1,2; 6,8; 7,4; 1,2 penambahan enzim α-amilase; 6,8 penambahan enzim β-glukosidase; dan 7,4 penambahan enzim α-amilase. Penentuan efisiensi enkapsulasi ekstrak asetogenin dan profil pelepasannya dari mikrosfer kitosan-TPP dilakukan dengan metode penentuan kandungan total lakton menggunakan spektrofotometri sinar tampak.Hasilnya keberadaan enzim dalam larutan untuk pengamatan profil pelepasan menunjukkan peningkatan jumlah asetogenin yang dilepaskan empat kali lebih besar dibandingkan larutan yang tanpa enzim.

Soursop is a plant that is known to have good cytotoxicity and potential as anticancer. A compound in soursop plant bioactive compounds that are responsible for the cytotoxicity of this plant. Annonaceous acetogenin bioactive compounds is to be used as medicine. Asetogenin used as a medicine in accordance with the dose in the body so it does not cause side effects on patients. Chitosan microspheres and cross-linker were made in order to release acetogenin controlled substance in the digestive system.
Simulations performed with buffer release profiles pH: 1,2: 6,8; 7,4; 1,2 addition of enzyme α-amilase; 6,8 addition of enzyme β-glukosidase; and 7,4 addition of enzyme α-amilase. Determination of encapsulation efficienty acetogenin extract and release profile of chitosan-TPP microspheres made by the method of determination of total lactones content using spectrophotometry uv-vis. The presence of enzymes in solution to release profile observations show an increase in the number acetogenin released four times larger than that without the enzyme solution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47192
UI - Skripsi Membership  Universitas Indonesia Library
cover
"lsolasi kitin dari kulit udang melalui dua tanap yaitu deproteinasi dengan
perendaman kulit udang dengan NaOH 10% pada sunu 70°C selama 1 jam,
kedua demineralisasi dengan perendeman kulit udang dengan HCI 10%
selam 1 jam. Konversi kitosan dari kitin dilakukan dengan proses
deasetalisasi dengan perendaman kitin dengan NaOH 60% selam 48 jam.
Besarnya kitosan yang didapat dari 300 g kulit udang sebesar 27,16%_
I\/lodifikasi kitosan menjadi kitosan-PAA dilakukan dengan metode ozonasi
secara simultan I\/lodifikasi dilakukan dengan variasi sunu dan konsentrasi
asam akrilat Sunu optimum modifikasi kitosan-PAA 27°C dan konsentrasi
optimum 1% asam akrilat Karakterisasi kitosan dan kitosan-PAA dilakukan
dengan FT-IR. Adsorpsi Iogam Cu2+, Cr3+ dan Zn” dengan kitosan dan
kitosan-PAA dilakukan dengan optimasi pH dan vvaktu kontak adsorpsi Studi
kinetik adsorpsi Iogam Cu2+, Cr3+ dan Zn” dengan kitosan dan kitosan-PAA
dilakukan dengan persamaan isoterm adsorpsi Langmuir dan Freundlicn"
Universitas Indonesia, 2007
S30446
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fika Andrianti
"Kitosan sebagai biomaterial yang memiliki sifat bioaktif, biokompatibel, tidak beracun dan biodegradable menunjukkan aplikasi yang potensial dalam berbagai bidang seperti peningkatan gizi, kosmetik, pengolahan makanan dan bidang medis. Dengan adanya gugus hidroksil dan gugus amina, kitosan bersifat sangat reaktif sehingga dapat digunakan sebagai bahan penghantaran pembawa obat. Pada penelitian ini, kitosan digabungkan dengan ion Sm3+ untuk menghasilkan bahan pembawa obat yang memiliki sifat fotoluminesensi sehingga dapat dijadikan sebagai indikator pelepasan obat dengan ibuprofen sebagai model obat.
Dalam penelitian ini juga dikaji mengenai interaksi kitosan dengan ion Sm3+, serta interaksi material kompleks kitosan-Sm dengan model obat dan pengaruh penambahan ion Sm3+ terhadap kemampuan kitosan dalam menyerap obat. Karakterisasi kitosan-Sm dilakukan dengan menggunakan FTIR dan SEM-EDX. Kitosan-Sm dengan konsentrasi ion Sm3+ terbesar yaitu 5 g/L memiliki efisiensi penyerapan ibuprofen tertinggi yaitu 33,04%.
Pada proses pelepasan ibuprofen dari kitosan-Sm-IBU, terjadi perubahan fotoluminesensi berwarna jingga dengan transisi 4G5/2 → 6H7/2 pada panjang gelombang 590 nm. Intensitas luminesensi meningkat seiring dengan jumlah kumulatif ibuprofen yang dilepaskan sehingga pelepasan ibuprofen dari kitosan-Sm dapat dimonitor dengan perubahan fotoluminesensi yang terjadi.

Chitosan as a biomaterial which has the properties of bioactive, biocompatible, non-toxic and biodegradable show potential applications in various fields such as nutrition, cosmetics, food processing and medical fields. In the presence of hydroxyl and amina groups, chitosan is highly reactive so it can be used as drug delivery carriers. In this study, chitosan combined with Sm3+ ion to produce a drug carrier material which has photoluminecent properties so it can be used as an indicator of drug release with ibuprofen as a model drug.
In this study also examined the interaction of chitosan with Sm3+ ion, as well as the interaction of chitosan-Sm complex material with a model drug and the effect of the addition of Sm3+ ion on the ability of chitosan to absorb the drug. Characterization of chitosan-Sm conducted using FTIR and SEM-EDX. Chitosan-Sm with the largest concentration of Sm3+ ion 5 g/L has the highest efficiency of absorption of ibuprofen that is 33.04%.
In the process of release of ibuprofen from the chitosan-Sm-IBU, orange photoluminesence properties changed with the transition 4G5/2 → 6H7/2 at a wavelength of 590 nm. Luminescence intensity increases with the cumulative amount of ibuprofen that are released so that the release of ibuprofen from the chitosan-Sm can be monitored by the changes of photoluminesence properties.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43185
UI - Skripsi Open  Universitas Indonesia Library
cover
Ibnu Agus Kurniawan
"[ABSTRAK
Injectable bone substitute (IBS) merupakan metode penanganan kerusakan tulang yang efektif, karena dapat mempermudah proses operasi dan memberi kenyamanan bagi pasien. Penelitian ini bertujuan untuk mengembangkan material pengisi tulang mampu injeksi berbasis kalsium fospat dengan perbandingan Ca/P (1.67) dan kitosan. Sintesis dilakukan dengan cara mencampurkan semen kalsium fosfat dan kitosan sebesar 0%, 4%, 8%, 11% dalam larutan Na2HPO4 (1mol/L) yang kemudian dicetak dan dipanaskan pada suhu 370C selama 2 jam. Sampel hasil percobaan kemudian dikarakterisasi dengan XRD, SEM, FTIR, serta pengujian kemampuan injeksi dan setting time. Dari hasil karakterisasi tersebut didapatkan bahwa proses injeksi yang baik dapat dilakukan dengan perbandingan larutan dan serbuk (0.68 ml/gram). Setting time dan kekuatan tekan meningkat dengan penambahan kitosan, sedangkan modulus kompresi-nya berkurang dari 140-106 MPa. Terbentuknya senyawa HA yang diindikasikan dari uji XRD serta hasil uji FTIR menunjukkan tidak ada ikatan secara kimia antara semen kalsium fospat (HA,DCPD) dan kitosan, melainkan berupa ikatan hidrogen. Adapun hasil karakterisasi menunjukkan bahwa produk IBS yang telah disintesis berpotensi untuk dijadikan material pengisi tulang.
ABSTRACT
Injectable bone substitute (IBS) is an effective methode to treat bone damage, because it can provide a minimun surgical and make the patient feel comfort. The aim of this study is to make injectable calcium phosphate-based bone substitute material with a ratio of Ca/P (1.67) and chitosan. Synthesis was performed by mixing calcium phosphate cement and chitosan at 0, 4, 8, 11 wt.% in Na2HPO4 (1 mol/L) as a solvent. Sampels were then characterized by using XRD, SEM, FTIR, injectability and seting time. The results showed that the injection process can be performed with liquid and powder rasio of 0.68 ml/g. Setting time and compression strength increases with the addition of chitosan, while its Young's modulus decreases. Formation of HA indicated by XRD and FTIR showed that there is no chemical bond between calcium phosphate cement (HA, DCPD) and chitosan, but in the form of hydrogen bonds. Based on the aforementioned data, the results showed that IBS produced in this work has the potential to be used as a bone substitute material.
, Injectable bone substitute (IBS) is an effective methode to treat bone damage, because it can provide a minimun surgical and make the patient feel comfort. The aim of this study is to make injectable calcium phosphate-based bone substitute material with a ratio of Ca/P (1.67) and chitosan. Synthesis was performed by mixing calcium phosphate cement and chitosan at 0, 4, 8, 11 wt.% in Na2HPO4 (1 mol/L) as a solvent. Sampels were then characterized by using XRD, SEM, FTIR, injectability and seting time. The results showed that the injection process can be performed with liquid and powder rasio of 0.68 ml/g. Setting time and compression strength increases with the addition of chitosan, while its Young's modulus decreases. Formation of HA indicated by XRD and FTIR showed that there is no chemical bond between calcium phosphate cement (HA, DCPD) and chitosan, but in the form of hydrogen bonds. Based on the aforementioned data, the results showed that IBS produced in this work has the potential to be used as a bone substitute material.
]"
Fakultas Teknik Universitas Indonesia, 2016
S61821
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>