Ditemukan 7190 dokumen yang sesuai dengan query
Jones. C. Kenneth
London: McGraw-Hill, 1992
332.6 JON p
Buku Teks Universitas Indonesia Library
Baker, Kenneth R
New York: John Wiley & Sons, 1985
658.403 3 BAK m (1)
Buku Teks Universitas Indonesia Library
Muhammad Reza Ilham
"Guna mempersiapkan kebutuhan yang terencana dan tidak terencana di masa depan, perlu adanya investasi sejak dini. Dalam berinvestasi, seorang investor dihadapkan pada permasalahan dalam menentukan jumlah aset yang optimal dan proporsi modal pada masing-masing aset dalam menyusun portofolio investasinya. Masalah ini adalah masalah pengoptimalan portofolio. Dalam menyusun portofolio perlu dilakukan diversifikasi yaitu menggabungkan aset dengan karakteristik yang berbeda untuk mengurangi risiko investasi. Clustering dapat digunakan sebagai strategi diversifikasi. Tujuan dari penelitian ini adalah untuk mengetahui strategi diversifikasi aset dalam portofolio dengan metode clustering Density Based Spatial Clustering of Applications with Noise (DBSCAN) dan memilih aset serta menentukan proporsi modal yang optimal pada setiap portofolio aset penyusun portofolio dengan Multi- objektif algoritma metaheurysitic Co-variance. Berbasis Artificial Bee Colony (M-CABC). DBSCAN adalah algoritma clustering berbasis kepadatan cluster yang dirancang untuk membentuk cluster dan menemukan noise dalam data. Algoritma M-CABC merupakan pengembangan dari algoritma Artificial Bee Colony (ABC) dengan menambahkan konsep statistic covariance untuk mempercepat konvergensi. Aset yang digunakan dalam penelitian ini adalah saham. Kami menggunakan lima data portfolio saham dengan persentase saham yang memiliki mean return negatif untuk setiap data yang berbeda. Implementasi dilakukan dalam tiga kasus metode yang berbeda: optimalisasi portofolio saham tanpa DBSCAN, optimalisasi portofolio saham dengan DBSCAN tanpa noise, dan optimalisasi portofolio saham dengan DBSCAN dengan noise. Hasilnya adalah besarnya persentase saham yang memiliki mean return pada data negatif berpengaruh terhadap pemilihan metode yang digunakan untuk memperoleh portofolio dengan risiko terkecil.
In order to prepare for planned and unplanned needs in the future, it is necessary to invest from an early age. In investing, an investor is faced with problems in determining the optimal amount of assets and the proportion of capital in each asset in compiling his investment portfolio. This issue is a portfolio optimization problem. In compiling a portfolio, it is necessary to diversify, namely combining assets with different characteristics to reduce investment risk. Clustering can be used as a diversification strategy. The purpose of this study is to determine the diversification strategy of assets in portfolios with the Density Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method and to select assets and determine the optimal proportion of capital in each portfolio compiler portfolio assets with the Multi-objective Co-variance metaheurysitic algorithm. . Based on Artificial Bee Colony (M-CABC). DBSCAN is a cluster density based clustering algorithm designed to form clusters and find noise in data. The M-CABC algorithm is a development of the Artificial Bee Colony (ABC) algorithm by adding the concept of statistical covariance to accelerate convergence. The assets used in this study are stocks. We use five stock portfolio data with the percentage of stocks that have a negative mean return for each of the different data. The implementation is carried out in three cases with different methods: optimization of stock portfolios without DBSCAN, optimizing stock portfolios with DBSCAN without noise, and optimizing stock portfolios with DBSCAN with noise. The result is the large percentage of stocks that have a mean return on negative data that affects the choice of the method used to obtain the portfolio with the smallest risk."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Bierman, Harold
Homewood, Illinois: Richard D. Irwin, 1981
658.4033 BIE q
Buku Teks Universitas Indonesia Library
Bierman, Harold
Homewood: Richard D. Irwin, 1977-1986
658.400 BIE q
Buku Teks Universitas Indonesia Library
Manne, Alan S.
New York, NY: McGraw-Hill, 1961
658.018 MAN e
Buku Teks Universitas Indonesia Library
Palda, Kristian S.
Englewood Cliffs, NJ: Prentice-Hall, 1969
658.8 PAL e
Buku Teks Universitas Indonesia Library
Hein, Leonard W.
New Delhi: Prentice Hall of India, 1974
658.151 4 HEI q
Buku Teks Universitas Indonesia Library
Riggs, James L.
New York: McGraw-Hill, 1968
658.001 RIG e
Buku Teks Universitas Indonesia Library
Hafiz Syadeq Pahlevi
"Optimisasi portofolio saham bertujuan untuk memberikan return yang maksimal dan risiko yang minimum. Salah satu cara untuk mendapatkan portofolio optimum adalah diversifikasi. Diversifikasi adalah pemilihan portofolio dengan mempertimbangkan pengalokasian dana ke berbagai saham yang berbeda dengan tujuan penyebaran risiko. Pada skripsi ini, algoritma Extension of Nondominated Sorting and Local Search (e-NSLS) digunakan untuk menghitung proporsi setiap saham. Kemudian, untuk mencari portofolio optimum dari proporsi yang telah diperoleh, digunakan model optimisasi portofolio Possibilistic Semiabsolute Deviation yang mempertimbangkan biaya transaksi, kendala kardinalitas, dan kendala kuantitas, dengan asumsi return setiap saham adalah bilangan fuzzy. Metode ini menghasilkan nilai tertinggi dari rata-rata return sebesar 36,04% dan Sharpe Ratio sebesar 28,75, yang lebih tinggi daripada S&P 500 Index dengan rata-rata return 12,34% dan Sharpe Ratio 2,7.
Stock portfolio optimization aims to provide maximum return and minimum risk. One way to get an optimum portfolio is diversification. Diversification is portfolio selection by considering allocation funds to different stocks with aim to spreading the risk. In this thesis, Extension of Nondominated Sorting and Local Search (e-NSLS) is used to calculate the proportion of each stock. Then, to find the optimum portfolio from proportions that have been obtained, we use Possibilistic Semiabsolute Deviation model, which considers transaction costs, cardinality constraints, and quantity constraints, and assuming the return of each stock is fuzzy numbers. This method produces the highest value of the average return 36,04% and Sharpe Ratio 28,75, which is higher than the S&P Index with an average return 12,34% and Sharpe Ratio 2,7."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library