Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 121466 dokumen yang sesuai dengan query
cover
La Ode M. Firman
Depok: Fakultas Teknik Universitas Indonesia, 1999
T40561
UI - Tesis Membership  Universitas Indonesia Library
cover
Harto Tanujaya
"ABSTRAK
Perubahan tekanan statik, densitas, kecepatan dan temperatur dalam sistem kerja kompresor scroll diamati dan dilakukan pengujian secara eksperimental serta diolah dengan simulasi numerik dengan program CFD (Computational Fluid Dynamics) -- FLUENT.
Pengujian dilakukan dengan menggunakan kompressor merk HITACHI dengan model 350 RH - 56 DI dan diuji untuk diambil data tekanan statiknya dengan merubah kecepatan putar motor untuk dibandingkan dengan kecepatan putar motor sesungguhnya untuk disimulasikan secara numerik dengan menggunakan program CFD.
Perhitungan komputasi dilakukan dengan menggunakan perubahan dari grid yang berdeformasi, untuk merepresentasikan gerakan orbiting scroll.
Model komputasinya dengan menggunakan persamaan Navier Stokes dan model aliran yang digunakan turbulen k-ε serta menggunakan metode grid yang berubah bentuk.
Fenomena distribusi aliran untuk tekanan statik cenderung untuk membesar ke arah pusat scroll pada sisi keluaran, sedangkan untuk distribusi densitas yang terjadi semakin membesar pula kearah lubang pengeluaran begitu juga untuk temperatur yang terjadi dalam sistem. Tetapi kecepatan yang terjadi dalam sistem menunjukan adanya aliran yang konstan dan agak meninggi mendekati sisi lubang pengeluaran. Debit pada lubang penghisapan lebih besar dari debit pada lubang pembuangan yang disebabkan pengaruh kompresi yang terjadi dalam sistem.

ABSTRACT
The change of static pressure, density, velocity and temperature in the system of compressor scroll observe to notice and test according eksperimental with count in the simulation numeric of CFD (Computational Fluid Dynamics) - FLUENT programs.
Working of experimental used by the scroll compressor and the name plate of HITACHI with the model 350 RH - 56 DI. Tested the compressor to take the data static pressure with through change rotation velocity motor to compare with the real rotation velocity and then to maked go Into the simulation of numeric with the CFD programs.
Compute the computation to do with by the change of grid from deforming mesh what representation is moving the orbiting scroll.
The computation model used to do with the equation of Navier Stokes and the rivulet modeling with the turbulence k-ε through the method grid of deforming mesh.
Phenomena rivulet distribution of static pressure inclining bigger to the central of scroll near hole of discharge, and then to the distribution of density with temperature bigger to central of scroll in the hole of discharge too. But the velocity is the konstan rivulet and then enlarge of direction to discharge hole. Debit to the hole of suction enlarge with the hole of discharge because in the system occurred compression.
"
Depok: Fakultas Teknik Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Indra Siswantara
"Perubahan tekanan statik, densitas, kecepatan dan temperatur dalam sistem kerja kompresor scroll diamati dan dilakukan pengujian secara ekxperimental serta diolah dengan simulasi numerik dengan program CFD (Computational Fluid Dynamics) - FLUENT.
Pengujian dilakukan dengan menggunakan kompressor merek HITACHI dengan model 350 RH - 56 DI dan diuji untuk diambil data tekanan statiknya dengan merubah kecepatan putar motor dan disimulasikan secara numerik dengan menggunakan perubahan dari grid yang berdeformasi, untuk merepresentasikan geakan orbiting scroll. Model aliran yang digunakan turbulen k-ε serta menggunakan metode grid yang merubah bentuk"
Depok: Universitas Indonesia, 1999
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Dexsa Syafrani
"Pengeringan adalah operasi pemisahan cairan dari dalam suatu bahan dengan cara mengeluarkan air yang terkandung dalam bahan ke lingkungannya. Pemisahan tersebut dilakukan dengan cara menguapkan cairannya, dan ini membutuhkan energi. Semakin banyak energi yang dapat digunakan untuk menguapkan, maka akan semakin mudah penguapan tersebut terjadi. Pengeringan vakum adalah salah satu operasi pengeringan dengan cara menurunkan tekanan lingkungan di sekitar benda yang dikeringkan. Pemvakuman mempercepat pengelingan karena menurunkan titik didih dari cairan tersebut dan menimbulkan perbedaan tekanan antara bahan dan lingkungan. Olakan udara juga mempercepat penguapan karena energi dari olakan udara dapat digunakan untuk membantu penguapan bahan Masalah yang dikaji pada tugas akhir ini adalah mengenai fenomena-fenomena yang teljadi pada saat proses pengeringan berlangsung Dari hasil pengujian pengeringan yang telah dilakukan dengan melakukan pengukuran terhadap penunman massa, perubahan kelembaban nisbi, dan menganalisa pengaruh olakan udara terhadap penguapan, temyata didapatkan bahwa ketika tekanan diturunkan (dengan proses vakum), maka pengurangan massa akan lebih besar dari pada jika tidak divakumkan pada waktu dan kondisi temperatur sama. Didapatkan juga hasil bahwa pengaruh olakan udara dalam ruang vakum memang membantu proses penguapan pada batas-batas tertentu.

Drying is a process of separating liquid from inside a product by removing the liquid to the surrounding. The removing is done by evaporating the liquid, which it uses energy. The more energy used for evaporation, the easier it is to evaporate. Vacumm drying is a dryinproces by decreasing the pressure surrounding the product. Vacumming inside all isolated room. The separation in drying process is an activity, changing a pecimen from its original phase as a solid, semi-solid, or liquid, become a solid product by taking the water that is contained by the specimen out of the specimen, into is surrounding. So, the focus of the result of drying process is a solid product. Matter that is discussed in this book is about the phenomena that occur when the vacuum drying process is running. From the data that has been gained by experiments. Dealing with mass, humidity relativity and temprature, we can see that if the pressure decreases because of the vacuming. Th e relative huminity decreases too. The decreasing of relative humidity is the factor that influences the rate of drying. So, rate of drying is not influenced directly by the decreasing of pressure, but by the decreasing of relative humidity."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S37494
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daragantina Nursani
"Penggunaan biomassa sebagai sumber energi atau bahan bakar dalam bentuk pelet memiliki banyak keunggulan, diantaranya mudah untuk disimpan, didistribusikan, serta membuat proses pembakaran lebih sempurna dan stabil. Dalam proses pembuatan pelet, biomassa perlu dikeringkan terlebih dahulu untuk menghindari kontaminasi jamur yang dapat menurunkan nilai kalor. Jenis pengering yang biasa digunakan untuk pengeringan biomassa adalah tipe rotari, karena memiliki kapasitas tinggi, mudah dalam pengoperasian dan pemeliharaan.
Penelitian ini bertujuan untuk melakukan optimasi proses pengeringan dengan menginvestigasi laju penurunan kadar air sampah biomassa pada ruang pengering, menginvestigasi sebaran energi pada ruang pengering, serta menginvestigasi pengaruh debit dan suhu udara pengering serta residence time material terhadap efisiensi energi sistem pengering rotari.
Penelitian ini dilakukan secara experimental dengan mengukur suhu, kelembaban, kecepatan udara, kecepatan putar, dan bobot produk dan pelet pada berbagai variasi yaitu variasi debit udara pengering 0,6, 1, dan 1,25 m3/s, variasi kecepatan putar 1, 1,25 dan 1,5 RPM dan variasi laju konsumsi pelet 48 g/min dan 123 g/min. Data hasil experimen dianalisa dengan menggunakan analisa heat dan mass tranfer untuk menghitung sebaran penurunan kadar air dan energi pindah panas, serta analisa energi input dan output untuk perhitungan efisiensi energi sistem pengering.
Hasil analisa menunjukkan bahwa laju penurunan kadar air sangat dipengaruhi oleh laju aliran udara pengering, penurunan kadar air tertinggi pada variasi 1,25 m3/s. Penurunan kadar air tertinggi terjadi pada awal masuk material ke ruang pengering dan semakin melandai saat material menuju pengeluaran drum pengering. Perpindahan panas pada drum pengering terjadi paling tinggi di titik Q 4-5 (ujung drum pengering/arah pemasukan material). Rata-rata nilai energi perpindahan panas ini lebih tinggi pada laju aliran udara pengering yang lebih tinggi. Efisiensi sistem memiliki trend meningkat seiring dengan peningkatan debit udara pengeringan, efisiensi sistem bervariasi dari 8,91% hingga 26,84%.

The use of biomass as an energy source or fuel in the form of pellets has many advantages, including being easy to store, distribute, and make the combustion process more perfect and stable. In the pellets processing, biomass needs to be dried to avoid fungal contamination which can reduce the caloric value. The type of dryer that is normally used for biomass drying is the rotary type, because it has a high capacity, easy to operate and maintain.
This study aims to optimize the drying process with investigate the rate of decrease in water content of biomass waste in the drying chamber, investigate the distribution of energy in the drying chamber, and investigate the effect of discharge and temperature of the drying air and residence time material on the energy efficiency of a rotary drying system.
This research was carried out experimentally by measuring temperature, humidity, air velocity, rotational speed, and weight of products and pellets at various variations, namely variations in the drying air discharge of 0.6, 1, and 1.25 m3/s, variations in rotational speed of 1, 1.25 and 1.5 RPM and the variation of pellet consumption rate is 48 g/min and 123 g/min. Experimental data were analyzed using heat and mass transfer analysis to calculate the distribution of water content reduction and heat transfer energy, input and output energy analysis for the calculation of the energy efficiency of a drying system.
The results of the analysis show that the rate of decrease in water content is strongly influenced by the rate of drying air flow, the highest decrease in water content at a variation of 1.25 m3/s. The highest decrease in water content occurs at the initial entry of material into the drying chamber and increasingly sloping as the material leads to the drying drum dryer. Heat transfer in the drying drum occurs highest at Q points 4-5 (end of the drying drum/direction of material entry). The average value of this heat transfer energy is higher at higher drying air flow rates. System efficiency has an increasing trend along with an increase in drying air discharge, system efficiency varies from 8.91% to 26.84%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Avianto M. Munir
"Sampah dimanapun selalu menimbulkan masalah. Ini disebabkan luasnya dampak negatif yang ditimbulkan serta casa penanganannya. Dampak negatif yang kentara diantara kita adalah berupa gangguan terhadap keseimbangan alam dan lingkungan. Oleh karena itu perlu dipikirkan cara penanganannya yang relatif aman serta tidak membahayakan dampak yang dihasilkan.
Salah satu alternatif penanganan tersebut adalah dengan membakar sampah yang dapat dilakukan di suatu tempat yang jauh dari segal kegiatan. Namun pembakaran tersebut terkadang sukar dikendalikan. Hal ini disebabkan bila terdapat angin yang cukup kencang sehingga sampah, asap, debu, arang, dan api itu sendiri terbawa ke tempat-tempat sekitar yang dapat menimbulkan kerugian serta dampak negatif. Oleh karena itu diperlukan suatu instalasi pembakaran yang dapat menanggulangi hal tersebut. Instalasi pembakaran tersebut disebut insinerator.
Proses pembakaran di dalam insinerator disebut insinerasi. Dalam insinerasi, karakteristik sampah, terutama kandungan airnya dapat mempengaruhi lamanya pembakaran serta jumlah pemakaian bahan bakar. Pengeringan perlu dilakukan terlebih dahulu sebelum dikerjakan dalam insinerator. Pengeringan ini dapat dikerjakan sekaligus dengan pengontrolan suhu dan waktu pengeringan. Untuk sampah yang mengandung air (moisrure) tinggi, pengerlngan dilakukan di Iuar insinerator. Berarti instalasi pengeringan atau alat pengering dipasang di Iuar konsturksi insinerator.
Alat pengering yang dapat digunakan sebagai pengeringan pendahuluan adalah Rotary Dryer. Alat ini berbentuk silinder yang dapat berputar dan di dalamnya terdapat sirip-sirip yang berfungsi sebagai pemisah atau pengayak, agar sampah tidak menggumpal. Alat ini juga dapat digunakan sebagai ruang masuk sampah ke dalam insinerator dan terdapat pula ruang untuk mengalirkan udara panas sebagai pengonuolan suhu dan media pengering."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36621
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gunawan Hidayat
"Kualitas produk leering ditentukan oleh proses pengeringan. Pengujian alat pengering energi surya dilakukan guna memperoleh unjuk kerja sistem dengan kapasitas beban pengeringan yang ditentukan. Unjuk kerja di fokuskan pada : waktu pengeringan, distribusi temperatur dan laju aliran udara. Penelitian ini bertujuan untuk mendapatkan kinerja alat pengering energi surya, meningkatkan efisiensi pengeringan dan menurunkan kebutuhan energi serta melakukan simulasi model alat pengeringan. Simulasi numerik menggunakan program Computational Fluid Dynamics model Phoenics yang juga digunakan untuk memperoleh bentuk aliran udara dan distribusi temperatur. Pengujian alat pengering dilakukan dengan dua cara yakni pengujian tanpa beban dan pengujian dengan beban pisang basah.
Hasil penelitian ini menunjukkan seluruh temperatur yang terdistribusi pada titik-titik pengujian berflukluasi sebanding dengan radiasi matahari. Kolektor mampu menaikkan temperatur maksimum sebesar 44,6 °C, sedangkan temperatur kolektor (absorber) sendiri mencapai 119,6 °C. Semakin besar rata-rata radiasi matahari harian selama pengujian, maka waktu pengeringan semakin singkat. Terjadi penurunan temperatur yang cukup besar antara temperatur keluar kolektor dengan temperatur masuk ruang pengering, dimana pada bagian ini terdapat fan.

The drying product quality highly depends on drying process. The experiment on Solar Dryer has been conducted to obtain performance systems with drying capacity regard to the prescribed Its performance is focused on dying times, temperature distribution and air flow rate. The purpose of this research is to obtain performance of Solar Fruits Dryer, to improve drying efficiency, and to decrease energy needed Numeric simulation using Phoenics Computational Fluid Dynamics (CFD) package is also used to obtain air flow pattern and temperature distribution. Experiment of Solar Fruits Dryer uses two ways, namely experiment without load test and experiment with it.
The result of the experiment shows that the all temperature distribution in drying room is fluctuated as much as sun radiation. The collector can increase a mcarimum temperature until 44,6 ° Celsius that its temperature can to reach 119,6 ° Celsius. If the daily radiation became bigger and bigger a long the experiment. Thus the drying times become shorter. Temperature decreases occur between collector outlet temperatures and drying room 's inlet temperature, where the fan exists in this path."
Fakultas Teknik Universitas Indonesia, 2000
T2399
UI - Tesis Membership  Universitas Indonesia Library
cover
Byan Wahyu Riyandwita
"Modular Air Dryer (MAD) adalah pengering yang dirancang agar dapat memenuhi kebutuhan pengeringan yang berlrualitas. Ruang absorber sebagai ruang tempat pengkondisian udara di MAD sangat penting untuk diteliti. Penelitian dilakukan untuk mempelajari fenomena transfer panas dan massa yang te!jadi dalam ruang absorber. Selain itu juga untuk mendapatkan karakteristik dari ruang absorber dan mempelajari peranan zeolit sebagai dehumidifier dalam ruang absorber.
Metode yang dipakai adalab simulasi dengan program Computational Fluid Dynamic Fluent 5.3 dan pengujian. Tahapan penelitian yang dilakukan pertama kali adalah memvalidasikan basil simulasi dengan basil pengukuran data kecepatan dan temperarur tanpa melibatkan zeolit Setelah mendapatkan basil yang baik, pengujian dilakukan untuk memperoleh data RH dan ftaksi massa H 20 da!am jangka waktu 30 menit pada titik inlet, tengah dan outlet Data tersebut digunakan untuk simulasi selanjutnya yang melibatkan transfer massa dengan zeolit Kemudian dilalrukan pula simulasi untuk melihat pengarab kecepatan terhadap hasil RH keluaran dari ruang absorber untuk memberikan batasan dimana kecepatan yang baik yang dapat diterapkan."
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37130
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maha Hidayatullah Akbar
"Gasifikasi biomassa adalah topik yang sedang populer, yaitu teknologi yang mengubah biomassa menjadi bentuk energi lain dalam bentuk synthetic gas dengan proses termokimia. Salah satu tipe reaktor gasifikasi yang sedang dikembangkan adalah Inverted Downdraft Gasifier yang berbeda dengan reaktor gasifikasi pada umumnya yaitu tipe reaktor dengan zona reduksi dan oksidasi yang berada posisi atas reaktor dengan suplai udara dari bawah reaktor . Pada thesis ini, inverted downdraft gasifier akan disimulasikan dengan Aspen Plus yang kemudian hasilnya akan divalidasi dengan menggunakan eksperimen. Fase gas yang disajikan adalah CH4, H2, CO, CO2, dan N2 dengan feedstock yang digunakan adalah sekam padi. Variabel terikat dalam thesis ini adalah laju alir massa feedstocks senilai 1,75 kg/jam, dengan variasi Equivalence Ratio (ER) 0,28, 0,52 dan 0,70 . Proses validasi akan melibatkan perbandingan nilai Higher Heating Value (HHV) synthetic gas dan effisiensi termal yang akan terhubung oleh nilai Propagation Front Velocity pada saat eksperiment. Riset ini menunjukan bahwa terdapat korelasi ketika reaktor Inverted Downdraft Gasifier dioperasikan dengan nilai Equivalence ratio mencapai nilai ER 0,52, Propagation Front Velocity akan mencapai nilai tertingginya akan tetapi Higher Heating Value (HHV) menurun ke titik terendahnya 0,85 MJ/Nm3 (eksperimen) dan 1,61 MJ/Nm3 (simulasi), hal ini juga terlihat pada effisiensi termalnya 6,68 % (eksperimen) dan 54,8 % (simulasi).

Biomass gasification is a topic that is currently popular, it is a technology that converts biomass into other forms of energy in the form of synthetic gas with a thermochemical process. One type of gasification reactor being developed is the Inverted Downdraft Gasifier, which is different from the gasification reactor in general, it’s the type of reactor with reduction and oxidation zones located at the top of the reactor with air supply from below the reactor. In this thesis, the inverted downdraft gasifier will be simulated with Aspen Plus which then the results will be validated using experiments. The gas phases presented are CH4, H2, CO, CO2, and N2 with the feedstock used is rice husk. The dependent variable in this thesis is the mass flow rate of feedstocks of 1.75 kg/hour, with variations in Equivalence Ratio (ER) 0.28, 0.52 and 0.70. The validation process will involve a comparison of the Higher Heating Value (HHV) of synthetic gas and the thermal efficiency of the gasifier which will be correlated by the Propagation Front Velocity value during the experiment. This research shows that there is a correlation when the Inverted Downdraft Gasifier reactor is operated with the Equivalence ratio value reaching ER 0.52, Propagation Front Velocity will reach its highest value but Higher Heating Value (HHV) decreases to its lowest point of 0.85 MJ/Nm3 (experimental) and 1.61 MJ/Nm3 (simulation), this is also seen in the thermal efficiency of 6.68% (experiment) and 54.8% (simulation)"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anandirizki Naufal Winardi Abubakar
"Kehadiran globalisasi membawa pengaruh pada kehidupan kita khususnya pada teknologi. Teknologi akan terus berkembang seiring berjalan nya waktu. Salah satu contoh nya pada teknologi di bidang pengeringan. Proses pengeringan sangatlah diperlukan pada negara Indonesia karena merupakan negara tropis yang memiliki kelembaban udara yang tinggi menyesuaikan pada dua musim yang ada di negara ini yaitu musim hujan dan musim kemarau. Untuk itu dalam penelitian ini agar mengetahui bagaimana solusi yang diberikan agar udara yang lembab dapat dikonversikan menjadi udara yang kering agar dapat digunakan untuk proses pengeringan. Proses pengeringan yang ingin dikembangkan yaitu pada alat packed bed dryer menggunakan sistem dehumidifikasi udara dengan memanfaatkan silica gel sebagai desiccant nya. Untuk mengetahui bagaimana sistem tersebut dapat berjalan dengan efisien maka dilakukan simulasi menggunakan software Ms. Excel. Dalam penelitian ini dilakukan variasi terhadap dimensi pada desiccant dan temperatur udara masuk dengan mengasumsikan kecepatan aliran massa udara, kelembaban udara relatif konstan pada setiap simulasi. Hasil yang didapat dalam total 40 variasi temperatur udara masuk (Tai) dan dimensi desiccant silica gel menghasilkan rata - rata kenaikan moisture content dan penurunan temperatur udara keluar (Tao) tiap diameter desiccant. Untuk Tai 27oC sebesar 1,07682 x 10-8 kg/kg dengan Tao 29,67806oC, Tai 28oC sebesar 1,11054 x 10-8 kg/kg dengan Tao 29,80604oC, Tai 29oC sebesar 1,14503 x 10-8 kg/kg dengan Tao 29,9342oC, Tai 30oC sebesar 1,18029 x 10-8 kg/kg dengan Tao 30,0626oC, Tai 31oC sebesar 1,2148 x 10-8 kg/kg dengan Tao 30,1910oC, Tai 32oC sebesar 1,25318 x 10-8 kg/kg dengan Tao 30,32oC, Tai 33oC sebesar 1,29082 x 10-8 kg/kg dengan Tao 30,4491oC, dan Tai 34oC sebesar 1,32927 x 10-8 kg/kg dengan Tao 30,5784oC per 1 milidetik sampai 10 detik.

The presence of globalization has an influence on our lives specifically in technology. Technology will continue to develop over time. One of the example of this technology is drying. The drying process is very necessary in Indonesia because Indonesia is a tropical country that has high humidity which is it will adjust based on the two seasons in this country such as rainy season and dry season. For this reason in this study to find out how the solution provided for moist air can be convered into dry air so it can be used for the drying process. The drying process to be developed in a packed bed dryer using an air dehumidification system using silica gel at its desiccant. To find out how the system can run efficiently, simulation is done using Ms. Excel. In this research, variations in the dimmension of desiccants and air inlet temperature are carried out by assuming the air mass flow velocity, relative humidity is assumed to be constant in each simulation. The results obtained in a total of 40 variations of inlet air temperature (Tai) and the dimensions of desiccant silica gel produce an average increase in moisture content and a decrease in outlet ait temperature (Tao) per desiccant diameter. For Tai 27oC, the average moisture content is 1,07682 x 10-8 kg/kg with Tao 29,67806oC, Tai 28oC, the average moisture content is 1,11054 x 10-8 kg/kg with Tao 29,80604oC, Tai 29oC the average moisture content is 1,14503 x 10-8 kg/kg with Tao 29,9342 oC, Tai 30oC the average moisture content is 1,18029 x 10-8 kg/kg with Tao 30,0626oC, Tai 31oC the average moisture content is 1,2148 x 10-8 kg/kg with Tao 30,1910oC, Tai 32oC the average moisture content is 1,25318 x 10-8 kg/kg with Tao 30,32oC, Tai 33oC the average moisture content is 1,29082 x 10-8 kg/kg with Tao Tao 30,4491oC, Tai 34oC the average moisture content is 1,32927 x 10-8 kg/kg with Tao 30,5784oC per one milisecond until ten seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>