Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127580 dokumen yang sesuai dengan query
cover
Arief Heru Kuncoro
"Pola beban sistem tenaga listrik yaitu pola permintaan beban puncak dan kurva lama beban (KLB) sangat berpengaruh dalam perencanaan pengembangan sistem pembangkitan jangka panjang. Pola beban tersebut mempengaruhi: nilai total biaya kumulanf pengembangan sxstem koniigurasn optnmum vanabel kandidat pembangkit, total tambahan kapasitas pembangkit terpasang, Jumlah energi yang diproduksi dan keandalan sistem (indeks LOLP (Loss Of Load Probability) & ENS (Energy Not Served)). Beberapa model telah digunakan untuk peramalan permintaan beban puncak dan untuk merepresentasikan KLB. KLB merupakan parameter yang sangat penting untuk analisis sistem ketenagalistrikan seperti estimasi biaya operasi sistem pembangkitan prediksi jumlah energi yang diproduksi dan untuk perhitungan tingkat keandalan. Dalam disertasi ini telah dikembangkan model peramalan beban puncak jangka panjang dan model KLB dengan menggunakan metode Jaringan Syaraf Tiruan (JST). Model yang dikembangkan mampu melakukan komputasi secara paralel melalul pembelajaran dari pola pola yang diajarkan sehingga mampu menemukan hubungan non-linear antara beban dan faktor-faktor ekonomi populasi, konsumsi energi listrik dan faktor faktor Iainnya serta dapat melakukan penyesuaian terhadap perubahan-perubahan yang terjadi. Model tersebut diaplikasikan pada sistem ketenagalistrikan Jawa-Madura-Bali (Jamali) dan hasil output peramalan beban puncak dan KLB nya digunakan sebagai masukan dalam optimasi perencanaan pengembangan sistem pembangkltan dengan program WASP (Wien Automatic System Planning). Selanjutnya dilakukan analisis keandalan sistem berdasarkan hasil optimasi. Untuk mengetahui keakuratan model yang dikembangkan maka output hasil dan model yang dikembangkan dibandingkan dengan model lain. Hasil ramalan beban puncak pada tahun 2025 dengan metode JST tidak berbeda jauh dengan model ekonometrik Simple E yang digunakan untuk Rencana Umum Ketenagalistrikan Nasional (Simple E-RUKN) yaitu masing-masing sebesar 57.030 MW dan 59.107 MW (perbedaannya sekitar 3,58%). Berdasarkan metode JST, laju pertumbuhan beban tahunan rata-rata sekitar 7,1 % selama periode tahun studi 2006-2025, sementara itu menurut Simple E-RUKN laju pertumbuhan diperkirakan sekitar 7,3%per tahun. Representasi pola model KLB-RJST yang dikembangkan lebih mendekati pola KLB-Aktual, dibandingkan dengan pola model KLB-Synder. Berdasarkan hasil analisis keandalan dalam optimasi perencanaan pengembangan sistem pembangkitan diperoleh kesimpulan bahwa perbedaan hasil perhitungan keandalan antara model KLB-JST dibandingkan pola KLB-Aktul mempunyai perbedaan yang relatif kecil (sekitar 0,94% untuk perbedaan LOLP dan 4,44% untuk perbedaan ENS). Untuk model proyeksi KLB berdasarkan metode JST, hasilnya cukup bagus.

Load pattern on the electricity system (i. e. demand pattern of peak load and load duration curve (LDC)) has an effect on the long term generating system expansion planning The load pattern affects of' cumulative total cost value of system development, optimum configuration of generating candidate variable, total addition of generating installed capacity amount of energy produced and system realibility (index of LOLP (Loss Of Load Probability) & ENS (Energy Not Served)) Several models have been used to forecast peak load demand and to express LDC An LDC is one of the most important parameters to analyze the electric power systems. It is used in estimating the operating cost of a power system predicting the amount of energy delivered by each unit, and calculating reliability measures. In this dissertation an intelligence model to forecast long-load and to express LDC using Artificial Neural Networks (ANN) method has been developed The model has ability to conduct parallel computing through training from taught patterns so that it is able to find non-linear relations between load economic thetors population electric energy consumption and other factors. The model can also conduct adjustment in response to any changes that happenes. The model is applied on the Jawa Madura Bali (Jamali) electricity system and the output result of the forecasted peak load and its LDC are used as input on the optimazation of expansion planning for electrical generating system using WASP (Wien Automatic System Planning) program. Hercinafter the system reliability is analyzed based on the optimization result. The developed model output is compared to other model output to verify the accuracy. The result of the forecasted peak load in 2025 by ANN method does not differ far from that of Simple E model used National Electricity General Planning (Simple E-NEGP) of which 57.030 MW and 59.107 MW respectively(its difference about 3,58%) Based in the ANN model, mean annual load growth rate is about 7,1% during study period of 2006-2025, meanwhile according to Simple E-NEGP, the growth rate is estimated about 7,3 % per year. The develop LDC model based on ANN approximates the actual-LDC, if compared to LDC model based on the Synder. Based on the reliability analysis on the optimization of generating system expansion planning, the reliability calculation result by LDC-ANN model is almost similar to LDC-Actual model (differs about 0,94% or LOLP and about 4,44% for ENS). Meanwhile for LDC projection based on ANN, the result is fine."
Depok: Fakultas Teknik Universitas Indonesia, 2008
D1210
UI - Disertasi Open  Universitas Indonesia Library
cover
Indira Untari
"Perkembangan teknologi yang sangat pesat di bidang kelistrikan saat ini adalah pemanfaatan distributed generation khususnya PLTS Atap atau dikenal dengan PV Rooftop. Pelanggan memanfaatkan energi listrik dari PV Rooftop untuk kebutuhan listriknya dan juga dapat mentransfer energinya (eksport) ke system kelistrikan PLN jika energi dari PV Rooftop berlebih. Sedangkan PLN tetap mengirimkan energi ke pelanggan jika energi dari PV tidak memenuhi konsumsi listriknya (import). Dengan ketersediaan data smart-meter orde jam beban pelanggan PV Rooftop, maka optimalisasi data untuk keperluan data scientist, data analyst, dan data engineer sehingga informasi data ini dapat dignakan untuk manajemen energi yang efisien dan andal. Peralaman beban untuk pelanggan PV menjadi masalah yang sulit dipecahkan dikarenakan beragamnya tipe penggunaan listrik (konsumsi listrik) dan ketidakpastian faktor eksternal (cuaca) karena penggunaan sumber energi terbarukan (energi matahari) sehingga menimbulkan celah dalam akurasinya. Untuk memecahkan masalah tersebut, penelitian ini menggunakan pendekatan machine-learning yaitu Jaringan Syaraf Tiruan (Artificial Neural Network-ANN) pada MATLAB® dengan algoritma pembelajaran backpropagation dan fungsi aktivasi sigmoid untuk menghasilkan model peramalan beban  orde jam meliputi hari kerja dan hari libur pada pelanggan PV per segment tarif (Pelanggan Rumah Tangga, Pelanggan Bisnis, Pelanggan Industri, Pelanggan Sosial dan Pelanggan Pemerintah). dengan mempertimbangkan variasi konsumsi listrik dan temperatur. Lingkup pengambilan data penelitian dibatasi beban listrik pada pelanggan di Jakarta dan sampling dilakukan selama bulan Juli s/d Oktober 2019. Hasil penelitian ini memperlihatkan bahwa prediksi ANN menghasilkan kinerja dengan Mean Square Error (MSE) sebesar 2%. Prediksi beban listrik tanggal 21 s/d 27 Oktober 2019 memperlihatkan rata-rata error ANN adalah 21%, sedangkan rata-rata error metode regresi adalah 39%. Dengan demikian dapat disimpulkan bahwa prediksi beban listrik menggunakan ANN lebih akurat sebesar 20% dibandingkan dengan metode regresi oleh PLN. Berdasarkan analisis keekonomian, pelanggan mendapatkan efisiensi biaya listrik sebesar 21%, sedangkan PLN berkurang pendapatan sebesar ± Rp. 300 juta/bulan. Strategi manajemen yang diusulkan dengan mempertimbangkan benefit kedua pihak (PLN dan Konsumen) adalah dengan keterlibatan PLN sebagai integrator (sisi hulu dan sales), ketelibatan Pemerintah dan keterlibatan dukungan Bank sebagai

The very rapid technological development in the electricity sector at present is the use of special distributed PLTS known as PV Rooftop. Customers use energy from the PV for their electricity needs and can also transfer their energy (export) to the PLN electricity system if the energy from their PV is excessive. While PLN continues to send energy to customers if using energy from PV does not meet its electricity consumption (imports). While the avaibility of fine-grained smart meter data for PV customers load, optimization could be done for the needs of data scientists, data analysts and data engineers makes this data information usable for efficient and reliable energy management. Forecasting the PV Customer load, however, can be an intractable problem. These loads are characterized by uncertainty and variations due to the use of renewable energy sources (solar energy), leaving much room to improve accuracy. To improve the PV customer load forecast accuracy, this paper advocates a machine-learning tool called Artificial Neural Network (ANN) on MATLAB® with backpropagation learning algorithm and sigmoid activation, include load forecasting per tariff segment (Household Customers, Business Customers, Industrial Customers, Social Customers and Government Customers). The scope of the study took data on electricity loads to customers in Jakarta and sampling was conducted from July to October 2019. The test results show that ANN deterministic load forecasting model can achieve satisfactory performance with the mean square error (MSE) of 2% . Electricity load predictions from 21 to 27 October 2019 have an average error of ANN is 21%, while the average error of the regression method is 39%. Thus it can be concluded that the estimated cost of using ANN electricity is more accurate by 20% compared to the regression method by PLN. Based on economic analysis, customers get electricity cost efficiencies of  21%, while PLN reduces revenue by ±Rp. 300 million/month. The proposed management strategy by considering the benefits of both parties (PLN and Consumers) is to involve PLN as an integrator (upstream and sales side), Government involvement and involvement of Bank supporters as lenders."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T54037
UI - Tesis Membership  Universitas Indonesia Library
cover
Eri Nurcahyanto
"Manajemen usaha penyediaan tenaga listrik merupakan hal yang kompleks. Salah satu hal yang penting dalam manajemen penyediaan tenaga listrik, khususnya dalam perencanaan adalah peramalan tenaga listrik di masa yang akan datang. Peramalan (forecasting) adalah suatu kegiatan atau usaha untuk memprediksi kondisi di masa yang akan datang dengan bantuan model untuk merepresentasikannya. Dalam membuat peramalan, keakuratan merupakan kriteria utama dalam menentukan metode peramalan.
Dalam penelitian ini metode algoritma genetik digunakan untuk membuat peramalan beban tenaga listrik. Algoritma Genetik adalah algoritma pencarian yang meniru mekanisme evolusi dan genetik alam. Dalam proses peramalan, dilakukan optimasi parameter-parameter model dengan meminimalkan nilai mean square error (mse).
Model peramalan yang dikembangkan dengan algoritma genetik dapat mendekati model sebenarnya. Parameter optimal model peramalan jangka panjang adalah A= 1.558, B1= 0.642, B2= 1.188, B3= -0.437, B4= -0.378, B5= -0.484, dan B6= 0.848, sedangkan untuk jangka menengah adalah adalah α= 0.6383 ,β=0, dan γ=0.8289. Laju pertumbuhan beban rata-rata hasil ramalan jangka panjang tahun 2008-2017 sekitar 6.9%. Peramalan beban jangka menengah memberikan hasil yang lebh baik jika dibandingkan dengan peramalan dari PLN P3B Jawa-Bali dengan jumlah selisih eror sebesar 0.44%.

Managing electricity energy supply is a complex task. The most important part of electricity supply management, particularly in utility planning is forecasting of the future electricity load. Forecasting is a process to predict future conditions usually achieved by constructing models on relative information and some assumptions. In making a electricity forecasting, accuracy is the primary criteria in selecting forecasting methods.
In this research, a genetic algorithm approach is proposed to build electricity load forecasting. Genetic algorithms are global search methods that mimic the methapor of natural evolution and genetic. Parameter optimization process have done by minimize mean square error (mse).
Load forecasting model using genetic algorithm gives model which is almost the same with actual data. Optimal parameters for long term model are: A= 1.558, B1= 0.642, B2= 1.188, B3= -0.437, B4= -0.378, B5= -0.484, dan B6= 0.848, for medium term model are: α= 0.6383 ,β=0, dan γ=0.8289. Annual growth rate for 2008-2017 using genetic algorithm model is about 6.9%. Medium term forecasting using genetic algorithm gives better result than PLN P3B Java-Bali forecasting with sum error difference about 0.44%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26139
UI - Tesis Open  Universitas Indonesia Library
cover
"It has been studied the forecasting of electric power peak load in the Indonesian electric system by
using Artificial Neural Network (ANAU) Back Propagation method with the study period is 2000 - 2025.
The long-range forecasting of electric peak load is influenced by economic factors. in this study, it?s
selected the economic data which is estimated very influence to forecasting, which in this case become
input ofAN1\L i. e.: Gross of Domestic Product (GDP) per-capita, Population, Amount of Households,
Electrification Ratio, Amount of CO, Pollution, Crude Oil Price, Coal Price, Usage of Final Energy,
Usage Qf Final Energy on Industrial Sector; and Average Electric Charges. Data used for study are
actual data, start year 1990 up to 2000. Result of the peak load forecasting in the end of study (2025) by
using ANN is 85,504 MHC meanwhile the load forecasting in the National Electricity General lan
(NEGP) is 79,920 MW (the difference of both is about 6. 6%). Based on ANN approach is obtained results
that the peak load forecasting in Indonesia in the year 2005, 2010, 2015, 2020 and 2025 are 16,516 MHC
24,402 MHC 36, 15 7 MIK 56,060 MW and85,584 MW respectively.
"
Jurnal Teknologi, Vol. 19 (3) September 2005 : 211-217, 2005
JUTE-19-3-Sep2005-211
Artikel Jurnal  Universitas Indonesia Library
cover
"Electric power plant system design in oil palm factory should consider the contunuity and quality of power supply, reliability of all equipments and its safety and economical value of the system..."
Artikel Jurnal  Universitas Indonesia Library
cover
Bella Ilaiyah Rizki
"Listrik merupakan salah satu kebutuhan yang paling penting bagi kehidupan sehari-hari. Mengingat begitu besar kebutuhan beban listrik yang terus meningkat seiring dengan berjalannya waktu, oleh karena itu diperlukan peramalan beban listrik untuk menjaga kestabilan sistem tenaga listrik. Dalam skripsi ini, data historis digunakan sebagai data acuan dan peramalan dilakukan menggunakan metode koefisien beban untuk meramalkan beban puncak mingguan dari tahun 2017 sampai 2020 pada sistem interkoneksi Jawa-Bali.
Hasil analisa menunjukan nilai beban puncak untuk empat tahun terakhir tahun terjadi pada pekan ke 42 yaitu pada tahun 2017 sebesar 26.173 MW, tahun 2018 sebesar 25.630 MW, tahun 2019 sebesar 26.219 MW, dan tahun 2020 sebesar 26.822 MW. Di sisi lain persentase kesalahan peramalan beban puncak tertinggi pada tahun 2017 sebesar 12,717 yang terjadi pada hari raya idul fitri. Tingkat akurasi pada metode koefisien beban dapat dikatakan cukup baik karena rata-rata persentase kesalahan pada tahun 2017 bernilai rendah yaitu sebesar 1,66.

Electricity is one of the most important needs for everyday life. Given the huge demand for electrical loads that increase continously over time, therefore the electrical load forecasting is required to maintain the stability of the electrical system. In this paper, historical data used as the reference and the load coefficient method is used to forecast weekly peak load from 2017 to 2020 on Jawa Bali system interconnection.
The result of the analysis shows the peak load value for the last four years occurred in the 42nd week. In 2017 the peak load value is 26,173 MW, in 2018 the peak load value is 25,630 MW, the peak load value in 2019 is 26,219 MW, and the peak load value in 2020 is 26,822 MW. On the other hand, the highest error percentage of peak load in the year 2017 amounted to 12.29 which occurred on Idul Fitri holidays. The accuracy of the load coefficient method can be quite good because the average error percentage in 2017 is at the low catagorized on 1.66.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauziah Putri Oktaviani
"Skripsi ini melakukan peramalan beban persetengahjam untuk tanggal 25 Desember tahun 2017 dan 2018 menggunakan metode koefisien beban dengan data historis tiga dan empat tahun sebelumnya sebagai acuan. Peramalan beban untuk tanggal 25 Desember 2018 bertujuan untuk mengetahui profil singkat beban persetengahjam pada tanggal tersebut. Dengan membandingkan data peramalan dengan data realisasi, penelitian ini menyatakan bahwa metode koefisien beban dianggap cukup akurat dalam melakukan peramalan pada tanggal 25 Desember 2017; peramalan beban persetengahjam dengan metode koefisien beban memperoleh nilai persentase galat APE sebesar 2,17 ; beban puncak harian pada tanggal 25 Desember 2018 akan terjadi pada pukul 18.30 dengan nilai beban 21.068 MW, sedangkan beban terendahnya akan terjadi pada pukul 07.00 dengan nilai beban 16.364,81 MW.

The focus of this study is to do the electrical forecasting every half hour on December 25th 2017 and 2018 using load coefficient method reference to the historical data. Load forecasting on December 25th, 2018 aims to find out the simple profile of load every half hour on the day. By comparing the forecasting data we have with the realization one, this study indicate that the load coefficient method is considered to be quite accurate for load forecasting on December 25th 2017 peak loads occur half an hour earlier than the forcasting load forecasting every half an hour by load coefficient method obtains absolute percentage error APE of 2,17 daily peak load on December 25th, 2018 will occur at 06.30 PM with load value of 21.068MW, while the lowest load will occur at 07.00 AM with load value of 16.364,81 MW.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abeltus Reforma Putra
"Selama beberapa waktu terakhir, Battery Energy Storage System (BESS) telah menjadi salah satu komponen penting dalam jaringan listrik pintar untuk meningkatkan kinerja dan keandalan sistem tenaga listrik di beberapa negara. Indonesia yang merupakan negara terpadat nomor empat di dunia tentunya membutuhkan juga teknologi ini untuk memaksimalkan kinerja sistem tenaga listriknya. Namun, harga investasi untuk BESS masih tergolong cukup tinggi untuk saat ini dan dibutuhkan metode yang tepat untuk menentukan kapasitas BESS tersebut. Oleh sebab itu, pendekatan feasibility study digunakan untuk memastikan pemasangan BESS pada jaringan sistem tenaga listrik bisa memberikan keuntungan dari sisi ekonomi. Makalah ini menyajikan metodologi pengukuran dan strategi optimasi biaya BESS untuk aplikasi Load Shifting di sistem tenaga listrik Sumatera Bagian Tengah dengan menggunakan perangkat lunak excel dan phyton serta data beban listrik yang diberikan PLN di wilayah tersebut pada tahun 2019. Energi BESS akan dilepas pada saat Waktu Beban Puncak (WBP) untuk menggantikan pembangkit listrik biaya mahal sehingga dapat megurangi biaya operasional. Hasil optimasi biaya BESS untuk load shifting di Sumbagteng mampu mengurangi PLTMG dan PLTD yang notabene menggunakan BBM sebesar 20% dari kondisi awalnya.

Over the past few years, the Battery Energy Storage System (BESS) has become one of the important components in smart power grids to improve the performance and reliability of electric power systems in several countries. Indonesia, which is the fourth most populous country in the world, certainly needs this technology to maximize the performance of its electric power system. However, the investment price for BESS is still quite high for now and an appropriate method is needed to determine the capacity of the BESS. Therefore, a feasibility study approach is used to ensure that the installation of BESS on the power system network can provide economic benefits. This paper presents the measurement methodology and cost optimization strategy of BESS for Load Shifting applications in the Central Sumatra electric power system using excel and python software as well as electricity load data provided by PLN in the region in 2019. BESS energy will be released at Load Time. The peak (WBP) to replace power plants is expensive so that it can reduce operational costs. The results of the optimization of BESS costs for load shifting in Central Sumatra were able to reduce PLTMG and PLTD which incidentally used fuel by 20% from their initial conditions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Daffa Burhany Syihab
"Sistem tenaga listrik Sumatra merupakan salah satu sistem tenaga listrik terbesar yang ada di Indonesia. Sistem tersebut terdiri dari gabungan 3 subsistem yaitu Sumatra Bagian Utara (Sumbagut), Sumatra Bagian Tengah (Sumbagteng), dan Sumatra Bagian Selatan (Sumbagsel). Salah satu subsistem tenaga listrik besar di Sumatra adalah sistem tenaga listrik Sumbagsel. Sistem tenaga listrik Sumbagsel disupply dayanya oleh berbagai jenis pembangkit listrik seperti PLTU, PLTA, PLTD, dll. Setiap pembangkit listrik tersebut memiliki BPP (Biaya Pokok Penyediaan) pembangkitan. Pembangkit listrik berbasis fosil dan gas memerlukan BPP yang cukup tinggi. Kemajuan teknologi khususnya teknologi baterai sebagai penyimpan energi memungkinkan pengurangan pengoperasian pembangkit berbasis fosil dan gas dengan menggunakan metode load shifting. Load shifting dilakukan untuk memindahkan daya yang dihasilkan oleh pembangkit listrik dengan BPP pembangkitan yang mahal menjadi daya yang dihasilkan oleh pembangkit listrik dengan BPP yang lebih murah sehingga optimalisasi biaya pun dapat dilakukan. Load shifting tersebut dilakukan dengan menggunakan BESS (Battery Energy Storage System) dimana charging akan dilakukan diluar WBP (Waktu Beban Puncak) dan discharging akan dilakukan pada saat waktu beban puncak. Oleh karena itu, studi BESS untuk load shifting sistem tenaga listrik Sumatra Bagian Selatan perlu dilakukan.

The Sumatran electric power system is one of the largest electric power systems in Indonesia. The system consists of a combination of 3 subsystems, namely Northern Sumatra (Sumbagut), Central Sumatra (Sumbagteng), and Southern Sumatra (Sumbagsel). One of the major power subsystems in Sumatra is the South Sumatra electric power system. The South Sumatra electric power system provides its power by various types of power plants such as PLTU, PLTA, PLTD, etc. Each of these power plants has a BPP (Cost of Provision) generation. Fossil and gas based power plants require a fairly high BPP. Technological advances, especially battery technology as an energy store, allow the reduction of fossil and gas-based operations using load transfer methods. Load transfer is carried out to transfer the power produced by power plants with an expensive generation BPP, while power plants with BPP can be cheaper so that cost optimization is carried out. The load transfer is carried out using BESS (Battery Energy Storage System) where charging will be done outside the WBP (Peak Load Time) and emptying will be carried out during peak load times. Therefore, it is necessary to conduct a BESS study for the Southern Sumatra electric load transfer system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Clive Prayoga
"ABSTRAK
Permintaan bahan bakar petroleum terus meningkat setiap tahun tetapi cadangan mintak bumi sudah hampir habis. Sehingga dibutuhkan sumber energy alternative yg lebih dapat diandalkan untuk mengatasi krisis energi. Percobaan ini mempelajari Analytikal Semi Empirikal Model (ASEM) dalam merepresentasikan berbagai macam hasil produk hasil pirolisis dari minyak nabati. Percobann ini bertujuan untuk menemukan kondisi temperature optimum untuk setiap produk melalui simulasi. Percobaan ini menggunakan data sekondari dari minyak nabati yang kemudian disimulasikan dengan simulator dengan metode curve fitting.

ABSTRACT
The demand of petroleum fuel keep increasing every year but the fossil fuel reserve is almost depleted. That is why there is a need to find another reliable alternative energy source to solve the energy crisis.This research studies predictive Analytical Semi Empirical Model (ASEM) in representing various vegetable oil pyrolysis products. This research aims to find optimum temperature condition for each products through simulation. This Experiment use secondary data of vegetable oils are simulated using simulator with curve fitting method"
2015
S60024
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>