Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 141294 dokumen yang sesuai dengan query
cover
Tata Sutardi
"Pengujian karakterisasi pembakaran batubara sangat penting dilakukan untuk mengetahui sifat batubara. Sifat batubara ini sangat mempengaruhi baik atau tidaknya suatu jenis batubara digunakan sebagai bahan bakar, sehingga dengan mengetahui sifatnya maka segala permasalahan teknis yang mungkin terjadi di saat pembakaran nantinya dapat diperkecil atau diantisipasi. Saat ini fasilitas pengujian untuk mengkarakterisasi pembakaran batubara dilakukan dalam skala yang cukup besar dan biaya yang cukup mahal, sehingga seringkali usaha pengujian yang ingin dilakukan terkendala dengan masalah biaya dan fasilitas uji yang terbatas. Oleh sebab itu perlu dilakukan pengembangan fasilitas uji yang berskala kecil, sehingga frekuensi pengkajian terhadap suatu batubara dan permasalahannya dapat dilakukan lebih mudah dan intensif. Fasilitas yang dikembangkan ini adalah Drop Tube Furnace(DTF).
Penelitian ini merupakan tahap awal dari pengembangan DTF, dan ruang lingkupnya meliputi desain, pembuatan dan sampai uji pembakaran batubara. Tahap uji pembakaran batubara dengan DTF yang dilakukan pada penelitian ini diarahkan pada penentuan parameter uji bakar batubara yang dapat ditentukan dengan menggunakan DTF. Hasil uji pembakaran batubara di DTF, menunjukkan bahwa beberapa parameter yang dapat diuji dengan menggunakan alat ini adalah parameter temperatur nyala, panjang nyala, dan deposisi abu batubara. Pada tahap pengkajian awal ini, fenomena tersebut didapat dengan membandingkan pada fenomena yang didapat melalui pengujian alat standar.

Testing for coal combustion characterization is very important to find out the properties of coal. Coal properties are influencing the quality of combustion, and this information is needed to reduce or anticipate if technical problem exist in combustion process. Currently, the coal combustion testing facilities are done in large scale and expensive enough, so the frequently testing is limited by these conditions. It was the reason for development of small scale coal combustion test facility. By this facility, the research and assessment of coal combustion problem can be done easily and intensively. This facility is called Drop Tube furnace (DTF).
This research is the beginning step of DTF development, and the scopes of research are designing DTF, making DTF and combustion testing. The testing of coal combustion with DTF is limited only to find out the parameters of coal combustion test which is able to be tested by DTF. The results of experiments show that some parameters which are be able to be tested by DTF are flame temperature, flame length, and ash deposition. The phenomenons of these parameters are compared by the result of other standard testing facilities.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41210
UI - Tesis Open  Universitas Indonesia Library
cover
Tata Sutardi
Fakultas Teknik Universitas Indonesia, 2009
T26722
UI - Tesis Open  Universitas Indonesia Library
cover
Dwika Budianto
"Pembakaran batubara dalam boiler PLTU untuk mendapatkan efisiensi yang optimal diperlukan analisis karakteristik pembakaran. Proses karakterisasi dilakukan pada alat One Dimensional Furnace (1D furnace) dan Drop Tube Furnace (DTF) sebagai representasi dari tungku boiler skala komersil. Pada penelitian ini dilakukan karakteristik pembakaran pada kedua alat tersebut dengan menggunakan 3 sampel yang berbeda masing-masing mewakili jenis bituminous, subbituminous, lignite. Ukuran sampel batubara seragam 75 μm (200 mesh) dan dibakar dalam kondisi pembakaran udara lingkungan (21%O2/79%N2). Kedua alat uji tersebut memiliki geometri dan metode pemanasan yang berbeda, 1D furnace memiliki tinggi 6 m dan diameter dalam 0.3 m sedangkan DTF tinggi 1.5 m dan diameter dalam 0.07 m, metode pemanasan tungku 1D dilakukan dengan pembakaran gas LPG sedangkan DTF dipanasi melalui heater listrik. Dengan latar belakang konfigurasi yang berbeda kedua alat digunakan untuk menganalisis karakterisasi pembakaran batubara dengan sampel yang sama. Hasil parameter karakterisasi pembakaran mencakup distribusi temperatur (dinding dan gas), temperatur penyalaan, waktu penyalaan, waktu karbon terbakar seluruhnya, panjang nyala api. Berdasarkan hasil eksperimen menunjukkan bahwa hasil waktu penyalaan dalam DTF antara 13.25 ? 15.06 ms cenderung lebih lambat dibandingkan hasil 1D furnace antara 2.72 - 4.30 ms, hal ini lebih dipengaruhi oleh thermal inersia pada 1D furnace lebih besar karena didukung burning rate besar, selain itu minimnya konsentrasi O2 pada lingkungan gas dalam tungku DTF oleh karena kondisi temperatur tinggi dalam tungku menyebabkan O2 langsung berinteraksi dengan volatil menghasilkan CO2 dimana CO2 memiliki kapasitas panas besar yang berdampak terhadap penurunan temperatur dan keterlambatan penyalaan. Waktu karbon terbakar habis pada DTF antara 1936-2546 ms cenderung lebih lambat dibanding pada 1D furnace antara 896-1230 ms. Hal ini disebabkan oleh faktor difusivitas dan faktor reaksi gasifikasi pada DTF akibat temperatur gas pembakaran tinggi dan konsentrasi O2 kecil akibat char/karbon langsung bereaksi dengan O2 membentuk CO dan CO2. Kedua sifat spesies gas tersebut akan mempengaruhi terhadap penurunan temperatur dan memperpanjang waktu karbon terbakar habis. Panjang nyala api dalam DTF antara 0.224-0.267 m cenderung lebih pendek dibandingkan pada 1D furnace antara 0.615-1.000 m, hal ini dipengaruhi oleh jumlah laju alir batubara yang berbeda signifikan dimana 1D furnace 155-175 kali lebih besar daripada DTF. Hasil temperatur penyalaan antara pada DTF dan 1D furnace terhadap jenis peringkat batubara mendekati sama yang berkisar antara 318-388 0C. Hasil eksperimen pada masing-masing jenis sampel batubara juga menunjukkan konsisten terhadap fuel ratio (FC/VM), dimana fuel ratio bituminous paling besar, diikuti lignite dan subbituminous. Sebagai prediksi dari hasil eksperimen DTF dilakukan simulasi numerik dengan Computational Fluid Dynamics (CFD). Hasil simulasi yang diinvestigasi antara lain profil distribusi temperatur, profil kecepatan, profil konsentrasi gas buang CO dan CO2. Berdasarkan hasil simulasi menunjukkan bahwa distribusi temperatur sampel bituminous paling tinggi diikuti sampel lignite dan subbituminous, sedangkan konsentrasi CO dan CO2 menunjukkan profil sampel bituminous lebih tinggi, diikuti sampel subbituminous dan lignite. Kecenderungan hasil simulasi numerik CFD ini memiliki kesesuaian secara kualitatif dengan hasil eksperimen pembakaran dalam DTF.

Coal combustion in coal fired power plants are required characteristics combustion analysis to obtain optimum efficiency. The process characterization have performed on One Dimensional Furnace (1D furnace) and Drop Tube Furnace (DTF) as a representation of a commercial scale boiler furnace. In this research were conducted the combustion characteristics of these two equipment using 3 different samples each representing a type of bituminous, subbituminous, lignite. The sample of coal size was prepared uniform 75 μm (200 mesh) and burned in air fired environmental conditions (21% O2/79% N2). Both of the furnaces test have different geometry configuration and heated method, the configuration of 1D furnace is 6 m in height and 0.3 m inside diametre whereas DTF 1.5 m in height, 0.07 m inside diametre, the wall of 1D furnace is heated by combust LPG gas whereas DTF by electrically heated. With a different background configuration of both devices are used to characterize coal combustion with the same sample. The results of combustion characterization parameters include temperature distribution (walls and gas), ignition temperature, ignition time, carbon burn out time, flame length. Based on the experimental results presented that the ignition time results in the DTF between 13.25 - 15.06 ms tend to be slower compared to the 1D furnace between 2.72 ? 4.30 ms, it is affected by inertia thermal on 1D furnace greater due to assist more burning rate,in addition the lack of O2 concentration in the gas environment in DTF because of high temperatures in the furnace conditions cause O2 directly interact with volatiles produce CO2 where CO2 has a large heat capacity that affects decrease temperature and increase ignition delay. Carbon burn out time on DTF between 1936-2546 ms tend to be slower than in the 1D furnace between 896-1230 ms. It is influenced by diffusivity factors and gasification reactions on DTF due to high temperature combustion gas and O2 concentration less so the char / carbon directly react with O2 to form CO and CO2. Both of gas species will affect the temperature decrease and extend carbon burn out time. Flame length in the DTF between 0.224-0.267 m tend to be shorter than the 1D furnace between 0.615-1.000 m, it is influenced by a number of coal flow rate significantly different where 1D furnace 155-175 times greater than the DTF. The results of ignition temperature between DTF and 1D furnace have almost equal against each type of coal rank, which ranging 318-388 0C. The results of the experiment on each type of coal samples also showed consistent to fuel ratio (FC/VM), where the bituminous is largest one, subsequently lignite and subbituminous. As prediction of the results of experiments in DTF were performed numerical simulation with Computational Fluid Dynamics (CFD). Simulation results are investigated include temperature distribution profile, velocity profile, emission gas concentration profiles of CO and CO2. Based on the simulation results show that the distribution temperature bituminous samples is more higher and followed subbituminous and lignite samples, while the CO and CO2 concentration profile of the bituminous sample is showed higher, subbituminous and lignite samples subsequently. The tendency of the CFD numerical simulation results have good qualitatively agreement with the experimental results of combustion in DTF.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41388
UI - Tesis Membership  Universitas Indonesia Library
cover
Angella Natalia Ghea Puspita
"Indonesia merupakan salah satu negara yang tercatat sebagai negara ketiga yang mempunyai cadangan Laterit terbesar setelah New Caledonia dan Filipina (PSDMBP, Kementrian ESDM, 2015). Bijih nikel laterit umumnya terbagi menjadi 2 tipe bijih yaitu bijih limonite yang memiliki kandungan Fe besar dan Ni kecil (sekitar 0.8-1.5%) dan bijih saprolit yang memiliki kandungan Fe kecil dan Ni besar (sekitar 1.5-2.5%) (Chen, Shiau, Liu, Hwang, 2016). Untuk meningkatkan nilai tambah bijih nikel, maka perlu dilakukan pengolahan/pemurnian bijih nikel. Penggunaan komposit pelet sebagai material memunculkan gagasan untuk menggunakan bijih besi dengan kadar rendah dalam menghasilkan pig iron (Kawigraha A., et.al. 2013). Selain komposit, proses reduksi memiliki peranan penting dalam pembuatan nikel. Parameter rasio batubara, temperatur proses dan waktu proses dalam proses reduksi, rasio penambahan zat aditif (Na2SO4) (Yongli Li et al., 2012) juga dijadikan sebagai parameter proses reduksi komposit bijih saprolit. Parameter-parameter yang digunakan adalah % rasio batubara, temperatur, durasi waktu dan jenis zat aditif dengan masing-masing 3 level dengan variabel responnya yaitu % mass Ni. Kandungan mineral Ni (% mass Ni) didapatkan dari hasil analisis XRF. Tujuan penelitian ini adalah untuk mendapatkan kombinasi parameter optimal proses reduksi komposit bijih saprolit pada Tube Furnace dan menghitung biaya operasional untuk 1x batch pilot plant pada tungku Tunnel Kiln berdasarkan kombinasi parameter yang paling optimal. Untuk mendapatkan metode optimasi terbaik dari metode RSM, ANN, ANFIS dan SVM serta kombinsi parameter paling optimal berdasarkan nilai MSE terkecil. Nilai MSE metode RSM yaitu 0.007110, metode ANN yaitu 0.004604, metode ANFIS yaitu 0.014625 dan metode SVM yaitu 0.015338. Sehingga metode optimasi terbaik adalah metode ANN. Kombinasi parameter yang paling optimal adalah kombinasi yang memiliki % mass Ni 1.2 dengan % rasio batubara 15, temperatur 1200 0C, durasi tahan 3 jam dan jenis zat aditif Ca2S04 atau komposit SB15Ca10P2 pada temperatur 1200 0C ditahan selama 3 jam.

Indonesia is one of the largest in the world as the third country that has the largest laterite reserves in the world after New Caledonia and Philippines (PSDMBP, Ministry of Energy and Mineral Resources, 2015). Laterite nickel ore is generally divided into 2 types of ore, namely limonite ore which has large Fe content and small Ni (around 0.8-1.5%) and saprolite ore which has small Fe content and large Ni (around 1.5-2.5%) (Chen, Shiau, Liu, Hwang, 2016). To increase the added value of nickel content, it is necessary to process/refine nickel ore. To use of composite pellets as material raises the idea of using low grade iron ore to produce pig iron (Kawigraha et.al. 2013). In addition to composites, the reduction process, the ratio of addition of additives (Nas2SO4) (Yongli Li et.al, 2012) are also used as parameters for the reduction of saprolite ore composites. The parameter used are % coal ratio, temperature, duration time and type of additive with each 3 level and the response variable is % mass Ni. The content of mineral (% mass Ni) is obtained from the result of XRF analysis. The purposes of this study was to obtain a combination of optimal parameters for the reduction of saprolite ore composites in the Tube Furnace and calculate operational cost for 1x batch pilot plant in Tunnel Kiln furnace based on optimal parameter combination. To get the best optimization method from RSM, ANN, ANFIS and SVM method and optimal parameter combination based on the smallest MSE value. The MSE value of RSM method is 0.007110, ANN method is 0.004604, ANFIS method is 0.014625, and the SVM method is 0.015338. So, the best optimization is ANN method. The most optimal combination of parameter is a combination with % mass Ni 1.2, % coal ratio 15, temperature 1200 0C, duration time 3 hours, and type of additive is Ca2SO4 or composite SB15Ca10P2 with temperature 1200 0C for 3 hours."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54171
UI - Tesis Membership  Universitas Indonesia Library
cover
Taopik Hidayat
"Teknologi boiler sampai saat ini telah mengalami perkembangan yang pesat. Dimulai dengan teknologi grate firing atau stoker, pulverized, sampai dengan teknologi circulating fluidized bed CFB yang mempunyai efisiensi pembakaran lebih baik. Walaupun telah ditemukan lebih dari satu abad, stoker masih digunakan untuk produksi uap dan pembangkit listrik. PLTU batubara skala 7MW, 15 MW masih dibutuhkan untuk wilayah yang terisolasi, pulau atau beban yang tersebar seperti di Kalimantan, Sumatra, Sulawesi dan wilayah Timur lainnya. Pada skala tersebut umumnya menggunakan teknologi pembakaran stoker. Pada studi ini, akan dikaji karakteristik pembakaran batubara dalam sebuah tungku fixed bed yang mensimulasikan grate stoker. Karakteristik pembakaran yang didapatkan pada tungku fixed bed akan dijadikan dasar lamanya batubara berada di dalam tungku vibrating grate simulator. Profil temperatur, komposisi gas buang dan efisiensi pembakaran akan dianalisis baik pada fixed dan vibrating grate .Hasil menunjukan bahwa getaran yang terjadi pada vibrating grate sangat berpengaruh terhadap kinerja pembakaran. Sebagai validasi maka digunakan laju devolatilisasi sebagai pembanding dengan penelitian yang sudah ada. Efisiensi pembakaran meningkat menjadi 98 untuk batubara lignit dan 97.2 untuk batubara sub bituminus. Laju pembakaran overall juga meningkat menjadi 0.72 g/s untuk batubara sub bituminus dan 0.68 g/s untuk batubara lignit. Burning time menjadi lebih singkat menjadi 20 menit yang sebelumnya pada fix grate yaitu 38 menit untuk sub bituminus dan 30 menit untuk lignit.

Until now, boiler technology has grown fast. Start with grate firing, pulverized combustion, and circulating fluidized bed CFB which have better burning efficiency. Altough had founded for one century, stoker still used for steam production and electric generation. Coal Power Plant 7 MW, 15 MW still needed for far an isolated region, that spread in Kalimantan, Sumatra, Sulawesi, and another east of Indonesia. In this study, coal combustion charachteristic will be discussed in fixed bed furnace that simulate grate stoker fired. Combustion Carachteristic that will develop from fixed bed will be one of decision for how long a coal will be loaded in vibrating grate simulator. Temperature profile, flue gas composition and burning efficiency will be analyzed in fix and vibrating grate. The result show that vibration had great effect to combustion on vibrating grate. Devolatilization rate will be used for validate this research with another research that had been develop. Burning efficiency is raise to 98 for lignite and 97.2 for sub bituminous. Overall burning rate also increase to 0.72 g s for sub bituminous and 0.68 g s for lignite. Burning time drop to 20 minute were for fix grate is 38 minute for sub bituminous and 30 minute for lignite.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47650
UI - Tesis Membership  Universitas Indonesia Library
cover
Samuel Agustinus Adam
"Pada paper ini void fraction dari R-290 di investigasi. Penggunaan R-290 ditujukan untuk menggantikan R-22, dikarenakan R-22 memiliki nilai ODP (Ozone Depletion Potential) sebesar 0.05 dan nilai GWP (Global Warming Potential) sebesar 1700. Nilai void fraction dibutuhkan karena berhubungan dengan prediksi nilai dari jatuh tekanan, yaitu pada jatuh tekanan akibat akselerasi. Sehingga, merupakan suatu kebutuhan untuk melakukan studi komprehensif mengenai void fraction pada aliran didih dua fase pada pipa konvensional berdiameter dalam 7.6 mm. Data primer didapatkan dengan melakukan eksperimen pada kondisi: Fluida kerja R-290, pipa horizontal berdiameter dalam 7.6 mm, temperatur saturasi pada rentang 5 hingga 15ºC, fluks kalor pada rentang 9 hingga 20 kW/m2 dan fluks massa pada rentang 300 hingga 420 kg/m2.s. Hasil jatuh tekanan eksperimen yang di dapatkan kemudian dibandingkan dengan jatuh tekanan prediksi.

In this present paper the void fraction of R-290 was investigated. The use of R-290 is to replace R-22, since R-22 has 0.05 Ozone Depletion Potential (ODP) and 1700 Global Warming Potential (GWP). The relevancy to obtain the void fraction was related to predict the value of pressure drop, especially accelerational pressure drop. Therefore, it is a necessity to conduct a comprehensive study about void fraction in two-phase flow boiling in conventional pipe with 7.6 mm inner diameter. To obtain the primary data, the experiment was conducted with the experimental conditions of R-290 working fluid, 7.6 mm inner diameter horizontal tube, 5 to 15ºC saturation temperature, 9 to 20 kW/m2 heat flux, and 300 to 420 kg/m2.s mass flux. The recent results of pressure drop were compared to some existing method of pressure drop calculations
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44149
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahmud Rosid
"ABSTRACT
Vortex tube merupakan suatu hat yang sedang diteliti dan dikembangkan di Jurusan Mesin Fakultas Teknik Universitas Indonesia. Untuk itu diperlukan adanya suatu alat uji untuk mengetahui karakteristik dari vortex tube tersebut Alt uji tersebut mempergunakan alat-alat yang terdapat di Laboratorium Fenomena Dasar Mesin Jurusan Mesin Fakultas Teknik Universitas Indonesia-
Beberapa alat ukur yang dipergunakan untuk menguji vortex tube tersebut adalah alat pengukur tekanan, alat pengukur Iaju aliran tluida, serta alat pengukur temperatun Diantara alat pengukur tersebut, terdapat beberapa jenis alat pengukur yang dapat dipergunakan, yaitu untuk alat pengukur tekanan digunakan manometer dan pressure gauge, sedangkan pada alat pengukur Iaju aliran fluida, terdapat tiga jenis alat pengukur yang dapat digunakan yaitu rotameter, pitot tube, dan oritis. Sedangkan untuk mengukur temperatur dipergunakan thermokopei.
Agar hasil yang didapat dari pengujian karakteristik vo/tex tube dapat sebaik mungkin, maka diantara jenis-jenis aiat ukur tersebut haruslah dibandingkan antar hasil yang didapat oleh alat ukur yang satu dengan hasil yang didapat oleh alat ukur Iainnya. Dengan demikian maka diketahui sejauh mana kesamaan data yang dihasilkan oleh alat-alat ukur tersebut. Oleh karena ini, skripsi ini bertujuan untuk mengetahui sejauh mana kemampuan alat ukur yang dipergunakan dalam pengujian karakteristik vortex tube.

"
1999
S36998
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cahyadi
"Salah satu teknologi Carbon Capture Storage (CCS) untuk pada pembangkit listrik tenaga uap dengan batubara halus adalah teknologi pembakaran oxy-fuel. Didalam teknologi pembakaran oxy-fuel, batubara dibakar dalam campuran oksigen murni dan resirkulasi gas buang dengan kandungan gas CO2 yang tinggi. Pembakaran batubara didalam lingkungan O2 dan CO2 akan mempengaruhi kinerja pembakaran dibandingkan dengan lingkungan udara (O2/N2). Berdasarkan beberapa penelitian sebelumnya menunjukkan bahwa konsentrasi oksigen perlu dinaikkan sehingga kinerja pembakarannya sama dengan lingkungan udara. Pada disertasi ini dibahas tentang karakteristik penyalaan batubara dan pembakaran batubara didalam lingkungan oxy-fuel menggunakan TG-DTA (Thermo-Gravimetric Differential Thermal Analyzer) dan DTF (Drop Tube Furnace). Tiga jenis batubara Indonesia dengan peringkat lignit, sub-bituminus dan bituminus telah digunakan sebagai sampel batubara. Pengujian pembakaran batubara didalam TG-DTA dan DTF telah disuplai dengan udara tekan untuk lingkungan udara dan campuran gas 21%O2/79CO2 untuk lingkungan oxy-fuel. Hasil pengujian menunjukkan bahwa pelambatan penyalaan batubara terjadi dalam pembakaran oxy-fuel pada ketiga sampel tersebut. Laju pembakaran char didalam lingkungan oxy-fuel mengambil waktu lebih lama dibandingkan dalam lingkungan udara. Perbedaan dalam sifat fisik gas mempengaruhi penyalaan batubara dan karakteristik pembakaran.
Hasil karakterisasi pembakran dalam lingkungan udara dan oxy-fuel di TG-DTA menunjukkan adanya pelambatan pada pembakaran char. Ketika konenstrasi oksigen dinaikkan, profil DTA bergeser maju ke zona temperatur rendah, laju pembakaran meningkat dan waktu pembakaran lebih singkat. Penggunaan ukuran batubara yang lebih halus memberikan pengaruh puncak DTA menjadi lebih tinggi yang berarti temperatur batubara lebih tinggi. Laju pembakaran volatil menjadi lebih cepat dibandingkan ukuran kasar baik pada batubara lignit, sub-bituminus dan bituminus. Pada batubara lignit dan sub-bituminus dengan ukuran <44μm memiliki peluang untuk dibakar dalam lingkungan oxy-fuel dengan konsentrasi oksigen dibawah 30%, sedangkan pada batubara bituminus membutuhkan konsentrasi oksigen minimal 30% dengan pertimbangan puncak kurva DTA mirip di lingkungan udara.
Simulasi pada 2 (dua) jenis PLTU batubara dilakukan untuk mengevaluasi konsumsi energinya. PLTU tersebut adalah PLTU 400MW yang didisain dengan batubara sub-bituminus dan PLTU 700 MW yang didisain dengan batubara bituminus. Pembakaran dalam kondisi oxy-fuel telah dilakukan pada siklus uap pada masing-masing PLTU. Berdasarkan simulasi tersebut penurunan efisiensi PLTU dapat diketahui. Penurunan efisiensi pada PLTU 400 MW dalam lingkungan oxy-fuel 21%O2/79%CO2 dan 30%O2/70%CO2 adalah masing-masing 15.9%, dan 19.0%. Sedangkan pada PLTU 700 MW dalam lingkungan oxy-fuel 21%O2/79%CO2, dan 30%O2/70%CO2 adalah masing-masing 13.9%, dan 17.8 %. Kontribusi terbesar adalah konsumsi energi listrik pada ASU yang berkisar 20-30%. Berdasarkan uji pembakaran pada TG-DTA dan DTF, penggunaan batubara yang lebih halus dari 76 um (200 mesh) yaitu ukuran <44 um didalam PLTU oxy-fuel dapat mempunyai peluang pengurangan kebutuhan oksigen, sehingga penurunan efisiensi didalam PLTU oxy-fuel yang disebabkan konsumsi energi yang tinggi pada ASU dapat diturunkan.

One of Carbon Capture Storage (CCS) technology in pulverized coal fired power plant is oxy-fuel combustion technology. In oxy-fuel combustion technology, the coal is burned in a mixture of pure oxygen and recycled flue gas with high content of CO2 gas. Burning the coal in oxy-fuel combustion with O2 and CO2 environment will affect the combustion performance compare with air (O2/N2) environment. Based on previous researches indicated that oxygen concentration is required to be increased, so that the combustion behavior similar as in air environment. This study discusses the characteristics of coal ignition and combustion in oxy-fuel combustion applying TG-DTA (Thermo-Gravimetric Differential Thermal Analyzer) and Drop Tube Furnace (DTF). Three different Indonesian coal ranks of lignite, sub-bituminous and bituminous have been used as coal samples. Coal combustion test in DTF has been supplied with compressed air for air environment and mixing gas cylinder of 21%O2/CO2 for oxy-fuel environment. Experimental results indicated that the ignition time delay occurs in oxy-fuel combustion for all coal samples. Char combustion rate in oxy-fuel environment take longer time compared with in air environment. The different in physical gas properties influence on coal ignition and combustion characteristics.
The result of combustion characteristic in air and oxy-fuel environment applying the non-isothermal thermo gravimetric analysis shows the delayed in char burning compared with that in air environment at the same oxygen concentration. As oxygen concentration increases, DTA profiles shift to lower temperature zone, combustion rate increases and burnout time gets shorter. Finer coal size is also give higher DTA peak that meaning higher coal temperature in oxy-fuel environment. Volatile combustion rate is faster than coarser size in sub-bituminous and bituminous coal. Based on DTA combustion profile with the coal size of <44um, sub-bituminous coal has opportunity to use oxygen concentration below than 30% considering the peak of DTA curve so much higher than in air environment. Meanwhile, the bituminous coal needs at least 30%O2, because the peak on DTA curve is similar within air environment.
Simulation on two different existing coal fired power plants is presented to evaluate the different of energy consumption in oxy-fuel coal fire power plant. The 400MW coal fired power plant is designed with sub-bituminous coal type and 700 MW with bituminous coal type. Oxy-fuel combustion environment has been simulated on the steam cycle of each type coal fired power plant. Based on this simulation, the potency for decreasing efficiency loss in oxy-fuel coal fired power plant can be predicted. The efficiency loss at 400 MW coal fired power plant in oxy-fuel environment of 21%O2/79%CO2 and 30%O2/70%CO2 are 15.9%, and 19.0%, respectively. Furthermore, the efficiency loss at 700 MW coal fired power plant in oxy-fuel environment of 21%O2/79%CO2, and 30%O2/70%CO2 are 13.9%, and 17.8 %, respectively. Based on combustion test in TG-DTA, finer coal utilization with the coal size of <44 um in oxy-fuel power plant has opportunity for reducing oxygen concentration, so that the efficiency loss in oxy-fuel coal fired power plant due to higher consumption on ASU can be minimized.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2016
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Jeri At Thabari
"

Kebutuhan energi yang terus meningkat menjadikan pemanggunaan sumber daya mineral mengalami ekstraksi secara maksimal. Akibat dari penggunaan masif ini menyebebakan batubara dengan kualitas rendah seperti sub-bituminous dan lignite juga digunakan. Karena kualitas nya yang rendah, batubara jenis tersebut sering terbakar dengan sendirinya ketika berada pada tumpukan. Penumpukan batubara sangat sulit dihindari karena pada proses rantai suplai, pengiriman dengan jumlah besar masih menggunakan kapal dan memakan waktu yang tidak sedikit. Fenomena pembakaran spontan pada batubara ini berakibat buruk karena batubara yang telah terbakar mengalami pengurangan kemampuan untuk melepas energi sehingga tidak lagi dapat digunakan sebagai bahan bakar untuk membangkitkan daya.

Permasalahan ini sudah memasuki ranah konsiderasi dari para peneliti dimana beberapa metode intrusive yang telah diajukan antara lain dengan melakukan pelapisan guna mengurangi efek termal dari lingkungan, melakukan penyempotan dengan cairan guna mengurangi efek eksotermisitas dari batubara, hingga penghambatan reaksi oksidasi dengan mengurangi jumlah oksigen yang berada di zona reaksi.

Pendekatan metode non-intrusive pengontrolan pembakaran spontan pada tumpukan batubara adalah dengan penyusunan batubara yang sedemikian rupa sehingga hasil panas yang dihasilkan mampu diimbangi oleh hasil panas yang dibuat ke lingkungan. Hal ini dapat memperlambat proses akumulasi panas dari reaksi oksidasi antara batubara dengan lingkungan yang dapat menyebabkan kejadian pembakaran spontan pada tumpukan tanpa mengubah karakteristik fisik dari tumpukan batubara baik pada proses transportasi maupun penyimpanan.

Tujuan dari penelitian ini adalah untuk mengetahui hubungan antara waktu tunda kebakaran oleh reaktor dengan rasio luas permukaan dan volume zona bakar reaktor. Distribusi perpindahan kalor diamati dengan melakukan pemodelan perpindahan kalor dari lingkungan menuju reaktor yang berisi batubara menggunakan piranti lunak COMSOL Multiphysics. Percobaan skala laboratorium juga dilakukan guna mendampingi hasil simulasi agar validasi dapat dilakukan.

Simulasi dilakukan dengan menempatkan reaktor batubara berbentuk silinder lingkungan dengan temperatur ambient sebesar 400 K. Hubungan antara eksotermisitas dari tumpukan batubara dan rasio antara luas permukaan dan volume zona bakar diamati dengan memvariasikan geometri dari model

Pengujian laboratorium dilakukan dengan memanaskan reaktor yang berisi tumpukan batubara di dalam oven yang diatur suhunya pada temperatur 375, 380, 385, 390, dan 400 K. Pemanasan terus dilakukan hingga teramati fenomena pembakaran spontan saat temperatur dari reaktor mencapai suhu yang lebih tinggi dari suhu oven. Hal ini dilakukan untuk menentukan temperatur kritis dari tumpukan sebagai acuan validasi dari hasil simulasi


Increasing energy demand makes mineral resources increase. It also happens to coal resources where the market starts to expand to various types of coal with multiple qualities. Because of this massive use of coal, causing low quality such as sub-bituminous and lignite are also used. Because of its low activation energy value, both types of coal often cause problems in the handling process. Those coals could undergo spontaneous combustion or self-ignition phenomena if they are forming piles since coal piling is unavoidable in the supply chain process. Large ships are still favorable in transporting the coal for large quantities and long distances. It means exposing the coal piles to radiation for a long duration. The phenomenon of spontaneous fire on coal has a worse impact on its productivity because burned coal loses its heat capacity and can no longer be used as fuel to generate power.

This problem has entered the domain of consideration from the researchers while some of intrusive methods include coating to reduce the thermal effects of the environment, spraying with liquids to minimize the impacts of exothermicity of the coal, inhibiting the reduction of oxidation by reducing the amount of oxygen needed in the reaction zone are proposed.

However, there is a possibility to overcome this problem by using a non-intrusive approach. The ignition delay time and critical temperature of the piles could be foreseen by understanding the dimensional characteristic of the pile. This method can be used to predict and consider the duration of stacking and transporting the coal before it gets burnt spontaneously.

The purpose of this study is to study the correlation between coal piles exothermicity and the surface area-volume ratio of the piles. The physics phenomena are analyzed by modeling the phenomena using COMSOL Multiphysics. Laboratory scale experiments are also carried out to accompany the results of the computational simulation so that validation can be done.

The simulation is done by placing a coal reactor forming a cylinder in an environment with a temperature of 400 K. In examining the relationship between the critical temperature and ignition delay time toward surface area-volume ratio, the reactors dimension is varied for several values. Varying the reactor

s size means conducting the experiment for several S/V values.

Laboratory experiment is carried out by heating the reactor containing the release of coal in an oven that regulates the temperatures at 375, 380, 385, 390, and 400 K. The experiment was done until the temperature within the reactor is significantly greater than the oven temperature. by this means, the critical temperature of the coal piles could be determined as a basis for validation data.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizky
"Penelitian ini bertujuan untuk mendapatkan karakteristik penurunan tekanan pada aliran evaporasi dua fase dengan jenis refrigeran propane (R-290) di pipa konvensional horizontal. Kondisi pengujian menggunakan berbagai variasi pengujian yaitu fluks kalor (q), fluks massa (G) dan nilai temperatur saturasi dengan menggunakan test section yang terbuat dari pipa stanless steel berdiameter 7,6 (mm) dengan panjang 1,07 (m). Refrigeran yang mengalir dipanaskan secara merata di sepanjang pipa test section. Hasil yang didapat adalah penurunan tekanan yang dipengaruhi oleh fluks kalor, fluks massa dan temperatur saturasi. Dari ketiga jenis variasi tersebut akan didapatkan nilai penurunan tekanan yang didapatkan secara eksperimen. Nilai penurunan tekanan ini akan dibandingkan dengan nilai penurunan tekanan yang didapat berdasarkan kalkulasi. Permodelan Homogeneous seperti McAdamas, Cicchitti, dan Dukler serta permodelan Separated seperti Lockhart - Martinelli digunakan sebagai pembanding terhadap penurunan tekanan eksperimen. Hal ini untuk melihat prediksi mana yang paling baik dalam penelitian yang dilakukan.

This study aimed to obtain the characteristics of the pressure drop in two - phase flow with evaporating refrigeran types of propane (R - 290) in the conventional horizontal pipe . Test conditions using a variety of tests that heat flux (q) , mass flux (G) and the saturation temperature values using a test section made of stanless steel pipe diameter 7.6 (mm) with a length of 1.07 (m). Refrigeran flowing heated evenly along the pipe test section . The result is that the pressure drop is influenced by the heat flux , mass flux and saturation temperature. From three types of variations will be obtained pressure values obtained experimentally. The pressure drop values will be compared with the value obtained by the pressure drop calculations. Modeling Homogeneous like McAdamas, Cicchitti, and Dukler and modeling Separated like Lockhart - Martinelli used as a comparison against the experimental pressure drop. It is to see where the best prediction of the research undertaken.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57039
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>