Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 126542 dokumen yang sesuai dengan query
cover
Maria Linawati
"Biodiesel merupakan solusi untuk mengurangi ketergantungan terhadap minyak bumi yang berasal dari fossil. Selama ini produksi biodiesel masih dilakukan dalam skala batch. Kelemahan dari sistem batch ini adalah memerlukan waktu yang lama dan memerlukan alat yang banyak sehingga sistem menjadi lebih rumit. Hal inilah yang menyebabkan kapasitas produksi biodiesel skala batch terbatas. Untuk itu perlu dikembangkan sistem produksi biodiesel kontinyu. Beberapa penelitian sudah dilakukan untuk menciptakan sistem produksi biodiesel kontinyu, diantaranya dengan menggunakan sistem reactive distillation dan teknologi membran. Namun, belum ada yang menggunakan separator kontinyu.
Pada penelitian terdahulu telah dikembangkan penggunakan separator yang bekerja secara kontinyu dalam skala laboratorium. Separator yang digunakan adalah tangki pengendap tanpa baffle atau dengan baffle yang memisahkan beberapa kompartemen. Keberhasilan pemisahan salah satu nya tergantung dari laju alir masukan yang akan berpengaruh terhadap ketinggian masing-masing komponen pada setiap kompartemen untuk masing-masing jenis separator. Supaya sistem separator kontinyu ini dapat diaplikasikan di dalam skala industri, dilakukan pemodelan matematis terhadap separator.
Pendekatan yang dilakukan untuk pemodelan adalah prinsip neraca massa dan Bernoulli. Model yang dihasilkan kemudian divalidasi dengan menggunakan data-data hasil penelitian laboratorium. Hasil yang diperoleh dari penelitian ini adalah model persamaan yang dengan memasukkan variabel berupa kapasitas produksi maka akan didapatkan dimensi separator, jumlah baffle dan ketinggian baffle yang dibutuhkan.

Biodiesel is a solution to reduce dependence on oil, which comes from the fossil. This far, production of biodiesel is still done in batch scale. The disadvantages of this batch system are consumes longer time and requires a lot of tools so that the system becomes more complicated. This becomes the reason why production of biodiesel done in batch scale has a limited capacity. So, it is necessary to develop continuous biodiesel production system. Some research has been done to create a continuous biodiesel production system, such as by using a system of reactive distillation and membrane technology.
However, none has the continuous separator. Research has developed the use of separators, which works continuously in the laboratory scale. Separator used is settling tank without baffles or baffle that separates several compartments. The success of separation depends on the input flow rate which will affect the height of each component in each compartment for each type of separator. In order for this continuous separator system can be applied on an industrial scale, carrying out mathematical modeling of the separator should be done.
The approach taken to this modeling is the mass balance and Bernoulli's principle. The model is then validated using data of laboratory research. The output from this research is models which by giving the production capacity variable, we can get separator dimension, ammont of baffle needed, and the height of baffle.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S51889
UI - Skripsi Open  Universitas Indonesia Library
cover
Indriani Fajrin
"Semakin langkanya bahan bakar fosil mendorong pengembangan bahan bakar lain yang ramah lingkungan dan dapat diperbaharui, salah satunya adalah biodiesel. Beberapa penelitian telah dilakukan untuk mengembangkan proses produksi biodiesel dengan sistem kontinyu. Proses produksi biodiesel, terutama pada proses pemisahan biodiesel dan air menggunakan sistem batch atau semi-batch. Salah satu proses pemisahan yang berhasil adalah dengan menggunakan separator untuk memisah secara kontinyu antara biodiesel dan air. Separator tersebut berupa tangki pengendap dengan baffle. Penelitian ini dilakukan untuk mengevaluasi dan menganalisis separator yang digunakan pada proses separasi biodiesel dengan air.
Analisis dilakukan dengan mengamati fenomena pemisahan sebagai fungsi dari laju alir, komposisi, dan jumlah baffle. Hasil analisis berupa fenomena pemisahan serta fungsi empiris berbentuk persamaan linier yang menunjukkan ketinggian biodiesel sebagai indikasi keberhasilan pemisahan. Dari hasil penelitian didapatkan bahwa proses pemisahan biodiesel-air berlangsung cepat sehingga akan lebih baik jika menggunakan separator tanpa baffle. Hal ini dipengaruhi oleh waktu tinggal yang berhubungan erat dengan ketinggian baffle.

Increasing scarcity of fossil fuels to encourage the development of other fuels that are environmentally friendly and renewable, one of which is biodiesel. Several studies have been conducted to develop a biodiesel production process with continuous systems. Biodiesel production process, especially in the biodiesel and water separation process using a system of semi-batch or batch. One of the successful process is to use a separator for separating continuously between the biodiesel and water. Separator is a settling tank with baffles. This research is to evaluate and analyze the separator used in the separation process of the biodiesel with water.
The analysis was conducted to observe the phenomenon of separation as a function of flow rate, composition, and the number of baffles. Results of analysis of the phenomenon of segregation as well as empirical functions form a linear equation showing the height of biodiesel as an indication of the success of the separation. From the results showed that biodiesel-water separation process is rapid, so it is better if using a separator without a baffle. This is influenced by the residence time is closely related to the height of baffle.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S51890
UI - Skripsi Open  Universitas Indonesia Library
cover
Abraham Mahendiartha Putra
"Sampah elektronik semakin meningkat jumlah nya di masyarakat akibat intensifnya penggunaan alat elektronik individual seperti perangkat pintar serta peralatan elektronik penunjang lainnya. Dalam perakitannya, hampir seluruh perangkat elektronik ini memiliki tiga material utama yaitu logam ferrous, logam non ferrous, serta material non logam. Dikarenakan adanya bahaya, serta manfaat dari setiap material ini, maka dibuatlah sebuah rancang bangun alat eddy current separator skala kecil yang dapat memisahkan tiga material utama tersebut. Eddy Current Separator (ECS) meruapakan alat separasi yang dapat memisahkan material logam ferrous, logam non ferrous, dan non logam dengan cara menggunakan susunan magnet yang akan menghasilkan gaya eddy current. Berdasarkan gaya eddy current yang dapat memisahkan ini, maka dibuatlah sebuah rancang bangun dari alat eddy current separator dengan mengintegrasikan dua komponen utama yaitu drum magnet dan juga komponen sabuk konveyor. Sistem yang terintegrasi atas dua komponen ini akan melakukan feeding sampah elektronik yang telah dicacah dan akan membagi sampah yang tercampur menjadi tiga jenis sampah utama. Kemudian dilakukan pengujian atas alat yang telah dirancang dan dibangun dan didapatkan hasil percobaan bahwa alat dapat memisahkan material logam ferrous yang diwakilkan serbuk besi secara 100% dalam pengetesan individu, alat dapat memisahkan material logam non ferrous yang diwakilkan alumunium dan tembaga secara 100% dalam pengetesan individu, serta alat juga memisahkan material non logam yang diwakilkan oleh papan pcb secara 100% dalam pengetesan individu. Namun alat yang telah dibentuk ini masih diperlukan penyempurnaan lanjutan, dikarenakan alat hanya memiliki tingkat separasi sebesar 83,3% dalam pengetesan secara bersamaan atau pengetesan simultaneous dengan pemberian delapan buah sampel material.

Electronic waste is increasing in number in society due to the intensive use of individual electronic devices such as smart devices and other supporting electronic equipment. In its assembly, almost all of these electronic devices have three main materials, namely ferrous metal, non-ferrous metal, and non-metallic material. Due to the dangers and benefits of each of these materials, a small-scale eddy current separator was designed to separate the three main materials. Eddy Current Separator (ECS) is a separation device that can separate ferrous metal, non-ferrous metal, and non-metal materials by using a magnetic arrangement that will produce an eddy current force. Based on the eddy current that can separate this, a design is made of the eddy current separator by integrating two main components, namely the drum magnet and also the conveyor belt component. The integrated system of these two components will feed the chopped electronic waste and will divide the mixed waste into three main types of waste. Then testing was carried out on the tool that had been designed and built and the experimental results showed that the tool could separate ferrous metal material represented by iron powder 100% in individual testing, the tool could separate non-ferrous metal material represented 100% in aluminium and copper in individual tests. , and the tool also separates the non-metallic materials represented by the PCB board 100% in individual tests. However, this tool that has been formed still needs further refinement, because the tool only has a separation rate of 83.3% in simultaneous testing or simultaneous testing by giving eight material sample.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliana Ayu Karinda
"Produksi biodiesel yang meningkat membutuhkan teknologi yang tepat dan efisien. Beberapa penelitian telah dilakukan untuk mengembangkan proses produksi biodiesel dengan sistem kontinyu. Penelitian ini dilakukan untuk mengevaluasi dan menganalisis alat separasi biodiesel-gliserol dengan sistem kontinyu. Separator berbentuk tangki pengendap dengan baffle yang memisahkan beberapa kompartemen. Analisis dilakukan untuk mengetahui hubungan antara laju alir dan ketinggian baffle terhadap proses separasi. Hasil analisis menunjukkan bahwa pemisahan terjadi dengan sempurna apabila biodiesel dan gliserol membentuk dua lapisan dalam kompartemen dengan masing-masing ketinggian yang dapat diamati. Biodiesel dan gliserol membutuhkan waktu yang cukup lama untuk memisah sehingga separator membutuhkan 3 baffle dengan ketinggian berbeda.

The increase of biodiesel production requires appropriate and efficient technology. Several studies have been conducted to develop biodiesel production process with continuous systems. This research was conducted to evaluate and analyze biodiesel-glycerol continuous separator. Shaped separator settling tank with baffle that separates several compartments. The analysis was performed to determine the relationship between flowrate and baffle height of the separation process. The results show that separation occurs with perfect when biodiesel and glycerol to form two layers in each compartment with a height that can be observed. Biodiesel and glycerol requires a long time to separate so that the separator will need 3 baffles with different heights."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1116
UI - Skripsi Open  Universitas Indonesia Library
cover
Christopher Nicholas Pahlawandito Radhyanka
"Dalam beberapa tahun terakhir, industri tebu telah memiliki masalah dengan rendahnya proyeksi harga gula dan pasar yang kurang baik. Karena hal tersebut, riset dan investigasi dilakukan untuk mencari produk alternatif yang dapat dikembangkan dari tebu, salah satu halnya Hydrogen. Elemen/gas hidrogen telah lama dianggap sebagai elemen/gas dalam kuantitas paling besar yang dapat ditemukan di lingkungan dan juga sangat reaktif. Hidrogen dalam beberapa tahun terakhir telah dipertimbangkan sebagai potensial untuk menjadi produk alternatif dari tebu untuk diaplikasikan sebagai pembangkit energi, bahan bakar untuk alat transportasi, dan juga sebagai komponen untuk produksi berbagai hal dalam sebuah proses. Produksi hidrogen telah diproyeksikan untuk menghasilkan pendapatan yang lebih tinggi ketimbang dengan produksi gula dan telah mendorong beberapa perusahaan dalam industri ini untuk membuat pabrik proses hidrogen. Dengan adanya hal ini, riset dan rancangan pabrik terhadap produksi hidrogen untuk memproses 1500 ton/hari ampas tebu dilakukan. Proses untuk produksi hidrogen dari ampas tebu dilakukan dengan proses termokimia, lebih tepatnya dengan proses Hidrotermal Gasifikasi dikarenakan tingkat efisiensi yang tinggi untuk menghasilkan hydrogen dengan tingkat Karbon Monoksida yang rendah dan juga bisa memproses ampas yang basah, mengeliminasi proses pengeringan yang diperlukan jika menggunakan proses Gasifikasi Termal yang konvensional. Pabrik proses yang telah dirancangkan terbagi menjadi lima proses area, yaitu: Pre-Proses, Reaktor/Gasifikasi, Separator Gas-Liquid, Separator Gas-Gas, dan area Kompresi. Pada area proses pertama yaitu Pre-Proses, diberlakukan berbagai hal terhadap ampas tebu dahulu sebelum proses utamanya seperti mengurangi ukuran ampas tebu yang diproses yang kemudia diarahkan ke unit mixer untuk diaduk dengan air untuk membuat ampas tebu menjadi dalam bentuk lumpur. Dengan adanya hal ini, suspensi padat dapat dieliminasikan dan input tersebut diberi tekanan dan dipanaskan agar meningkatkan tekanan dan temperatur serta konten air sebelum masuk ke proses berikutnya. Pada area proses kedua, proses reaksi/gasifikasi adalah proses utama dari pabrik proses ini dimana ampas tebu ini dipanaskan lagi untuk sampai kondisi superkritik dalam temperatur dan tekanan untuk memproses molekul hidrokarbon menjadi molekul yang lebih kecil sehingga menjadi dalam bentuk gas. Setelah proses ini selesai, hasil dari ampas tebu yang telah di gasifikasi diarahkan ke proses area berikutnya, yaitu proses separator gas-liquid. Dalam separator gas-liquid, konten air yang ada dalam input ampas di separasi dari konten gas untuk mempermudah separasi antara gas dan gas. Di proses ini, alat proyek Expander dan Double Pipe Heat Exchanger digunakan untuk menurunkan suhu dan tekanan yang besar dari proses gasifikasi. Untuk proses area keempat yaitu proses separator gas-gas, proses ini menggunakan alat separator seperti PSA (Pressure Swing Adsoprtion) untuk separasi hidrogen dari gas lainnya dan proses Stripping untuk separasi gas CO2 produk samping, yang dimana setelah itu produk gas diarahkan ke proses area berikutnya untuk proses kompresi dan diantarkan kepada klien. Dalam makalah tesis ini, studi dilakukan secara khusus terhadap proses are separator gas-liquid dan peralatan yang digunakan dalam proses tersebut

The industry of sugarcane in recent years have been dealing with matters of low projected sugar price and poor current in the market. Due to the growing issue, investigations are conducted to find any other alternatives products that can be developed from the sugarcane. Hydrogen element/gas is long considered to be the element/gas that is abounding element surrounding environment and thus knowingly to be highly reactive. The element/gas of hydrogen as of recent years has been deemed as a potential alternative product from sugarcane as it can be used as an energy carrier, fuels for transportations as well as set up as feed inputs for certain production processes. The production of hydrogen is projected to generate higher income than sugar production and has driven some on the industry to establish hydrogen production plants. With this in hand, the hydrogen processing plant to facilitate 1500 tonnes per day of sugarcane bagasse is studied and designed. The sugarcane bagasse processing to produce hydrogen gas is done through the thermochemical production route, specifically the Hydrothermal Gasification (HTG) process as it can efficiently yield higher Hydrogen content with low Carbon Monoxide content as well as it can process wet biomass, excluding the need of pre-drying process as opposed to the conventional Thermal Gasification (TG) process. The processing plant designed is divided into five area sections mainly; Pre-treatment, Reactor/Gasification, Gas-Liquid separation, Gas-Gas separation, and the Compression section. In the first area section of the processing plant, the pre-treatment process involves reducing the feed size of the bagasse sugarcane which then goes to the mixer to be mixed with water to form slurry and thus removing it from solid suspension and is then brought on to be pressurized and heated to bring up the pressure and temperature and water content earlier before the reaction process. The reactions section is where the main process occurs as the bagasse feed undergoes the gasification process in which it is heated up to supercritical conditions of temperature and pressure to allow the breakdown of the hydrocarbon molecules to smaller molecules until then it becomes gas. The gas-liquid separation in the plant section utilizes an expansion unit as well as the double pipe heat exchanger to lower the temperature and pressure of the stream for the separation. The section where liquid is separated from the gas utilizes the phase separator which is to allow for the separation of the gases to be easier and hence less work in the following gas-gas separation. For the gas-gas separation, the gas separation involves the separation technologies of PSA for the hydrogen extraction and stripping process for extraction of CO2 by products, where then the end products are compressed in the compression area section to be delivered to the clients. In this thesis paper, the studies are done specifically on the gas-liquid separation plant section and its equipment."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sanny Astari
"Pengeboran dua sumur produksi (Kln-14 dan Kln-15) akan diterapkan pada proyek pengembangan lapangan gas "A" yang berada di Papua. Gas ini akan digunakan untuk umpan LPG plant. Penambahan jumlah produksi gas akan mempengaruhi kapasitas maksimum separator dan daya kompresor yang ada saat ini sebelum masuk LPG plant. Permasalahan yang akan terjadi adalah tidak optimalnya kinerja separator yang digunakan saat ini. Oleh sebab itu perlu perubahan kapasitas (resizing) separator.
Dari hasil perhitungan didapat disain separator dengan kapasitas maksimum 43 MMSCFD dan daya kompresor sebesar 1115 HP. Dengan penambahan jumlah produksi gas ini, tingkat pengembalian investasi dari alat tersebut di tahun kedua. Analisis biaya juga dilakukan untuk menilai kelayakan dari pengembangan lapangan gas "A" ini terhadap pengaruh harga, jumlah produksi, biaya investasi dan biaya opera.

Two (Kln-14 and Kln-15) production wells will be drilled and applied to the gas field development project at gas field "A" in Papua. It will be used for LPG feed plant. Thus, the increasing of gas production will give affect maximum capacity of separator and horse power of compressor before distribute to LPG plant. The problem due to will be happen is separator performance unoptimal. Therefore, the changes of capacity maximum design (resizing) for a new separator needs to be done.
Based on calculation, the design of separator which capacity maximum is 43 MMSCFD and horsepower of compressor which power is 1115 HP. Due to increasing of total gas production, the payback period from it is at second year. Cost analysis was also performed to assess the feasibility of developing a gas field "A" to the price influence, the production, investment costs and operational costs."
Jakarta: Fakultas Teknik Universitas Indonesia, 2014
T39089
UI - Tesis Membership  Universitas Indonesia Library
cover
Ary Mauliva Hada Putri
"Tujuan dari penelitian ini adalah membuat model matematis serta melakukan simulasi proses adsorpsi gas metana dari campuran biner gas hidrogen-metana pada kolom adsorpsi fixed bed (unggun diam) dengan karbon aktif sebagai adsorbennya. Proses adsorpsi pada permukaan pori karbon aktif diasumsikan bertipe micropore adsorption. Profil konsentrasi adsorbat pada arah radial dimodelkan berbentuk polinomial orde 4 dan isotropik. Pendekatan ini berhasil mereproduksi bentuk linear driving force walaupun terdapat koreksi terhadap koefisien transfer massa, yang pada gilirannya berpengaruh pada koefisien difusivitas efektif. Di samping profil kuartik, dalam penelitian ini juga diasumsikan linear isotherm dan kondisi plug flow. Asumsi terakhir berdasar pada fakta bahwa efek dispersi tidak terlalu signifikan pada aliran bulk dengan kecepatan alir yang rendah. Simulasi juga dilakukan untuk melihat efek panjang kolom, kecepatan alir fluida, serta konsentrasi awal gas metana. Hasil yang didapat menunjukkan bahwa saturasi sebanding dengan panjang kolom, dan berbanding terbalik dengan konsentrasi awal, kecepatan alir, dan nilai koefisien difusivitas efektif. Untuk kecepatan alir 0.1 cm/s dan fraksi mol awal metana 30%, diperoleh saturasi akan terjadi setelah 17 menit untuk panjang kolom fixed bed 100 cm. Waktu ini akan menjadi sekitar 8 menit jika panjang kolom dikurangi setengahnya atau 50 cm. Efek penambahan suku kuartik tidak berpengaruh signifikan pada kurva breakthrough.

The purpose of this study is to make a mathematical model that can describe the adsorption of hydrogen from a mixture of hydrogen-methane in fixed-bed column. The adsorbent is supposed to be an activated carbon. The adsorbate concentration profile is assumed to take the polynomial of order 4, while still assuming the spherically symmetric pellets. This procedure successfully reproduces the linear driving force form with some correction to mass transfer coe cient. The result shows that effect of such quartic term can affect the di usivity coe cient. The simulation was done by incorporating some assumptions, such as linear isotherm and the plug flow condition. The latter is due pretty much to the fact that the dispersion e ect is less dominant in bulk flow especially at low velocity. Furthermore, the simulation was aimed to get better understanding of how column length, flow velocity, and also initial mole fraction affect the adsorption. In addition, the time needed to reach saturated point is found to be proportional to column length, whereas it is inversely proportional to the initial concentration, flow velocity, and effective di usivity. For velocity equal to 0.1 cm/s and methane initial mole fraction 30%, the saturation will occur after approximately 17 minutes for column length 100 cm. This saturation time will be lowered into about 8 minutes for a bed length 50 cm. The simulation also shows that the inclusion of quartic term does not significantly affect the breakthrough curve."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dibran Paramartha
"PT PHE WMO berupaya untuk terus mempertahankan produksi minyak salah satunya dengan cara melakukan optimalisasi fasilitas proses dengan cara mengurangi slug flow yang terjadi pada pipa dengan cara mengurangi produksi air dari lapangan PHE-30. Saat ini produksi minyak, gas dan air dari lapangan PHE-30 masing-masing sebesar 2.070 bopd, 5,1 MMscfd dan 10.800 bwpd. Tingginya produksinya minyak dari lapangan PHE-30 dapat dioptimalkan dengan menambahkan tangki pemisahan di anjungan PHE-30 untuk mengurangi air yang terproduksi sehingga mengurangi slug flow yang terjadi di sepanjang pipa transportasi PHE-30 menuju PPP. Naskah tesis ini membahas analisis penambahan tangki pemisahan di PHE-30 untuk optimalisasi sumur minyak dan gas. Parameter yang digunakan adalah laju alir minyak, gas dan air, kecepatan superfisial gas dan liquid, flow regime, serta keekonomiannya.
Dari hasil penelitian, penambahan tangki pemisahan di PHE-30 merupakan pilihan terbaik untuk mengurangi slug flow pada pipa penyalur PHE-30 menuju PPP. Hal ini didasarkan pada perubahan gas superficial velocity dari yang sebelumnya 18,3 ft/s menjadi 6,35 ft/s sedangkan perubahan liquid superficial velocity dari yang sebelumnya 1,0 ft/s menjadi 0,16 ft/s. Dari perubahan tersebut, didapatkan flow regime yang berubah dari yang sebelumnya slug flow menjadi stratified flow sehingga mengoptimalkan produksi minyak dari PHE-30 menuju PPP.

PT PHE WMO is trying to mantain the oil and gas production. Optimization the surface facility by reducing water produce from PHE-30 to minimize slugging at pipeline is one of method to maintain the oil and gas production. Currently, PHE-30 has produced 2.070 bopd of oil, 5,1 MMscfd of gas, and 10.800 bwpd of water. PHE-30 has potential to increase oil production by addition the separator to separate oil and water. This tesis discusses the analysis of additional separator at PHE-30. The parameter used is the flowrate of oil, gas, and water then will be analyzed economically.
The riset shown that utilizing the separator at PHE-30 impacted the flow regime in pipeline transportation from PHE-30 to PPP. Based on changed of the gas superficial velocity and liquid superficial velocity, the flow regime switched from slug flow into stratified flow. This is based on changes in superficial velocity gas from the previous 18.3 ft/s to 6.35 ft/s while the liquid superficial velocity changes from the previous 1.0 ft/s to 0.16 ft/s. Based on that, it was found that flow regimes changed from the previous slug flow to stratified flow so that its optimize the oil production from PHE-30 to PPP.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52928
UI - Tesis Membership  Universitas Indonesia Library
cover
Elvis Djasir
Depok: Fakultas Teknik Universitas Indonesia, 1990
S35349
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1993
S35959
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>