Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 52627 dokumen yang sesuai dengan query
cover
Marcel Leonardo
"Dalam skripsi ini dibandingkan performansi dari beberapa konfigurasi pengendali logika fuzzy pada fuel cell. Pada konfigurasi pertama, masukan hidrogen dan oksigen ditetapkan sebagai perbandingan tetap proporsional hidrogen dan oksigen (O2in/H2in=1.168), sedangkan pada konfigurasi kedua, masukan oksigen diatur secara dinamik proporsional terhadap masukan hidrogen menggunakan pengendali logika fuzzy kedua. Pada kedua pengendali logika fuzzy (FLC1 dan FLC2) dilakukan variasi nilai fuzzifikasi untuk setiap variabel linguistik dan performansinya terhadap pengendalian tegangan fuelcell dibandingkan. Konfigurasi yang terbaik dipilih berdasarkan pembobotan nilai pada parameter settling time dan overshoot dari respon dinamik pengendalian tegangan fuelcell. Dari hasil penilaian didapat konfigurasi dengan dua pengendali logika fuzzy mempunyai performansi pengendalian yang lebih baik dibandingkan konfigurasi satu pengendali logika fuzzy.

This Thesis compares the performance of fuzzy logic controller configuration for Fuel Cell. In the first configuration, the input of hydrogen and oxygen is determined which using proportional gain ratio((O2in/H2in=1.168). In the second configuration, the input of oxygen is controlled by dynamic proportional from hydrogen input using the second fuzzy logic controller. Both of fuzzy logic controller (FLC1 and FLC2) fuzzification is varied for every linguistic variable and then the performances of the controller are compared. The best configuration is determined by using weighting factor of settling time and overshoot parameters of Fuel cell voltage dynamic response. As a result, the second configuration using two fuzzy logic controller has better performance than using one fuzzy logic controller."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51214
UI - Skripsi Open  Universitas Indonesia Library
cover
Fadhli Halim
"Dalam simulasi ini, dilakukan pemodelan dan simulasi Proton Exchange Membrane (PEM) fuel cell dengan pendekatan 3 dimensi 2 fasa, yaitu fasa gas dan fasa padatan dengan bentuk channel serpentine. Persamaan model yang diturunkan meliputi persamaan kontinuitas, persamaan momentum, persamaan energi persamaan transport ion dan persamaan current density. Kesemua persamaan ini dibedakan antara fasa padatan dan fasa gas. Fasa padatan terjadi pada GDL, Catalyst dan membrane baik disisi anode maupun cathode. Scdangkan fasa gas hanya terjadi pada Gas Channel anode dan Gas channel cathode. Penyelesaian numeris model menggunakan perangkat lunak MATLAB™ 6.0. Karena terlalu sulitnya melakukan pemecahan dengan menggunakan MATLABTM pada daerah perhitungan 3 dimensi 2 fasa dan dalam geometri yang komplek, maka model disederhanakan menjadl 2 buah model I dimensi, yaitu model pada sumbu y (lebar) dan model pada sumbu z{ketebalan). Hasil model dari penyederhanaan model kesumbu y dldapat profil kecepatan. konsentrasi, tekanan, temperatur. current density, tegangan ionik. Model 1 dimensi kearah sumbu y ini hanya dapat diselesaikan pada lebar 50 cm, jika melebihi lebar ini model tidak dapat diselesaikan karena menghasilkan sebuah matrik Jacobian dari metoda Newton-Raphson yang singular, hal ini disebabkan karena persamaan current density yang sangat stiff. Sedangkan hasil dari penyederhanaan model kesumbu z..."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49523
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khalif Ahadi
"Tesis ini bertujuan untuk melakukan pengembangan metode perlakuan terhadap tegangan keluaran sistem fuel cell yang cenderung berubah seiring perubahan beban agar mampu bertahan pada nilai yang relatif konstan. Hal ini dilakukan dengan menambahkan suatu DC-DC converter berupa buck converter pada keluaran fuel cell sebelum diubah menjadi tegangan AC oleh inverter. Hasil uji coba menunjukkan tegangan keluaran sistem menjadi relatif tetap pada tegangan 12,4 volt +2,5% saat diberi beban yang berfluktuasi jika dibandingkan dengan tegangan keluaran fuel cell itu sendiri.

The purpose of this thesis is to conduct method development treatment of output voltage of fuel cell system, which is tend to change along with load fluctuation, to be able to withstands on relatively constant value. It?s done by adding a buck converter as a DC-DC converter on fuel cell's output before it's changed as AC voltage by inverter. The experiment result shows that output voltage of the system is relatively constant on 12.4 volt +2,5% under fluctuated load in comparison with output voltage from fuel cell it self.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31603
UI - Tesis Open  Universitas Indonesia Library
cover
Dharma Aryani
"Dalam thesis ini dirancang sebuah algoritma pengendali Model Predictive Control (MPC) Constrained dan diimplementasikan pada sistem Proton Exchange Membrane Fuel Cell. Model yang digunakan adalah model linier yang didapatkan dari Identifikasi sistem dengan metode Least Square. Constraint di berikan pada perubahan masing-masing sinyal kendali serta perbandingan antara sinyal kendali pertama dan kedua.
Dari hasil simulasi terlihat bahwa pengendali MPC menghasilkan respon keluaran yang mengikuti sinyal acuan yang diberikan, serta mampu mengatasi gangguan yang berupa perubahan beban yang terjadi pada sistem PEMFC. Dengan pemberian constraint pada pengendali MPC, sinyal kendali yang dihasilkan dapat dibatasi sesuai dengan karakteristik fisik dari sistem PEMFC.

This theses presents a Constrained Model Predictive Control design . The controller is implemented in the Proton Exchange Membrane Fuel Cell. The MPC algorithm based on the Linear model generated from identification system using Least Square Method. The controller consist of control signal constraints including the comparison of each
control signal amplitude.
The simulation result show that the MPC resulting a very good transient behaviour, the output from PEMFC can follow the trajectory and did not effected by load change disturbances. With some constraint additional in MPC, the control signals can be bounded refer to the real characteristic of PEMFC."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25908
UI - Tesis Open  Universitas Indonesia Library
cover
Anis Nahdi
"Proton exchange membrane fuel cell (PEMFC) merupakan tipe fuel cell yang paling banyak digunakan dalam aplikasi. Efisiensi dan performa merupakan hal yang sangat penting dalam pengembangan PEMFC. Elektrokatalis memiliki peranan penting dalam menentukan performa fuel cell. Penelitian katalis baru untuk peningkatan aktifitas, stabilitas, daya tahan, dan mengurangi biaya (40% biaya satu unit fuel cell) merupakan tantangan teknologi dan komersialisasi fuel cell. Makalah ini, efisiensi dan performa PEMFC telah dipelajari menggunakan katalis Pt/C (kontrol) dan beberapa katalis bimetal (Pt-Co/C, Pt-Ni/C, and Pt-Ru/C), menggunakan single stack PEMFC standar, luasan aktif 25 cm2 dan bipolar plate paralel. Sistem operasi diatur dengan kecepatan alir H2 dan O2 100 mL/menit, tekanan 0.1 bar dan temperatur 50°C. Performa PEMFC diukur dengan electronic discharge meter, 3300 C Electronic Load Mainframe ®Prodigit 3311D 60V/ 60A, 300V. Pt-Co/C pada katoda menghasilkan performa PEMFC tertinggi (0,445 V, 0,131 A, 0,058 W) dimana Pt-Co/C > Pt-Ni/C > Pt-Ru/C, dan pada anoda, Pt-Ru/C menghasilkan performa PEMFC tertinggi (0,403 V, 0,101 A, 0,041 W) dimana Pt-Ru/C > Pt-Co/C > Pt-Ni/C. Transfer massa dan efisiensi konsumsi H2 telah dihitung berdasarkan energi bebas Gibbs dan potensial selnya. Dari transfer massa, diperoleh efisiensi 57,51 % untuk Pt-Co/C di katoda dan 53,54 % untuk Pt-Ru/C di anoda.

Proton exchange membrane fuel cell (PEMFC) is the most available fuel cell type in various applications. Efficiency and performance are important focus on developing proton exchange membrane (PEM) fuel cell. Electrocatalysts and their corresponding catalyst layers thus play critical roles in fuel cell performance. Therefore, exploring new catalysts, improving catalyst activity, stability, durability, and reducing catalyst cost (40% for 1 unit fuel cell) are currently the major tasks in fuel cell technology and commercialization. In this paper, efficiency and performance of PEM fuel cell were studied with Pt/C catalyst as control and some bimetal catalyst (Pt-Co/C, Pt-Ni/C, and Pt-Ru/C) as electrode materials The membrane electrode assembly (MEA) was made using those catalyst then used with standard PEM fuel cell single stack 25 cm2 active areas with parallel bipolar plate. System operation was running in flow rate of 100 ml/min for hydrogen and oxygen at pressure 0.1 Bar and temperature was set constantly at 50°C. Performance of PEM fuel cell has measured by electronic discharge meter, 3300 C Electronic Load Mainframe ®Prodigit 3311D 60V/ 60A, 300V. Using Pt-Co/C on cathode was obtained the highest performance of PEMFC (0,445 V, 0,131 A, 0,058 W) whereas Pt-Co/C > Pt-Ni/C > Pt-Ru/C. Using Pt-Ru/C on cathode was obtained the highest performance of PEMFC (0,403 V, 0,101 A, 0,041 W) whereas Pt-Ru/C > Pt-Co/C > Pt-Ni/C. Mass transfer reaction and efficiency of H2 consumption in cell has been calculated by Gibbs free energy and open circuit voltage. Efisiensi was calculated based on mass transfer reaction and obtained 57,51% for Pt-Co/C as cathode material and 53,54% for Pt-Ru/C as anode material in PEMFC."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S30515
UI - Skripsi Open  Universitas Indonesia Library
cover
Suria
"Pada skripsi ini akan dirancang pengendali Model Predictive Control tanpa constraint pada sistem Proton Exchange Membrane Fuel Cell. Sebelumnya, dilakukan identifikasi sistem PEMFC dengan metode Least Square berdasarkan data masukan dan keluaran sistem nonlinier untuk mendapatkan model linier. Masukan sistem adalah flow H2, flow O2, dan arus. Kemudian dilakukan uji keabsahan model hasil identifikasi dengan membandingkan respon tegangan keluaran model nonlinier dengan model hasil indentifikasi. Selanjutnya, pengendali MPC tanpa constraint dirancang pada model identifikasi PEMFC dengan nilai parameter matriks faktor bobot Q dan R yang bervariasi. Dari hasil simulasi diperoleh respon pengendalian yang cukup baik meskipun hanya terbatas pada nilai matriks Q= 10 IHp dan R=5000 I6. Hal ini dapat dilihat dari respon yang dapat mengikuti sinyal acuan.

In this final thesis, a Model Predictive Control without constraint was designed in Proton Exchange Membrane Fuel Cell. Before designing, PEMFC system identification had been done using Least Square method based on input and output data of the nonlinear system to obtain linear model. System inputs are H2 flow, O2 flow, and current. Then, validation test was done by comparing voltage response of nonlinear and identification model. After that, a MPC controller without constraint was designed in identification model. The weighting matrices Q and R were varied to observe their effect to control result. From the simulation result, a quite good control result was obtained even though it's only limited to Q= 10 IHp and R=5000 I6. The quite good result can be observed from the tracking of setpoint."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51201
UI - Skripsi Open  Universitas Indonesia Library
cover
Dhanar Dwi Kuncoro
"Saat ini, Teknologi bahan bakar sel (fuel cell) telah berkembang dan diimplentasikan. Teknologi baru ini dapat memberikan daya listrik untuk perumahan, komersial dan pelanggan industri. Karena nilai efisiensi konversinya yang tinggi, kemudahan bahan bakar yang didapat, fleksibilitas untuk mengkombinasikan panas dan pembangkitnya, ramah lingkungan karena emisi gas buang yang rendah maka bahan bakar sel telah menjadi teknologi maju yang memiliki berbagai aplikasi pembangkit listrik yang variatif.
Tiap jenis fuel cell memiliki segmentasi pasar tersendiri sesuai karakater yang dimilikinya. Hal ini berdasarkan berdaya yang mampu dihasilkan, konstruksi desain, kecepatan daya yang dihasilkan (start-up) dan suhu opersionalnya. Pada umumnya jenis fuel yang beroperasi pada suhu rendah (AFC,PEMFC) telah digunakan sumber energi listrik pada peralatan portabel, perumahan dan aplikasi transportasi. Sedangkan pada carbonate dan SOFC yang beroperasi temperature tinggi banyak digunakan pada pembangkit yang cukup besar yang stasiooner (10-50 MW).
Jenis bahan bakar sel yang paling matang dan berpotensi untuk pembangkit listrik perumahan (gedung) ialah Proton Exchange Membrane (PEM). Proses teknologinya baik dengan bahan bakar fosil atau nonfosil tetap masih mahal, meski demikian teknologi ini telah banyak digunakan dan terus berkembang.
Pada skripsi ini, karakteristik PEM disimulasikan menggunakan MATLAB versi 7.04. Program dirancang untuk melakukan simulasi pengiriman daya dengan berbagai variasi (3KW, 5KW dan 8KW) ke beban perumahan. Dan Hasil simulasi ini akan dianalisis karakteristiknya seperti penggunaan gas metan dan hidrogen, polarisasi, panas dan air yang dihasilkan, efisiensi dan daya yang dihasilkan dalam kondisi temperatur dan suhu yang berbeda-beda.

Nowadays, Fuel Cell Technology has become largely developed and implemented. This new technology is suitable for producing electrical power for residential, commercial, and industrial customers. Because of high fuel conversion efficiency, fuel flexibility, combined heat and power generation flexibility, friendly siting characteristics, negligible environmental emissions and lower carbon dioxide emissions, fuel cells are considered at the top of the desirable technologies for a broad spectrum of power generation applications.
Each of the various fuel cell types can be configured in a system focusing on the market segments that match its characteristics most favorably. Because of their lightweight construction, compactness, and quick start-uppotential, the lowtemperature fuel cells are being considered for portable, residential power, and transportation applications (AFC, PEMFC). Whereas, the higher temperature carbonate and solid oxide fuel cells which offer simpler and higher efficiency plants are focusing on the stationary power generation applications in the near term and large (10?50MW) power plants in the long range.
The most mature and potential candidate for resendential and stationary applications among types of fuel cell is the Proton Exchange Membrane (PEM) Fuel Cell. The processing this technology either from fosil or non-fossil resources itself still expensive, however, it is became largely known and developed.
In this bachelor?s thesis, characteristic PEMFC is simulated using MATLAB 7.04 version. The program is designed to deliver in many option power (3KW, 5KW and 8 KW) to resindetial load. it?s characteristic such as mathane and hydrogen consumption, polarization, heat and water production, efficiency and output power on different temperature and pressure.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40470
UI - Skripsi Open  Universitas Indonesia Library
cover
Kevin Wiranata
"Air memegang peranan penting dalam Membrane Elektrode Assembly. Semakin banyak kandungan air dalam MEA, semakin baik konduktivitas ioniknya. Namun kadungan air yang berlebihan dapat menyebabkan flooding yang dapat menurunkan kinerja fuel cell. Tujuan penelitian ini adalah mencegah flooding dan meningkatkan kinerja MEA dengan penambahan microporous layer. Kinerja MEA tanpa MPL dan MEA dengan berbagai komposisi PTFE dalam MPL diuji pada penelitian ini. MEA dengan MPL terbukti menaikan power density fuel cell sebesar 258,8% dibandingkan dengan MEA tanpa MPL. Selain itu, MEA dengan MPL yang mengandung PTFE 20% wt menunjukan power density yang lebih tinggi dibandingkan dengan MEA dengan MPL 10% wt PTFE dan 30% wt PTFE. Hal ini menunjukan adanya komposisi optimum PTFE dalam MPL, dimana pada penelitian ini sebesar 20% wt.

Water plays an important role in the Membrane Electrode Assembly. The more water content in the MEA, the better its ionic conductivity. However, excessive water content can results flooding which degrade the performance of fuel cells. The objectives of this experiment are to reduce flooding and improve cell performance by adding a microporous layer. MEA without MPL and MEA with various compositions PTFE in MPL have been tested in this experiment. MEA with MPL proved to raise the fuel cell power density of 258.8% compared to the MEA without MPL. Furthermore, MEA with MPL containing 20% wt PTFE showed a higher power density compared to the MEA with MPL 10% wt PTFE and 30% wt PTFE. This shows there is an optimum composition of PTFE in the MPL which is 20% wt in this experiment."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S51872
UI - Skripsi Open  Universitas Indonesia Library
cover
Michael Limardi
"Bahan bakar fosil merupakan bahan bakar yang paling umum digunakan saat ini terutama dalam bidang industri dan transportasi. Namun karena memiliki potensi emisi karbon dioksida yang tinggi menyebabkan efek rumah kaca yang menyebabkan global warming. Oleh karena itu diperlukan suatu bahan bakar alternatif yang ramah lingkungan untuk menggantikan bahan bakar fosil ini. Sel tunam (fuel cell) merupakan salah satu terobosan baru untuk memangkas permasalahan ini. Hanya dengan bahan bakar hidrogen dan oksigen fuel cell dapat menghasilkan tegangan sebesar 1 V hingga 1.2 V. Jika disusun menjadi fuel cell stack, maka daya yang dihasilkan akan menjadi besar. Salah satu permasalahan dari  fuel cell adalah oxygen starvation dimana oksigen yang di supply menuju fuel cell tidak mencukupi untuk menghasilkan daya yang dibutuhkan. Hal ini dapat menyebabkan terjadinya penurunan performa pada fuel cell bahkan dapat merusak fuel cell. Untuk mengatasi hal ini dapat digunakan pengendali untuk melakukan pengendalian terhadap oxygen excess ratio yang merupakan perbandingan antara kadar oksigen yang masuk ke fuel cell dan oksigen yang bereaksi untuk menghasilkan daya.

Fossil fuels are the most commonly used fuels today, especially in industry and transportation. However, because it has the potential for high carbon dioxide emissions, it causes a greenhouse effect that causes global warming. Therefore we need an alternative fuel that is environmentally friendly to replace this fossil fuel. The fuel cell is one of the new breakthroughs to reduce this problem. Only with hydrogen fuel and oxygen fuel cells can produce a voltage of 1 V to 1.2 V. If arranged into a fuel cell stack, the power generated will be large. One of the problems with fuel cells is oxygen starvation where the oxygen supplied to the fuel cell is not sufficient to generate required power. This can cause a decrease in the performance of the fuel cell and can even damage the fuel cell it self. To overcome this problem, a controller can be used to control the oxygen excess ratio, which is the ratio between the level of oxygen entering the fuel cell and the oxygen that reacts to produce power."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Hamid Budiman
"ABSTRAK
Katalis komersial tidak selalu mempunyai properti yang baik. Katalis ini masih memerlukan perlakuan sehingga dapat memberikan kinerja yang tinggi ketika diaplikasikan pada fuel cell. Metode yang sering digunakan untuk sintesa katalis PtCo/C adalah impregnasi logam pada Platina yang disangga Karbon diikuti proses paduan/alloying pada suhu tinggi. Perlakuan pada suhu tinggi akan menyebabkan aglomerasi sehingga katalis menjadi lebih besar ukurannya, akibatnya terjadi penurunan aktifitas.
Struktur core shell terdiri atas kulit/shell dari suatu atom yang mengelilingi inti/core dari jenis atom yang lain. Struktur ini dapat dicapai melalui proses aneling suhu tinggi, chemical leaching ataupun teknik deposisi elektrokimia. Namun demikian, semua metode tersebut mempunyai kelemahan antara lain berkurangnya luas aktif area, pembentukan shell logam nobel yang tidak lengkap dan memerlukan kontrol potensial selama preparasinya.
Distribusi atom dan alloying extent dari bimetal nanopartikel dapat mempengaruhi aktifitas katalis. Akhir-akhir ini aplikasi x-ray absorption spectroscopy (XAS) banyak digunakan pada bimetal nanopartikel. Namun demikian studi tentang distribusi atom ataupun alloying extent masih terbatas. Pemahaman teori tentang distribusi atom dan alloying extent masih sangat diperlukan.
Tujuan dari studi ini adalah untuk mempelajari peningkatan aktifitas dan stabilitas katalis komersial PtCo/C dengan perlakuan Nitrogen dan Karbon Monoksida untuk mempelajari efek ukuran partikel dan struktur katalis terhadap aktifitas dan stabilitasnya.
Metodologi yang digunakan meliputi perlakuan katalis komersial PtCo/C, karakterisasi fisik, karakterisasi kimia serta pengujian kinerja sel tunggal. Katalis dilakukan perlakuan dengan Nitrogen pada berbagai macam suhu untuk mengetahui efek ukuran partikel terhadap aktifitas dan stabilitasnya, serta perlakuan dengan Karbon Monoksida pada berbagai macam waktu untuk mengetahui efek struktur katalis terhadap aktifitas dan stabilitasnya. Karakterisasi fisik yang dilakukan adalah x-ray diffraction (XRD), transmission electron microscopy (TEM) dan XAS. Sedangkan karakterisiasi kimia yang dilakukan adalah cyclic voltammetry (CV) dan linear sweep voltammetry (LSV).
Analisa XRD yang dilakukan pada katalis PtCo/C dengan perlakuan Nitrogen menunjukkan bahwa ukuran partikel menjadi lebih besar dengan bertambahnya suhu perlakuan. Analisa TEM menggambarkan distribusi partikel yang merata dan sesuai dengan hasil XRD. Sedangkan, analisa elektrokimia menunjukkan kurva voltammogram yang bentuknya seperti kurva voltammogram Pt.
Untuk katalis PtCo/C dengan perlakuan Karbon Monoksida, analisa XRD menunjukkan bahwa adanya puncak Kobal untuk katalis dengan perlakuan selama 5, 7, 10 dan 15 jam. Hal ini mengindikasikan adanya segregasi ke permukaan katalis. Analisa XAS memberikan hasil struktur Pt rich in core Co rich in shell untuk katalis dengan perlakuan selama 1, 3 dan 5 jam. Sebaliknya perlakuan selama 7, 10 dan 15 jam menghasilkan struktur Pt rich in shell Co rich in core. Dari analisa elektrokimia yang dilakukan, dihasilkan tidak adanya perubahan CV untuk katalis dengan perlakuan selama 1-5 jam, mengindikasikan adanya peningkatan aktifitas. Sebaliknya perlakuan selama 7-15 jam menunjukkan katalis bersifat kurang aktif. Pengujian stabilitas menunjukkan katalis dengan perlakuan 1-5 jam bersifat tidak stabil. Hal ini dikarenakan Pt yang terletak di core tidak mampu untuk melindungi Co yang berada di shell dari disolusi. Sebaliknya katalis dengan perlakuan selama 7-15 jam bersifat stabil, karena Pt yang terletak di shell mampu melindungi Co yang berada di core dari proses disolusi.
Pengujian kinerja sel tunggal menunjukkan bahwa katalis dengan perlakuan Karbon Monoksida selama 3 jam merupakan katalis yang mempunyai kinerja terbaik. Hal ini sesuai dengan aktifitas masa dan luas permukaan spesifik dari katalis dengan perlakuan Karbon Monoksida selama 3 jam, di mana katalis ini mempunyai aktifitas paling baik terhadap reaksi reduksi oksigen. Terlihat bahwa terjadi peningkatan power densitas sebesar 20,49 %, di mana katalis PtCo/C komersial mempunyai power density 88,33 mW/cm2 dan katalis PtCo/C dengan perlakuan Karbon Monoksida selama 3 jam mempunyai power density 108,82 mW/cm2.

ABSTRACT
The synthesis procedure on a commercial catalyst still needs to be improved in order to get a better catalyst performance for application on fuel cell. There is no guarantee that the commercial catalyst has a good property. The commonly used method to prepare PtCo/C electrocatalyst is through impregnation of the second metal on platinum supported carbon (Pt/C) followed by alloying at high temperature in an inert gas. This high temperature heat treatment facilitates the growing of the alloy nanoparticles (NPs) due to sintering, which is undesirable because it may result in reduction of the Pt mass activity for the oxygen reduction reaction (ORR).
Core shell NPs consist of a shell of one type of atom surrounding a core of another type of atom. This structure can be achieved by high temperature annealing, chemical leaching of the non noble material or electrochemical deposition technique.
Nevertheless, all of these methods exhibit significant disadvantages such as losses in active surface area and material, formation of an incomplete noble metal shell, and necessity for potential control during preparation.
It is important to understand the atomic distribution and alloying extent of participating elements in individual bimetallic NPs, as these factors also influence the intrinsic catalytic activity. In recent years, x-ray absorption spectroscopy (XAS) studies have been well explored on bimetallic NPs. However, XAS studies focusing on estimation of atomic distributions or alloying extent in the NPs are limited. Therefore, we propose a methodology to estimate the structural characteristics such as alloying extent or atomic distribution in bimetallic NPs, by deriving the structural parameters from XAS analysis and to demonstrate the results on commercially available carbon supported PtCo NPs.
The overall objective of this study is to enhance the activity and stability of commercial PtCo/C electrocatalyst through treatment with nitrogen (N2) and carbon monoxide (CO). In this work, a commercial PtCo/C catalyst was treated using two different strategies to study the effect of particle size and structure on its activity and stability The research methodology consists of PtCo/C catalyst treatment, physical characterization, electrochemical characterization and single cell proton exchange membrane (PEM) fuel cell performance test. The catalysts were treated with nitrogen at various temperatures in order to study the effect of the particle size on its activity and stability, and also treated with carbon monoxide at various times in order to study the effect of the structure on its activity and stability. Physical characterizations were done through x-ray diffraction (XRD), transmission electron microscopy (TEM) and XAS. The electrochemical characterizations were done using cyclic voltammetry (CV) and linier sweep voltammetry (LSV).
For the PtCo/C that is subjected to N2 treatment, XRD result shows the particle size is increased with increasing temperature of treatment. TEM result shows that all the PtCo NPs are well dispersed on the surface of carbon and it is in accordance with the XRD result. The electrochemical characterization shows that the base voltamogram becomes more Pt-like, which is indicative of leaching Co from the surface. While for PtCo/C that is subjected to CO treatment, the XRD result shows that treatmnet for 5, 7, 10 and 15 hours leads to surface segregation, at which the peak of Co-related species is clearly observed. The alloying extent and coordination number of the catalysts were investigated with XAS, show that treatments for 1, 3 and 5 hours resulted in Pt rich in core Co rich in shell. On the contrary, treatments for 7, 10 and 15 hours resulted in Pt rich in shell Co rich in core.
It is clearly demonstrated that the PtCo/C subjected to CO treatment for 1-5 hours shows the enhanced ORR activity, but the catalyst is unstable due to the dissolution of Co, while samples treated for 7-15 hours display poor activities. However, the catalyst is stable, which is likely due to the fact that Pt in the surface protects Co from dissolution.
The single cell PEM fuel cell performance test shows that PtCo/C subjected to CO treatment for 3 hours shows the best performance. This result is in accordance with the specific surface area and mass activity of PtCo/C that is subjected to CO treatment for 3 hours, which has a better activity toward ORR. Catalyst treatment would increase the fuel cell performance by 20.49 % (Power density of commercial PtCo/C electrocatalyst: 88.33 mW/cm2, PtCo/C electrocatalyst subjected to CO treatment for 3 hours: 108.82 mW/cm2)"
Depok: 2011
D1285
UI - Disertasi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>