Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 176698 dokumen yang sesuai dengan query
cover
Ungu Primadusi
"Sekarang ini, energi angin dapat dimanfaatkan sebagai alternatif sumber tenaga listrik melalui Pembangkit Listrik Tenaga Bayu. Kecepatan angin tergantung pada dimensi waktu dimana setiap saat mengalami perubahan. Untuk itu perlu desain sistem kendali agar input dan output di pembangkit menjadi stabil. Dalam hal ini kecepatan angin sebagai input dan daya listrik sebagai output.
Tugas akhir ini berfokus pada pengendali torsi turbin angin dan daya listrik sebagai output pembangkit. Model pembangkit yang dipakai adalah variable speed wind turbine (VSWT) dengan generator induksi doubly fed. Untuk membatasi torsi turbin angin yang digunakan untuk menggerakan poros generator dan daya turbin (sebagai daya referensi) pada P&Q Control akibat perubahan putaran turbin digunakan lookup table. Pengendali Proposional plus Integral (PI) mampu menstabilkan daya listrik dari generator. Pengendali PI tergantung oleh gain dan waktu integral. Untuk menunjukkan kinerja pengendali daya, simulasi dengan mempergunakan MATLAB/Simulink.

Nowdays, wind energy can used for alternative energy in power system with wind turbine. Wind speed depends of time whereas can be changed every seconds. For this case, needing design control system to made of stabilitize input and output in wind turbine system.
This project focused in torque and output power control. This system categorize of variable speed wind turbine with doubly fed generator induction. Look up table use for minimize torque turbine which used for shaft generator and power (as reference power) in P&Q Control caused of rotational turbine. Propotional plus Integral (PI) can stability power in induction generator. PI controller depends of two parameters : gain and integral time. In this simulation, we use MATLAB/simulink to look performance of controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51323
UI - Skripsi Open  Universitas Indonesia Library
cover
M. Wahyu Ashari
"Pembangkit Listrik Tenaga Bayu (PLTB) adalah sumber energi yang bisa menjadi sumber energi alternatif ketika dunia mengalami kelangkaan sumber energi fosil seperti minyak bumi, gas alam dan batu bara. Saat ini PLTB belum menjadi sumber energi yang menjanjikan di Indonesia. Salah satu penyebabnya adalah karena efisiensi daya yang sangat rendah. Hal ini diakibatkan oleh efisiensi yang berubah-ubah seiring dengan perubahan kecepatan angin. Untuk meningkatkan efisiensi PLTB, pada skripsi ini dirancang sebuah pengendali berbasiskan jaringan syaraf tiruan (JST) yang dapat mengendalikan sudut dari blade pada turbin angin. Dari hasil simulasi didapatakan efisiensi turbin angin yang sudut blade-nya dikendalikan menggunakan JST lebih besar dibandingkan turbin angin yang sudut blade-nya konstan.

Wind Energy Convertion System (WECS) can become as one of alternative energy resources in the future that replaces fosil energy resources like Oil and Gas. However, nowadays Wind Energy Convertion System is not properly applied to be the primary energy resource in Indonesia yet, because the energy efficiency of wind turbine is low due to high dependency on wind velocity. In this paper, we design a neural network based controller to control the pitch of blade on wind turbine. From the simulation result, we verified thatbetter wind turbin efficiency has been achieved by using proposed neural network based controller."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S176
UI - Skripsi Open  Universitas Indonesia Library
cover
Sinaga, Arnol
"Pembangkit Listrik Tenaga Bayu (PLTB) skala kecil merupakan pembangkit listrik tenaga angin dengan kapasitas daya dibawah 50 kW.[8] Untuk menghemat biaya pengeluaran untuk sistem mekanik PLTB maka pada tesis ini didesain PLTB dengan jari-jari turbin, rasio gear gearbox dan sudu pitch turbin konstan/tetap. Pada sistem PLTB dengan sudu pitch tetap, jika kecepatan angin lebih besar dari batas kecepatan angin maksimum maka sistem harus dimatikan karena akan melebihi batas torsi dan arus generator sehingga dapat merusak generator. Dengan demikian pada kecepatan angin lebih besar dari kecepatan angin maksimum, field weakening dibutuhkan untuk membuat generator dapat bekerja dengan kecepatan putar rotor lebih besar dari batas kecepatan putar rotornya dengan cara melemahkanan fluks generator sehingga arus dan torsinya mengecil. Daya, torsi dan arus generator dapat dikendalikan sesuai batasannya dengan mengendalikan kecepatan putar rotornya sehingga generator dapat mensuplai daya maksimum. Maka dengan menggunakan field weakening, generator dapat mensuplai daya walaupun kecepatan angin melebihi kecepatan maksimum.

Small wind turbin is wind power plants with a capacity below 50 kW.[8] To reduce cost for the mechanical systems of wind tubin in this thesis was designed wind turbin with turbine radius constant , gear ratio gearbox constant and turbine blade pitch constant / fixed. In the wind turbine system with fixed pitch blades, if wind speed is greater than maximum wind speed limit, the system should be shut down because it would exceed the limits of torque and current generator, which can damage the generator. Thus, if wind speed is greater than the maximum wind speed, field weakening is required to make the generator can work with rotor rotational speed larger than rotor rotational speed limit with flux weakening so that generator current and torque decreases. Power, torque and current generator can be controlled by controlling according rotor rotational speed so generator can supply the maximum power. Then, with field weakening, generator can supply power although wind speed exceeds maximum speed."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35222
UI - Tesis Membership  Universitas Indonesia Library
cover
Sinaga, Arnol
"Penggunaan Pembangkit Listrik Tenaga Bayu makin meningkat sebagai sumber energi listrik terbarukan. Salah satu permasalahan dalam pemanfaatan PLTB adalah pengendalian generator induksi. Pada penelitian ini telah dirancang pengendali RFOC, Full Observer dan pengendali daya sebagai satu kesatuan kendali generator induksi. Tipe generator induksi yang dipakai adalah SCIG. Pengendali Rotor Flux Oriented Control (RFOC) adalah pengendali vektor yang mengatur arus stator. RFOC terdiri dari dua bagian yaitu decoupler dan pengendali PI untuk mengendalikan arus. Pengendali RFOC adalah pengendali yang memerlukan masukan arus stator referensi, arus stator generator dan kecepatan putar rotor generator.
Untuk mendapatkan kecepatan putar rotor generator, dalam penelitian ini didesain full order observer sebagai masukan pengendali RFOC sehingga tidak menggunakan sensor kecepatan. Sedangkan pengendali daya didesaian agar daya keluaran generator sesuai dengan daya referensi yang diberikan. Analisa dilakukan berdasarkan hasil simulasi pada MATLAB/Simulink dan C-Mex S-Function. Berdasarkan hasil simulasi, RFOC yang dirancang telah berhasil mengendalikan generator dengan perubahaann arus stator sumbu q, full observer dapat mengestimasi state dengan error 5% pada model dan kecepatan putar dengan error 0.43% dan waktu stabil 1.4s dan pengendali daya bekerja dengan baik.

The use of wind power plants as a source of renewable electric energy is increasing. One of the problems in the utilization wind turbin is the control of an induction generator. In this study, RFOC, Full Observer and Power Controller have been designed as control of induction generator. Induction generator type used is SCIG. Controlling Rotor Flux Oriented Control (RFOC) is a vector controller that regulates the stator currents. RFOC consists of two parts, decoupler and current PI controller. RFOC controller requires input reference stator current, stator current generator and the generator rotor rotational speed.
In this study, instead of speed sensor, full order observer has been used to estimate generator rotor speed. Power controller is used to regulate the generator output power in accordance with the references given. In this study, verification of controller performance has been done by using simulation MATLAB/Simulink. Simulation results show that RFOC, full observer and power controller have achieved its performance. RFOC has control the generator with change of q-axis stator current. Full observer has estimate with 5% error, and rotational speed with 0.43% with 1.4s. Power control have also worked well.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43323
UI - Skripsi Open  Universitas Indonesia Library
cover
Ali Faisal Alwini
"Penggunaan dan pemanfaatan energy yang ada semakin terbatas dikarnakan pembangkit listrik tenaga fosil yang masih massive penggunaanya memiliki banyak dampak terhadap lingkungan akibat emisi yang dikeluarkan. Penggunaan energi terbarukan sebagai sumber listrik ini menjadi solusi untuk mengurangi penggunaan bahan bakar fosil yang memberikan banyak emisi. Namun energi terbarukan ini memiliki kekurangan dikarenakan inout yang diberikan sumbernya tidak dapat ditebak menyebabkan energi yang dikeluarkan tidak stabil dan memungkinkan tidak ada saat diperlukannya energi ini (Intermitten). Pada penelitian ini akan disimulasikan penggunaan pembangkit hibrit sel surya dan turbin angin yang dapat diaplikasikan diatap rumah. Pengujian penelitian ini menggunakan software Matlap/Simulink untuk mengkalkukasi beberapa kondisi input dari kecepatan angin dan irradiant yang diterima sel surya. Hasil penelitian menunjukan dengan menggunakan DC-DC bidirectional baterai dapat menjaga penyaluran daya kepada beban. Beban listrik rumah pada penelitian sebesar 48,51KW/hari dengan memperhatikan factor perlindungan sehingga beban menjadi 63,06 kWh/hari, sistem pembangkit hibrit sel surya 300Wp sebanyak 18 buah dan Turbin angin 2000W dengan baterai 22 buah sebagai penstabil keluaran sistem tenaga dapat menyupplai daya 68.400 watt yang sudah memenuhi kebutuhan listrik rumah secara mandiri dengan efisiensi.

The use and utilization of existing energy is increasingly limited because fossil power plants which are still massively used have many impacts on the environment due to the emissions released. The use of renewable energy as a source of electricity is a solution to reduce the use of fossil fuels that provide a lot of emissions. However, this renewable energy has drawbacks because the inout provided by the source is unpredictable, causing the energy released to be unstable and may not be available when this energy is needed (Intermittent). In this study, the use of hybrid solar cells and wind turbines will be simulated which can be applied on the roof of the house. This research test uses Matlap/Simulink software to calculate some input conditions from wind speed and irradiant received by solar cells. The results show that using a DC-DC bidirectional battery can maintain power distribution to the load. The house electricity load in the study was 48.51KW/day taking into account the protection factor so that the load became 63.06 kWh/day, 22 units of 300Wp solar cell hybrid generator system and 2000W wind turbine with 18 batteries as a stabilizer for the output power system can supply power. 68,400 watts which has met the electricity needs of the house independently with efficiency"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sandy Ario Harisakti
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39608
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deviana Nur Indrawati
"Sistem boiler pada pembahasan tesis ini merupakan sistem mutivariabel, yang mempunyai empat variabel keadaan, dua variabel masukan dan dua variabel keluaran. Dengan variabel pengendali adalah tekanan drum (drum pressure) (y1) dan selisih tingkat air/level air didalam drum (drum water level) (y3 ), sedangkan variabel yang dimanipulasi adalah laju aliran bahan bakar (fuel flow rate) ( u1 ) dan laju aliran air pengisi drum (feedwater flow rate) (u3).
Tujuan dari sistem pengendalian boiler adalah untuk mengatur tekanan uap (drum pressure) (y1) disekitar 320 psi dan level air di dalam drum (drum water level) (y3) disekitar 0 inch terhadap perubahan beban uap. Salah satu pengendalian sistem boiler adalah pengendali PI. Pengendali PI ini akan mengendalikan boiler agar boiler mampu memiliki kinerja yang baik karena pengendali PI dapat mempercepat respon sistem menuju setpoint dan dapat menghilangkan offset atau error steady state.
Pada pembahasan tesis ini pengendalian sistem boiler akan melakukan penalaan parameter pengendali PI berbasis algoritma genetika untuk mendapatkan nilai parameter yang optimal.
Hasil yang diperoleh dari penalaan PI berbasis algoritma genetika pada pembahasan tesis ini sudah dapat mencapai kriteria yang diinginkan seperti overshoot, rise time dan settling time. Dan respon keluaran dari pengendali PI yang ditala dengan algoritma genetika ternyata menunjukkan hasil yang lebih baik jika dibandingkan dengan respon keluaran dari pengendali PI yang ditala dengan cara trial error seperti pada acuan [2] dan [3].

Boiler system described in this thesis is multivariable system, which have four state variable, two input and two output variable. Where variable control is drum pressure (y1) and delta drum water level (y3), whereas the manipulated variable is fuel flow rate (u1 ) and feedwater flow rate (u3 ).
The purpose in this boiler control is to make the drum pressure (y1) around 320 psi and drum water level (y3) around 0 inch towards the changes of steam load. One of boiler system control is PI controller. PI controller will control the boiler to make the boiler have a good performance, because PI controller can enforce system response more quicker into the set point and can eliminate offset or error steady state.
In this thesis a boiler system controller will do a tunning parameter on PI controller based on Genetic Algoritms to produce optimal parameter value.
The result from PI tunning based on Genetic Algorithm in this thesis already fulfill the criteria like overshoot, rise time, and settling time. And output respons from PI controller that have been tunning with genetic algoritms shows the better result when compares with output response from PI controller which tunning with trial error method [2] , [3].
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
T25065
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fauzi
"Produksi kelapa sawit yang semakin meningkat akan menghasilkan limbah yang banyak seperti Tandan Kosong Kelapa Sawit (TKKS). Furfural dapat dihasilkan dari bahan baku TKKS dengan metode hidrolisis asam. Reaktor hidrolisis asam digunakan untuk menghasilkan furfural. Suhu, tekanan, dan level dalam reaktor menjadi variabel yang perlu dikendalikan untuk menghasilkan kualitas produk yang baik. Sistem pengendalian yang optimum diperlukan untuk menjaga kestabilan pada saat proses produksi furfural. Proses produksi furfural yang diamati adalah pada pilot plant furfural di Departemen Teknik Kimia Universitas Indonesia dengan kapasitas produksi 100 L per hari. Sebelum memproduksi furfural, dilakukan terlebih dahulu simulasi menggunakan simulator Aspen Plus pada keadaan steady-state. Kemudian mengubah ke keadaan dinamik ketika sudah berjalan dengan lancar dengan simulator Aspen Plus Dynamics. Pada penelitian ini ditujukan untuk mendapatkan model proses produksi furfural pada pilot plant furfural dengan menggunakan simulator proses, mendapatkan model First Order Plus Dead Time (FOPDT) yang terbaik untuk pengendalian reaktor hidrolisis asam proses produksi furfural pada pilot plant furfural, dan mendapatkan parameter penyetelan pengendalian yang optimum untuk pengendalian reaktor hidrolisis asam proses produksi furfural pada pilot plant furfural. Pengendali Proporsional-Integral (PI) adalah jenis pengendali yang digunakan. Model FOPDT yang terbaik untuk seluruh variabel adalah Model Solver dengan nilai Kp sebesar 3,711,  sebesar 98,457, dan  sebesar 3,641 untuk variabel suhu; nilai Kp sebesar -0,023,  sebesar 11,681, dan  sebesar 0,494 untuk variabel tekanan; nilai Kp sebesar -0,121,  sebesar 1954,788, dan  sebesar 32,958 untuk variabel level. Metode penyetelan yang terbaik untuk seluruh variabel adalah closed loop Ziegler-Nichols dengan nilai Kc sebesar 18,14 dan Ti sebesar 0,1 untuk variabel suhu; nilai Kc sebesar 309,71 dan Ti sebesar 0,2 untuk variabel tekanan; nilai Kc sebesar 3219,33 dan Ti sebesar 0,2 untuk variabel level.

The increasing production of palm oil will produce a lot of waste, such as Oil Palm Empty Fruit Bunches (OPEFB). Furfural can be produced from OPEFB raw materials by acid hydrolysis method. An acid hydrolysis reactor is used to produce furfural. Temperature, pressure, and level in the reactor are variables that need to be controlled to produce good product quality. An optimum control system is needed to maintain stability during the furfural production process. The furfural production process observed was in a furfural pilot plant at the Department of Chemical Engineering, University of Indonesia with a production capacity of 100 L per day. Before producing furfural, a simulation was carried out using the Aspen Plus simulator at steady-state conditions. Then change to the dynamic state when it is running smoothly with the Aspen Plus Dynamics simulator. This research aims to obtain a model of the furfural production process in a furfural pilot plant using a process simulator, to obtain the best First Order Plus Dead Time (FOPDT) model for controlling acid hydrolysis reactors in the furfural production process in a furfural pilot plant, and to obtain the optimal control parameter settings. optimum for controlling acid hydrolysis reactor furfural production process in furfural pilot plant. Proportional-Integral (PI) controller is the type of controller used. The best FOPDT model for all variables is the Solver Model with Kp values of 3.711,  of 98.457, and  of 3.641 for the temperature variable; the Kp value is -0.023,  is 11.681, and  is 0.494 for the pressure variable; the Kp value is -0.121,  is 1954.788, and  is 32.958 for the level variable. The best tuning method for all variables is closed loop Ziegler-Nichols with a Kc value of 18.14 and a Ti value of 0.1 for the temperature variable; the value of Kc is 309.71 and Ti is 0.2 for the pressure variable; the Kc value is 3219.33 and Ti is 0.2 for the level variable."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Katrin Rifanni Pamella
"Microgrid sistem ketenagalistrikan Sumba Timur hingga saat ini didominasi oleh Pembangkit Listrik Tenaga Diesel (PLTD) milik PT PLN (Persero). Melimpahnya potensi energi terbarukan di pulau Sumba mendorong adanya program Sumba Iconic Island (SII) untuk meningkatkan penggunaan energi terbarukan dengan target 95% hingga tahun 2020. Salah satu pembangkit pada program SII yang akan terhubung dengan sistem PT PLN (Persero) adalah Pembangkit Listrik Tenaga Bayu (PLTB). Perencanaan sistem ketenagalistrikan harus mencapai terpenuhinya kebutuhan beban, sehingga dibutuhkan kehandalan yang tinggi dan keekonomian yang sesuai. Sistem microgrid pembangkit existing akan dihitung kehandalan nya yang diikuti oleh analisis keekonomian berupa perhitungan biaya energy/Cost of Energy (COE) dan Net Present Cost (NPC) sistem. Kemudian penambahan PLTB sesuai rencana SII akan dianalisis, dari segi kehandalan menggunakan metode Loss of Load Probability (LOLP) dan dari segi keekonomian akan ditentukan besarnya COE dan NPC. Perhitungan LOLP menggunakan algoritma Visual Basic dalam Microsoft Excel, sedangkan analisis keekonomian menggunakan software Homer. Hasil penelitian dapat disimpulkan bahwa setelah ditambahkan PLTB dalam sistem existing microgrid Sumba Timur, maka LOLP dan keekonomian dapat berubah sesuai menjadi lebih baik dan lebih buruk. Kehandalan lebih baik saat LOLP makin kecil dan keekonomian lebih baik saat COE makin kecil, begitu juga sebaliknya. Skenario paling handal adalah penambahan 3 MW PLTB dengan asumsi capacity credit 40%, dimana LOLP akan turun dari 4,82 hari/tahun menjadi 3,86 hari/tahun, dan COE akan turun dari $0,270/kWh menjadi $0,267/kWh.

On-grid existing power system in East Sumba is dominated by diesel generator. The great number of renewable energy potential on Sumba Island encourages the Sumba Iconic Island (SII) program to meet the renewable energy development target provide 95% electrification ratio using renewable energy by 2025. SII program plans to build Wind Turbine Power Plant that will be connected to the PLN grid system. Electricity system planning must achieve the fulfillment of load requirements, so a high reliability and appropriate economics system are needed. The existing microgrid system will be analized for both reliability and economical analysis, for reliability use LOLP calculation and generate Cost of Energy (COE) and Net Present Cost (NPC) for economical analysis. Adding Wind Turbine Power Plant in the existing system also will be analyzed with the same methode. Visual Basic in Microsoft Excel used to calculate the LOLP index, while Homer software used to optimize the COE and NPC of the microgrid system, include the detail type of power plant. The results of this research after adding PLTB in the existing Sumba East microgrid system, can be concluded that reliability and economical analysis can change according to better and worse. Better reliability when LOLP gets smaller and economical analysis is better when COE gets smaller, and the opposite matters. The most reliable scenario is the addition of 3 MW of Wind Turbine Power Plant with 40% capacity credit assumption, where the LOLP will drop from 4,82 days/year to 3,86 days/year, and COE will drop from $ 0,270/kWh to $ 0,267/kWh."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54107
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoyok Dwi Setyo Pambudi
"Telah dibuat sistem dual reservoir (Duress), sistem ini bertujuan untuk mempelajari proses siklus pendingin sekunder pada reaktor PWR. Pengendali yang digunakan adalah Proporsional Integral (PI) dengan pertimbangan bahwa kendali PI telah digunakan pada kendali steam generator PLTN sesungguhnya. Kemudian juga diterapkan pengendali prediktif berbasis model untuk membandingkan hasil kendali PI dan prediktif. Pada kendali PI untuk mendapatkan parameter Kc dan Ti digunakan Ciancone correlation. Sedang pada kendali prediktif digunakan konsep projected desired trajectories (PDT).
Uji kendali yang dilakukan pada penelitian ini meliputi pengendalian SISO untuk hubungan tiap katup ke resevoir, pengendalian dua masukan dan dua keluaran, dan uji pengendalian terkoordinasi. Pengendalian tekoordinasi membuat skenario pengendalian level air seperti pada steam generator yaitu skenario pengendalian normal dan pengendalian saat terjadi kegagalan pada salah satu pompa. Hasil pengujian menunjukkan pengendali prediktif berbasis model yang diterapkan pada sistem dual reservoir mampu menghasilkan kinerja yang lebih baik dibandingkan dengan pengendali PI.

Dual reservoir system (DURESS) has been developed, the system aims to study the process of secondary cooling cycles in PWR reactors. The controller used is Proportional Integral (PI) with the consideration that PI control has been used in actual control of the nuclear power plant steam generator. Then also applied the model-based predictive control to compare the results of PI control and input. In PI control, to obtain the parameters Kc and Ti are used Ciancone correlation. While predictive control uses the projected desired trajectories (PDT) concept.
Control tests conducted in the study include SISO control for each valve to reservoir relationship, control of two inputs and two outputs, and coordinated control test. Coordinated Control created scenarios such as controlling water levels in steam generators of normal controls and control scenario during a failed pump. Test results show that model-based predictive control applied to the dualreservoir system is able to produce better performance than PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T30208
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>