Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 138270 dokumen yang sesuai dengan query
cover
Akhmad Saekhu
"Untuk meningkatkan kemampuan kilang minyak dalam negeri, khususnya dalam rangka penyediaan reformulated gasoline (RFG) dan Low Sulphur Diesel (LSD) sesuai dengan perkembangan penerapan standar emisi gas buang kendaraan bermotor, diperlukan analisis kebijakan penyediaan RFG dan LSD dengan membuat perencanaan peningkatan mutu RFG dan LSD melalui penambahan unit proses (upgrading) kilang minyak dalam negeri, pembangunan kilang minyak baru dan impor serta analisis investasi dan biaya penyediaannya. Dalam analisis kebijakan penyediaan RFG dan LSD ini, dibuat time frame peningkatan kualitas RFG dan LSD berdasarkan penerapan standar emisi gas buang yang diharmonisasikan dengan perkembangan mutu bahan bakar di Asean khususnya maupun di kawasan Asia Pasifik, selanjutnya dibuat alternatifalternatif penyediaannya serta analisa biaya investasi, biaya penyediaan dan impor. Hasil analisa diperoleh alternatif penyediaan RFG dan LSD yang paling murah dan 'security of supply'nya terjamin yaitu penyediaan RFG dan LSD melalui upgrading kilang existing dengan membangun kilang baru untuk mencukupi kebutuhannya.

Improving Oil Refinery Capability to produce reformulated gasoline (RFG) and Low Sulphur Diesel (LSD) that suitable with progress of emission standart, needs a policy analysis of RFG and LSD supply. This policy can be done with program of RFG and LSD quality development through upgrading of existing refinery, built new refineries, import and an analysis of investment cost of supply. Time frame of RFG and LSD quality development proposed is harmonised with fuel quality improvement in Asean and Asia Pacific region. Analysis of RFG and LSD supply with some alternatives was in term of calculated investment, cost of supply and import. The result of study shows that supply of reformulated gasoline (RFG ) and low sulphur diesel (LSD) by an alternative of existing refinery upgrading and built new refinery to fulfill the demand. This alternative gave cheapest cost of investment, cost of supply and cost of import, also security of supply can be guaranteed."
Depok: Fakultas Teknik Universitas Indonesia, 2007
T40864
UI - Tesis Membership  Universitas Indonesia Library
cover
Cicilia
"ABSTRAK
Sistem distribusi BBM di Indonesia tidak berjalan dengan baik sehingga menyebabkan kelangkaan di beberapa wilayah Indonesia. Tujuan pekerjaan ini adalah mendapatkan suatu model sistem dinamik cadangan penyangga BBM agar dapat diketahui berapa volume cadangan penyangga BBM hingga tahun 2025. Penelitian ini dibatasi dengan BBM gasoline dan solar di Indonesia. Variabel-variabel yang berpengaruh adalah jumlah produksi dan konsumsi BBM serta PDB. Simulasi dijalankan dengan perangkat lunak Powersim Studio 7. Hasil yang diperoleh yaitu untuk skenario ketahanan selama 30 hari, cadangan penyangga yang dibutuhkan pada tahun 2025 untuk gasoline sebesar 4,49 Juta Kiloliter dan untuk solar sebesar 1,7 Juta Kiloliter. Untuk skenario ketahanan selama 60 hari, cadangan penyangga yang dibutuhkan pada tahun 2025 untuk gasoline sebesar 9,88 Juta Kiloliter dan untuk solar sebesar 3,4 Juta Kiloliter. Untuk skenario ketahanan selama 90 hari, cadangan penyangga yang dibutuhkan pada tahun 2025 untuk gasoline sebesar 14,8 Juta Kiloliter dan untuk solar sebesar 5,13 Juta Kiloliter. Untuk skenario penurunan PDB pada tahun 2009 dan 2019 akan menurunkan cadangan penyangga gasoline sekitar 22 % dari skenario dasar. Untuk skenario konversi terhadap energi alternatif, cadangan penyangga BBM jenis gasoline dan solar menurun 73 % dari skenario dasar.

ABSTRACT
The fuel distribution system in Indonesia is not going well causing fuel?s scarcity in some region of Indonesia. The purpose of this work is to get a system dynamic model of buffer stock of fuel in order to know how much volume of buffers stock of fuel until 2025. This research is limited by the gasoline and diesel fuel in Indonesia. The variables that influence are the amount of production and consumption of fuel, and Growth Domestic Product. Simulation run with Powersim Studio 7 software. The results obtained for scenarios that resistance for 30 days, the required buffer stock in 2025 amounted to 4,49 million kiloliters of gasoline and diesel by 1,7 Million for Kiloliter. For scenarios that resistance for 60 days, the required buffer stock in 2025 amounted to 9,88 million kiloliters of gasoline and for diesel by 3,4 million kiloliters. For scenarios that resistance for 90 days, the required buffer stock in 2025 amounted to 14,8 million kiloliters of gasoline and diesel by 5,13 Million for Kiloliter. For scenario GDP decline in 2009 and 2019 will reduce buffer stock of gasoline approximately 22 % of the basic scenario. For conversion to alternative energy scenarios, buffer stock of gasoline and diesel fuel types declined 73 % from the base scenario."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36117
UI - Tesis Membership  Universitas Indonesia Library
cover
"To make a sound policy of gasoline prices and its impact trnasportation sector that consume a lot of gasoline, one need to know price elasticity to gasoline demand...."
Artikel Jurnal  Universitas Indonesia Library
cover
Ratna Monasari
"ABSTRAK
Bioethanol saat ini banyak dikembangkan untuk penggunaan bahan bakar kendaraan bermotor. Pemanfaatan low grade bioethanol merupakan awal mula penelitian ini dilakukan. Berawal dari pembuatan compact distillator pada mesin SI karburator untuk memperoleh high grade bioethanol dengan memanfaatkan gas buang sampai pada penelitian terbaru mengenai penggunaan zat aditif yang dicampurkan pada bahan bakar ethanol dengan bensin untuk mendapatkan performa dan emisi yang lebih baik. Pengujian dilakukan pada mesin SI 125cc pada engine dyno dengan menggunakan 7 variasi bahan bakar diantaranya, E0, E5, E10, E15, E5 aditif, E10 aditif, dan E15 aditif. Hasil pengujian diperoleh bahwa penambahan ethanol umumnya dapat meningkatkan performa motor uji yang dihasilkan, dan dengan penambahan zat aditif oxygenated cyclohexanol pada beberapa variasi bahan bakar dihasilkan kenaikan torsi dan daya yang dihasilkan. Sama halnya dengan performa, emisi gas buang CO dan HC pun mennurun akibat pengunaan ethanol sebagai campuran bahan bakar, dan sebaliknya nilai CO2 meningkat oleh karena molekul ndash;OH yang terkandung dalam campuran bahan bakar dengan aditif akan bereaksi dengan CO. CO2 juga dinilai sebagai salah satu indikator pembakaran yang sempurna. Penelitian ini bertujuan untuk melihat pengaruh zat aditif terhadap performa dan emisi gas buang yang dihasilkan oleh motor uji.

ABSTRACT
Bioethanol is currently widely developed for the use of vehicle fuel. Utilization of low grade bioethanol is the beginning of this research conducted. Starting from the manufacture of compact distillator on carburetor SI engine to obtain high grade bioethanol by utilizing exhaust gas up to the latest research on the use of additives in fuel mixture ethanol and gasoline to get better performance and emission gas. The test was performed in a 125 cc SI engine on engine dynamometer using 7 variants of fuel, E0, E5, E10, E15, E5 adfitive, E10 additive, and E15 additive. The results obtained that the addition of ethanol can generally improve the performance, and with the addition of oxygenated cyclohexanol additive in some variations of fuel produces increased torque and power generated. Same with performance, CO, and HC exhaust emissions are reduced due to the use of ethanol as a fuel mixture, and the value of CO2 increases because the ndash OH molecules contained in the fuel mixture with the additive will react with CO. CO2 is also rated as one of the perfect burning indicators. This study aims to see the effect of additives on the performance and exhaust emission produced by the motor test."
2018
T51548
UI - Tesis Membership  Universitas Indonesia Library
cover
Hario Gibran
"Konsumsi bahan bakar minyak yang semakin meninggi setiap harinya membuat permasalahan lain bermunculan seperti emisi yang semakin tinggi dan juga ketersediaan bahan bakar minyak yang tidak dapat bertahan selamanya. Oleh karena itu, pemerintah mengeluarkan Permen ESDM No.12/2015 mengenai pemanfaatan bioetanol (E100) sebagai campuran BBM diproyeksikan akan mencapai 5% pada tahun 2020 dan 20% pada tahun 2025 khususnya pada bidang transportasi. Namun dalam pelaksanaannya rencana tersebut terhambat karena terkendala ongkos produksi yang masih tinggi, dan menjadikan etanol kurang kompetitif sebagai bahan bakar alternatif. Salah satu inisiatif yang saat ini sedang dikembangkan untuk mengatasi tantangan tersebut, adalah dengan melakukan pencampuran methanol dan ethanol dengan bahan bakar gasoline. Tujuan dari penilitian ini adalah memahami karakteristik bahan bakar campuran bensin-etanol-metanol dengan target RON 92, memahami perbandingan unjuk kerja dan emisi pada mesin 150cc SI 4 stroke yang menggunakan bahan bakar campuran bensin-etanol-metanol target RON 92 dengan produk RON 92, dan memahami interelasi antara pengujian karakteristik campuran bahan bakar dengan perhitungan karakteristik campuran bahan bakar. Penambahan metanol dan etanol ke dalam base bensin RON 89 dilakukan agar target RON 92 dapat dicapai. Komposisi dari campuran akan dihitung menggunakan persamaan Linear Molar Calculation (LMC). Pengujian yang dilakukan dalam penelitian diantaranya uji karakterisasi, unjuk kerja, dan emisi. Pengujian dilakukan sesuai dengan standarnya masing-masing, diantaranya uji densitas menggunakan ASTM D4052, uji Research Octane Number (RON) menggunakan ASTM D2699, uji distilasi dengan ASTM D86, uji Reid Vapor Pressure (RVP) menggunakan ASTM D5191, uji torsi dan daya menggunakan SAE J1349, uji konsumsi menggunakan SNI 7554, dan uji emisi menggunakan SNI 19-7118.1. Berdasarkan hasil pengujian, semua nilai densitas sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan nilai densitas tertinggi terjadi pada sampel 3 sebesar 0,45%. Didapatkan Mean Absolute Percentage Error (MAPE) dari perhitungan nilai densitas dengan pengujian secara keseluruhan sebesar 0,04%. Pada pengujian RON, semua RON sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan terbesar didapatkan pada sampel 3 sebesar 2,81%. Didapatkan MAPE dari perhitungan nilai RON dengan pengujian secara keseluruhan sebesar 0,29%. Pada pengujian distilasi, didapatkan semua kurva distilasi sampel bahan bakar campuran berada di bawah kurva distilasi base bensin. Pada pengujian RVP, semua RVP sampel bahan bakar campuran mengalami kenaikan dari base bensin. Kenaikan terbesar didapatkan pada sampel 1 sebesar 21,03%. Pada pengujian torsi dan daya, nilai torsi maksimum dan daya maksimum dari semua sampel bahan bakar campuran mengalami kenaikan jika dibandingkan dengan bahan bakar produk. Kenaikan nilai torsi maksimum dan daya maksimum tertinggi didapat menggunakan sampel 1 sebesar 0,91% dan 1,60%. Pada pengujian konsumsi bahan bakar campuran dibandingkan dengan bahan bakar produk, pada variasi 90km/jam, 120km/jam, dan siklus urban driving didapat kenaikan tertinggi menggunakan sampel 2 sebesar 3,79%; 6,05%; dan 17,83%. Pada pengujian emisi bahan bakar campuran dibandingkan dengan bahan bakar produk. Emisi karbon dioksida mengalami peningkatan terbesar saat menggunakan sampel 2 sebesar 24,74%. Emisi karbon monoksida mengalami penurunan terbesar saat menggunakan sampel 3 sebesar 32,19%. Emisi hidrokarbon mengalami penurunan terbesat saat menggunakan sampel 3 sebesar 29,60%.

Fuel consumption is increasing every day, making other problems arise, such as higher emissions and the availability of fuel oil that can not last forever. Therefore, the government issued Permen ESDM no.12/2015 regarding the utilization of bioethanol as a fuel mixture is projected to reach 5% in 2020 and 20% in 2025, especially in the transportation sector. However, the plan's implementation was hampered due to the constraints of high production costs, which made ethanol less competitive as an alternative fuel. One of the initiatives currently being developed is to mix methanol and ethanol with gasoline. The purpose of this research is to understand the characteristics of gasoline-ethanol-methanol mixture with RON 92 target, the comparison of performance and emissions in 150cc 4 stroke engine that uses gasoline-ethanol-methanol mixture RON 92 target with RON 92 product, and the interrelation between experiments and calculations on the characteristics of the fuel mixture. Adding methanol and ethanol into the base gasoline RON 89 is done so that the target RON 92 can be achieved. The composition of the mixture will be calculated using the Linear molar Calculation (LMC) equation. Tests conducted in the study include characterization, performance, and emissions tests. Tests were conducted under their respective standards, including density using ASTM D4052, Research Octane Number (RON) using ASTM D2699, distillation with ASTM D86, Reid Vapor Pressure (RVP) using ASTM D5191, torque and power using SAE J1349, consumption using SNI 7554, and emission using SNI 19-7118.1. Based on the test results, all the density values of mixed fuel increased from the base gasoline. The highest density increase occurred in sample 3 by 0.45%. Mean Absolute Percentage Error (MAPE) of the density value obtained from the calculation with the comprehensive test is 0.04%. All mixed fuels’ RON value increased from the base gasoline in RON testing. The most significant increase was obtained in sample 3 by 2.81%. MAPE of the value of RON obtained from the calculation with the comprehensive test is 0.29%. In distillation test, all distillation curve of the mixed fuel is obtained below the distillation curve of base gasoline. In RVP testing, all mixed fuels’ RVP values increased from the base gasoline. The most significant increase was obtained using sample 1 at 21.03%. In torque and power testing, the maximum torque and maximum power values of all mixed fuels increased when compared to product fuel. The increase in the maximum torque value and the highest maximum power is obtained using sample 1 at 0.91% and 1.60%. In the fuel consumption test, all mixed fuels will be compared with product fuel, with the variation of 90km/h, 120km/h, and the urban driving cycle obtained the highest increase using sample 2 at 3.79%; 6.05%; and 17.83%. The emissions test will compare all mixed fuels with fuel products. Carbon dioxide emissions increased the most when using sample 2 by 24.74%. Carbon monoxide emissions decreased the most when using sample 3 by 32.19%. Hydrocarbon emissions decreased the fastest when using sample 3 by 29.60%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jeremy Adidya
"ABSTRAK
ETBE atau Etil Tersier Butil Eter merupakan aditif oksigenat yang merupakan solusi dalam pemecahan masalah terhadap pencemaran udara akibat emisi karbon, terutama gas CO. Namun, dalam proses memproduksi ETBE masih ditemukan kendala berupa hasil konversi yang tergolong rendah. Pada penelitian ini dilakukan sintesis aditif dengan kandungan ETBE dengan menggunakan fixed-bed reaktor selama 1 jam dengan reaktan etanol dan isobutilena dan bantuan katalis H-ZSM 11 yang memiliki rasio SiO2/AlO3 50 dan volume pori 0,2 cm3/g. Percobaan dilakukan dengan variasi suhu 750C-950C. Berdasarkan uji GC-MS, didapatkan kemurnian aditif 71% dan yield 13% pada suhu reaktor 900C. Aditif ini menaikan angka oktan dari 88,7 menjadi 88,9 dengan penambahan aditif 1000 ppm pada base premium. Penambahan aditif 1000 ppm dalam gasolin mengurangi pembentukan deposit dari 0,0186% menjadi 0,0035% dan pembentukan emisi CO dari 0,723% sampai 0,245%. Data tersebut menghasilkan penurunan pembentukan deposit sebesar 0,0151% dan penurunan emisi CO sebesar 0,478%.

ABSTRACT
ETBE or Ethyl Tertiary Butyl Ether is an oxygenate additive that can be the solution for the air pollutions problems due to carbon emissions, especially CO gas. However, in the process of producing ETBE there is still obstacles in the form of low conversion results. In this study, additive synthesis containing ETBE was carried by using fixed-bed reactor for 1 hour with ethanol and isobutylene reactants and H-ZSM 11 catalyst aid which had a SiO2/AlO3 50 ratio and a pore volume of 0.2 cm3/g. The experiment was carried out with temperature variations of 750C-950C. Based on the GC-MS test, 71% additive and 13% yield were obtained at 900C reactor temperature. This additive raises the octane number from 88.7 to 88.9 with an additive of 1000 ppm at premium base. Addition of 1000 ppm additives in gasoline reduces deposit formation from 0.0186% to 0.0035% and formation of CO emissions from0.723% to 0.245%. The data resulted in a decrease in deposit formation by 0.0151% and a decrease in CO emissions of 0.478%."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siska Pebriani
"Deposit pada mesin kendaraan berbahan bakar bensin dapat menyebabkan berbagai fenomena diantaranya knocking, meningkatnya fuel consumption, tingginya emisi kendaraan, berkurangnya power dan durability mesin. Deposit dapat diatasi dengan menambahkan aditif pengendali deposit kedalam bahan bakar. Poliisobutilenamina merupakan surfaktan yang memiliki kinerja yang baik sebagai aditif pengendali deposit pada intake valve. Laju adsorpsi deposit karbon dari poliisobutilenamina sangat ditentukan oleh sifat polaritas dan kemampuan untuk bereaksi dengan prekusor deposit karbon tersebut. Laju reaksi dalam pembentukan poliisobutilenamina sangat dipengaruhi oleh pemilihan reaktan, jalur reaksi, jumlah katalis dan pelarut yang digunakan. Penelitian ini melakukan sintesis poliisobutilenamina dengan mereaksikan poliisobutilen, variasi gugus amina dan jumlah katalis serta menggunakan pelarut dengan polaritas indeks diatas 2 secara aminasi pada suhu 105oC selama 4 jam. Hasil karakterisasi produk sintesis dengan menggunakan FTIR, TGA, LC-MSTOF, dan automatic densitymeter menunjukkan bahwa sintesis telah berhasil membentuk produk PIB-amina dengan yield tertinggi pada jumlah katalis 0.023 mol untuk PIB-PEHA dan 0.046 mol untuk PIB-DETA. Uji kelarutan aditif terhadap bahan bakar menunjukkan kelarutan yang sempurna. Pada uji kinerja engine, PIB-PEHA memiliki jumlah deposit yang lebih kecil dibandingkan PIB-DETA, hal ini membuktikan bahwa jumlah amino pada aditif berpengaruh dalam menghasilkan interaksi yang lebih baik antara aditif dengan deposit.

Deposit on gasoline engine can cause various phenomena including knocking, increased fuel consumption, high vehicle emissions, reduced power and engine durability. Deposits can be treated by adding a deposit control additive to the fuel. Polyisobutylenamine is a surfactant which has good performance as a deposit control additive in intake valve. The adsorption rate of carbon deposits from polyisobutyleneamine is determined by the polarity characteristic and the ability to react with these carbon deposit precursors. This study aims to provide new polyisobutyleneamine which is able to prevent the formation of deposits and can absorb carbon deposits in gasoline engine. The reaction rate in the formation of polyisobutylenemine is strongly influenced by the choice of reactants, reaction pathways, the amount of catalyst and solvent used. This research carried out the synthesis of polyisobutylenemine by reacting polyisobutylene, various amine groups and the amount of catalyst and using a solvent with a polarity index above 2 by amination at a temperature of 105oC for 4 hours. The results of the characterization of the synthesis product using FTIR, TGA, LC-MSTOF, and an automatic densitymeter showed that the synthesis had succeeded in forming a PIB-amine product with the highest yield at a catalyst amount of 0.023 mol for PIB-PEHA and 0.046 mol for PIB-DETA. The solubility test of the additive to the fuel showed perfect solubility. In the engine performance test, PIB-PEHA has a smaller number of deposits than PIB-DETA, this proves that the number of aminos in the additive has an effect on producing a better interaction between additives and deposits.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Azizan Billardi M
"Setiap tahun, Indonesia mengalami peningkatan jumlah pelanggan listrik, tetapi fluktuasi keadaan keandalan jaringan masih terjadi, sehingga dibutuhkan cadangan tenaga listrik berupa genset agar aktivitas dapat berjalan secara optimal. Dengan jumlah penjualan dan penyalur terbanyak, bensin masih menjadi pilihan bahan bakar genset. Pemilihan bahan bakar bensin berdasarkan angka oktan riset pun tidak bisa sembarang mengingat Indonesia telah menerapkan Bahan Bakar Standar Euro 4 dengan angka oktan riset (RON) minimal 90, sehingga untuk menggantikan Premium (RON 88), Pertalite (RON 90) dan Pertamax (RON 92) dapat menjadi pilihan. Dengan latar belakang dan potensi tersebut, pengujian bertujuan untuk mengetahui kestabilan tegangan dan frekuensi serta kinerja mesin genset dengan bahan bakar Pertalite dan Pertamax yang dilakukan dengan skenario pembebanan 25%, 50% 75%, dan 90% dari kapasitas maksimum genset. Pada parameter kestabilan tegangan dan frekuensi, tegangan untuk kedua bahan bakar memiliki jangkauan 211,8-239,8 Volt sehingga masih sesuai standar sedangkan frekuensi untuk bahan bakar Pertalite sesuai standar pada beban 1,5 kW (75%) dan 1,8 kW (90%), sedangkan Pertamax hanya pada beban 1,5 kW (75%). Pada parameter kinerja mesin, konsumsi bahan bakar spesifik Pertalite lebih hemat dengan nilai 0,67-1,34 l/kWh, sedangkan Pertamax 0,87-1,37 l/kWh. Temperatur gas buang Pertamax lebih tinggi dengan nilai mencapai 277,9 oc, sedangkan Pertalite hanya mencapai 266,1 oc. Nilai tingkat kebisingan kedua bahan bakar masih di bawah nilai ambang batas paparan kebisingan, yaitu hanya mencapai 68,6-70 dB.

Every year, Indonesia experiences an increase in the number of electricity customers, but fluctuations in the state of network reliability are still occurring, so electricity reserves are needed in the form of generators so that activities can run optimally. With the highest number of sales and distributors, gasoline is still the choice of generator fuel. The selection of gasoline based on research octane numbers cannot be arbitrary, considering that Indonesia has implemented Euro 4 Standard Fuel with a minimum research octane number (RON) of 90, so as to replace Premium (RON 88), Pertalite (RON 90) and Pertamax (RON 92) can be an option. With this background and potential, the test aimed to determine the quality of the electric power and the performance of the engine generator set with Pertalite and Pertamax fuel which was carried out with a scenario of 25%, 50% 75%, and 90% load of the maximum capacity of the generator set. In the parameters of voltage and frequency stability, the voltage for the two fuels had a range of 211.8-239.8 Volts so that both fuels met the standard while in frequency parameter, Pertalite fuel met the standard at 1.5 kW (75%) and 1.8 kW (90%) loads, while Pertamax fuel only at 1.5 kW (75%) load. In the engine performance parameters, the specific fuel consumption of Pertalite was more efficient with a value of 0.67-1.34 l/kWh, while Pertamax was 0.87-1.37 l/kWh. The exhaust gas temperature of Pertamax was higher with values ​​reaching 277.9 oc, while Pertalite only reached 266.1 oc. The value of the noise level of the both fuels was still below the threshold value of noise exposure, which only reached 68.6-70,1 dB.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Aditya
"Keterbatasan sumber energi fosil berupa minyak bumi dan terus meningkatnya kebutuhan akan bahan bakar kendaraan menyebabkan perlunya pengembangan energi terbarukan yang bukan energi fossil. Hal ini didukung oleh Pemerintah dengan mengeluarkan Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 12 tahun 2015 yang menetapkan pentahapan kewajiban minimal pemanfaatan bahan bakar nabati dengan bahan bakar minyak hingga 2025. Solusi dari permasalahan kebutuhan energi adalah dengan memanfaatkan energi alternatif, ramah lingkungan, dan bersumber dari alam sehingga mengurangi penggunaan minyak bumi. Salah satu energi alternatif yang saat ini dikembangkan yaitu bioetanol. Bioetanol merupakan cairan biokimia C2H5OH atau sering disebut etanol yang berasal dari tumbuhan, melalui proses fermentasi dengan bantuan mikroorganisme.
Berdasasarkan penelitian sebelumnya yang membahas mekanisme pencampuran antara bioetanol hydrous dengan gasoline melalui mekanisme pencampuran bahan bakar ke ruang bakar dengan perbandingan terkontrol melalui bukaan gate valve. Permasalahan dari penggunan bioetanol hydrous sebagai bahan bakar ini yaitu pemanfaatannya masih jarang digunakan, sehingga pengaruhnya terhadap mesin belum banyak diperlihatkan. Oleh karena itu, penulis meneliti lanjutan untuk mengetahui performa HP dan Torsi dan konsumsi bahan bakar pada keadaan statis menggunakan mekanisme pencampuran gasoline dan bioetanol hydrous 96 dengan variasi campuran E5, E10, E15 dengan mekanisme fuel injection. Prroses pencampuran bahan bakar menggunakan alat fuel mixer.

Limitations of fossil energy sources in the form of petroleum and the ever increasing need for vehicle fuel caused the need for the development of renewable energy instead of fossil energy. This is supported by the Government by issuing a regulation of the Minister of energy and Mineral resources of the Republic of Indonesia number 12 year 2015 which sets minimum obligations of phasing the utilization of biofuels with fuel oil until 2025. The solution to the problem of energy needs is by making use of alternative energy, eco friendly, and sourced from nature so as to reduce the use of petroleum. One of the alternative energy that is currently developed i.e. bioetanol. Bioetanol is a liquid Biochemistry C2H5OH or often referred to ethanol derived from plants, through the process of fermentation with the aid of microorganisms.
Based on previous research that discusses the mechanism of mixing between bioetanol hydrous with gasoline through the mechanism of the mixing of fuel into the combustion chamber, controlled through comparison with the opening of the gate valve. The issue of the use of hydrous bioetanol as fuel use is still rarely used, so that its effects on the machine has not been much revealed. Therefore, the author examines the follow up to find out performance HP and torque and fuel consumption on the State using the static mechanism of mixing gasoline and hydrous bioetanol 96 with a variation of the mixture E5, E10, E15 with fuel injection mechanism. Prroses mixing fuel use fuel mixer.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67431
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zarkoni Azis
"Konsumsi minyak bensin atau gasoline untuk bahan bakar mesin transportasi dalam negeri selama ini telah melebihi kapasitas unit produksi. Sebagian besar produk gasoline dihasilkan dari unit perengkahan katalitik menggunakan umpan utama fraksi gasoil. Upaya untuk meningkatkan yield dan kualitas oktana gasoline umumnya dilakukan melalui seleksi katalis dan optimalisasi kondisi proses, meskipun demikian sifat umpan juga mempengaruhi produk akhir. Penelitian ini bertujuan untuk menemukan dan mempelajari metode proses alternatif peningkatan yield dan angka oktana gasoline dengan cara modifikasi umpan menggunakan campuran vacuum gasoil dengan trigliserida dan asam lemak jenuh dan tak jenuh berbasis sawit.
Eksperimen reaksi perengkahan dilakukan pada fluid-bed reaktor dengan umpan campuran vacuum gasoil dengan minyak sawit murni, distilat asam lemak dan asam oleat dalam rentang konsentrasi 0 sampai 15% menggunakan katalis zeolite REY pada suhu 530oC dan rasio katalis-umpan 5,5 g/g. Perengkahan umpan menghasilkan produk gas dan cair serta coke yang terdeposit dalam katalis. Produk gas dianalisa menggunakan GC refinery gas analyzer untuk menentukan komposisi gas hidrokarbon C1, C2, C3 & C4 serta H2. Produk cair dianalisa menggunakan GC simulated distillation untuk menentukan yield gasoline, LCO dan bottom. Angka oktana gasoline dianalisa dengan GC DHA. Kadar air dalam produk cair dianalisa dengan metode Karl-Fischer. Analisa coke dengan metode Infrared dan keasaman katalis dengan metode NH3-TPD.
Dari hasil penelitian didapatkan bahwa perengkahan VGO dengan 5%RBDPO meningkatkan yield gasoline dari 42,9% menjadi 46,9% dan angka oktana dari 91,8 menjadi 96,2. Perengkahan VGO dengan 5%(RBDPO_PFAD) dapat meningkatkan yield gasoline menjadi 48,3% dengan angka oktana 97,5. Perengkahan VGO dengan 5%(RBDPO_Oleic acid) dapat meningkatkan yield gasoline menjadi 45,2% dengan angka oktana 98,2. Kandungan asam lemak jenuh dan tak jenuh dalam umpan berperan dalam reaksi-reaksi perengkahan, isomerisasi, transfer hidrogen dan aromatisasi yang mempengaruhi struktur yield produk dan komposisi hidrokarbon n-parafin, iso-parafin, olefin, naften dan aromatik. Penambahan RBDPO, PFAD dan Oleic acid pada umpan VGO menyebabkan kenaikan komposisi hidrokarbon iso-parafin dan olefin dalam gasoline.
The consumption of gasoline for transportation fuel in domestic has exceeded the production unit capacity. Most of gasoline is produced from fluid catalytic cracking unit that proceeds gasoil fraction as main feedstock. Some efforts to upgrade gasoline yield and its octane quality usually is perfomed by catalyst selection and process optimization, eventhough feed nature also influence to the end-product.
This research work was aimed to find out and learn the alternative method in fluid catalytic cracking process to upgrade gasoline yield and octane quality by means of feed modification using mixture of vacuum gasoil with palms triglycerides and fatty acids having single and double-bonds. The experimental catalytic reaction was performed at fluid-bed reactor of advance cracking evaluation unit utilizing mixture of vacuum gasoil with pure palm oil, fatty acid distillate and oleic acid over zeolite REY catalysts at reaction temperature of 530oC and catalyst oil ratio 5.5 g/g.
The cracking of feedstocks under process condition resulted in gaseous and liquid products, as well as coke deposited on catalyst. The gaseous product was analyzed by online gas chromatography to identify dry gas of C1, C2 & H2, and LPG of C3, C4 hydrocarbons. Liquid product was analyzed using gas chromatography of simulated distillation to obtain yields of gasoline, light cycle oil and bottoms. Gasoline octane number was analyzed using GC DHA method. Water contained in liquid product was analyzed by Karl Fischer method. Coke was analyzed by online Infrared analyzer and catalyst acidity was analyzed using NH3 TPD method.
From the reaseach work, it was found that the cracking of VGO with 5%RBDPO could increase gasoline yield from 42.9% to 46.9% and octane number from 91.8 to 96.2. The cracking of VGO with 5%RBDPO PFAD increased gasoline yield to 48.3% and octane number to 97.5 meanwhile cracking of VGO with 5%RBDPO Oleic acid increased gasoline yield to 45.2% and octane number to 98.2. The role of single and double-bonds fatty acids in feedstock appeared to play in reactions of cracking, isomerization, hydrogen transfer and aromatization that influenced the product yields structure and hydrocarbon composition of nparaffins, isoparaffins, olefins, naphthene and aromatics. The addition of RBDPO, PFAD dan Oleic acid in VGO had caused increase of hydrocarbon composition of iso-paraffins and olefin in gasoline"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>