Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 130862 dokumen yang sesuai dengan query
cover
Andianto
"Pada saat ini, banyak sumber energi alternatif yang murah dan mudah dibuat namun masih kurang optimal dalam pemanfaatan teknologinya. Sehingga perlu adanya kajian mengenai teknologinya secara mendalam untuk mendapatkan cara terbaik dalam penanganan masalah yang dihadapi tersebut. Penelitian mengenai teknologi biogas ini dimulai dari merancang, membuat dan mengoperasikan serta menguji kemampuan prototype-nya kemudian mensimulasikan aliran slurry-nya dengan CFD. Biogas ini menggunakan bahan baku eceng gondok dengan air (perbandingan 1:4). Selama 40 hari (periode Hydraulic Retention Time pertama), slurry difermentasi di dalam digester dan diperoleh output sebesar 3,52 kg (4 liter) berupa biogas dan residu. Berdasarkan hukum kekekalan massa, massa yang masuk sama dengan massa yang keluar. Maka slurry yang harus dimasukkan ke dalam digester setiap hari sebesar 3,52 kg secara kontinyu.
Dari hasil simulasi CFD dengan SolidWorks Flow Simulation didapatkan sudut bukaan katup yang paling mendekati untuk mengalirkan slurry sebesar 3,52 kg per hari yaitu sebesar 0,5°. Namun, sangat sulit diaplikasikan karena sudut bukaan katup itu terlalu kecil sehingga sangat dimungkinkan akan terjadi penyumbatan aliran. Ada solusi yang dapat mengatasi masalah tersebut, yaitu dengan mendesain saluran keluar digester dengan lubang yang lebih kecil, sehingga slurry tetap akan mengalir di dalam digester. Desain digester dengan saluran keluar berada di bagian bawah adalah desain yang tepat untuk tipe aliran kontinyu. Slurry di dalam digester seluruhnya hampir teraduk karena aliran. Simulasi aliran slurry di dalam digester ini menggunakan SolidWorks Flow Simulation dan CFDSOF.

Nowadays, many alternative energy sources that is cheap and easy to make but still less than optimal in the utilization of technology. So that its necessary to be examined in depth about biogas technology to obtain the best way to solve this problem. This research about biogas technology was started from the design, manufacture, operate and test the prototype ability then simulate the flow of slurry with CFD. This biogas using raw material of water hyacinth is mixed with water (ratio 1:4). For 40 days (the period of the first Hydraulic Retention Time), slurry fermented in the digester and obtained an output of 3.52 kg (4 liters) in the form of biogas and the residual. Based on the law of conservation of mass, the mass of input equal to output. So the slurry with mass of 3.52 kg that must be filled into the digester every day continuosly.
To determine the proper valve opening angle, we must used the CFD simulation with SolidWorks Flow Simulation and the result is 0,5 degree. However, it is very difficult to apply because the valve opening angle is too small so it is very possible there will be a blockage of flow. There are solutions that can solve the problem, by designing the digester outlet with a smaller hole, so we can keep the slurry flow in the digester. The design of digester with the outlet located at the bottom is the right design for continuous flow type. Slurry in the digester mixed almost entirely due to the flow. Simulation of the flow of slurry in the digester is using SolidWorks Flow Simulation and CFDSOF.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S707
UI - Skripsi Open  Universitas Indonesia Library
cover
Himawan Novianto
"ABSTRAK
Penelitian ini membahas mengenai pemanfaatan limbah sebagai bahan uji dalam digester anaerobik. Percobaan dilakukan dengan pengujian di laboratorium, meliputi karakteristik awal substrat (Feedstock), seperti rasio C/N, konsentrasi Total Solids (TS) dan Volatile Solids (VS), serta pH dan suhu. Penelitian dilakukan sebanyak tiga kali secara batch. Karakteristik slurry yang ditinjau meliputi pH, suhu, konsentrasi TS dan VS, dan efisiensi Volatile Solids Destruction (VSD). Konsentrasi awal VS/TS substrat dari digester A dan B (komposisi substrat sampah makanan : limbah ikan masing-masing 70 : 30 dan 50 : 50) dalam percobaan ketiga masing-masing adalah sebesar 57.720/62.500 dan 52.140/59.100 mg/L. Efisiensi VSD hari ke-32 dari digester A dan B dalam percobaan ketiga masing-masing sebesar 29,23 dan 39,01%. Korelasi antara efisiensi VSD terhadap laju produksi biogas kumulatif dari digester A dan B dalam percobaan ketiga didapatkan korelasi positif masing-masing sebesar 0,814 dan 0,962. Hasil perhitungan dengan pendekatan model first order reaction menunjukkan konstanta (k) kecepatan degradasi substrat VS dalam percobaan ketiga dari digester A adalah 0,0078/hari dan digester B adalah 0,0209/hari.

ABSTRACT
This experimental research discusses the utilization of waste as substrate in anaerobic digesters. Research methods were conducted by laboratory testing, included baseline characteristics of the substrate (Feedstock), such as C/N ratio, Total Solids (TS) and Volatile Solids (VS) concentration, as well as pH and temperature. The research was conducted three times in a batch. The characteristics of slurry that were reviewed included pH, temperature, TS and VS concentration, and Volatile Solids Destruction (VSD) efficiency. Initial VS/TS concentration of substrate of the digester A and B (substrate compositions of food waste : fish waste were 70 : 30 and 50 : 50, respectively) in the third trial, respectively, were 57,720/62,500 and 52,140/59,100 mg/L. VSD efficiency on the 32nd day of the digester A and B in the third trial were 29.23 and 39.01%, respectively. The correlation between VSD efficiency and cumulative biogas production rate of the digester A and B in the third trial found a positive correlation, respectively, were 0.814 and 0.962. The calculation results with the first order reaction model approach showed the VS substrate degradation rate constant (k) in the third trial of the digester A was 0.0078/day and digester B was 0.0209/day.
"
Fakultas Teknik Universitas Indonesia, 2014
S57636
UI - Skripsi Membership  Universitas Indonesia Library
cover
JURFIN 4:13 (2000)
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Eva Fathul Karamah
"Kendala utama proses ozonasi adalah biaya yang lebih mahal dibandingkan proses-proses biologis, terutama biaya untuk menghasilkan ozon. Untuk mengatasi masalah tersebut diperlukan usaha untuk meningkatkan efisiensi proses. Diantaranya dengan memilih reaktor dan kondisi operasi yang tepat disertai pengetahuan tentang kinetika reaksi dan fenomena perpindahan massa yang terjadi, dan menggabungkan proses ozonasi dengan radiasi sinar ultraviolet (UV).
Pada penelitian ini diidentifikasi kinetika reaksi penyisihan fenol dengan metode ozonasi pada dua jenis kontaktor pendispersi ozon, yaitu Kolom Ozonasi Injeksi Berganda (Multi Injection Ozonizing Column, MIOC) yang berupa kolom gelembung, dan Kolam Ozonasi Injeksi Berganda (Multi Injection Ozonizing Tank, MIOT) yang berbentuk kolam bersekat. Selain itu, dilakukan perbandingan proses ozonasi dengan proses oksidasi lanjut ozon/UV pada MIOT dengan variasi pH dan konfigurasi penyinaran UV.
Semua penelitian dilakukan pada kondisi basa. Mekanisme reaksi ozonasi fenol pada kondisi basa lebih didominasi oleh reaksi tidak langsung yang ditunjukkan oleh nilai koefisien laju reaksi (k) yang sangat besar (antara 1010-1013}. Peningkatan pH tidak selalu memberi pengaruh kenaikan persentase penyisihan fenol.
Penyisihan fend dengan proses ozonasi pada MIOC menunjukkan bahwa pada pH 10-11 persentase penyisihan yang dicapai lebih kecil daripada pada pH 9-10. Demikian pula untuk penyisihan fenol dengan proses ozon/UV pada MIOT. Pengaruh penggunaan radiasi ultraviolet pada proses penyisihan fenol pada MIOT sangat tergantung pada konfigurasi penyinarannya. Hal ini ditunjukkan oleh persentase penyisihan fenol untuk berbagai variasi proses yaitu 74,72% untuk proses ozonasi saja, 87,52% untuk proses ozon/UV konfigurasi I (penyinaran pada zone I), 65,53% untuk proses ozon/UV II dan 74,44010 untuk proses ozon/UV konfigurasi III.

The main obstacle of ozonation process is relatively high cost for producing ozone, compared to biological processes. To overcome this problem, the efficiency of the process should be increased by selecting appropriate reactor and its process conditions, knowing the characteristic of kinetics and mass transfer, and combining ozonation with UV irradiation.
This research deals with the identification of reaction kinetics of phenol ozonation in two kinds of contactors, a bubble column called Multi Injection Ozonizing Column (MIOC) and a baffled tank called Multi Injection Ozonizing Tank (MIOT). In addition, ozonation process is compared with advanced oxidation process (AOPs) using ozone/UV in MIOT for several variations of pH and UV radiation configurations.
The identification of reaction kinetics shows that the reaction of phenol ozonation in high pH condition is dominated by indirect mechanism, indicated by very high reaction rate coefficients k (ranging from 1010-1013). The rate of ozonation reaction in base condition is much higher than that in acid condition. However, the increasing of pH doesn't always increase the phenol removal percentage.
Phenol removal by ozonation in MIOC shows that removal percentage at pH of 10-11 is lower than that at pH of 9-10. So does the ozone/UV process. The effect of UV radiation in phenol removal highly depends on the radiation configuration. This shows by variation of removal percentage for different processes. Ozonation alone gives 74.74% removal, ozone/UV I (radiation at zone I) 87.52%, ozone/UV II 65,53%, and ozone/UV III 74,44%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2001
T3848
UI - Tesis Membership  Universitas Indonesia Library
cover
I Wayan Eka Kurniawan
"Pengukuran perubahan kekentalan zat cair yang sangat komplek sangat diperlukan oleh para insinyur dalam hal aplikasi industri. Tujuan dari penelitian ini adalah untuk mengetahui hambatan gesek pada Lumpur lapindo. Lumpur dengan variasi kepadatan 30% dan 45% diuji sifat perubahan kekentalannya dengan menggunakan viscometer pipa horizontal. Diameter pipa d = 12.7 mm dan panjang l = 800 mm variasi debit aliran diukur bersamaan dengan nilai selisih kerugian tekanan dengan manometer. Hubungan kurva aliran antara tegangan geser dengan perubahan kecepatan diplot dalam grafik. Nilai rasio kepadatan 45% menunjukan fluida pseudoplastik (plastic semu)dengan index power law n = 0.93 - 1.0. hubungan koefisien gesek dengan generalis bilangan Reynolds menunjukan semakin tinggi kepadatan Lumpur diikuti kenaikan nilai koefisien gesek.

Measurement of liquid viscosity Change complex very needed by engineer in the case of industrial application. Intention of this research is to know friction of coefficient lapindo mud slurry. Mud with the variation of density 30% and 45% tested by the nature of its viscosity change by using viscometer of pipe horizontal. diameter of Pipe d = 12.7 mm and length l = 800 mm variation of charge the stream measured at the same time with the value of difference of pressure loss with the manometer. Relation of stream Curve among tension shift with the speed change plotted in graph. Assess the density ratio 45% representing of fluid pseudoplastik (plastic semu) index of power law n = 0.93 - 1.0. coefficient of mud slurry bigger than coefficient of water."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S37913
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didik Setiawan
"Fluida lumpur mempunyai banyak jenis yang terdiri dari banyak campuran material dimana ditunjukan sebagai fluida non-Newtonion atau fluida viscoelastic. Tujuan penelitian ini adalah untuk menguji sifat-sifat kekentalan aliran dan membuat kurva aliran untuk lumpur lapindo brantas dengan menggunakan pipa bulat dan pipa spiral P/Di=4,3. Diameter tabung adalah 12.7 mm. tegangan geser dan gradient kecepatan didapatkan dengan perhitungan, dari data pengukuran variasi kecepatan aliran pada masing-masing gradient tekanannya. Nilai power low eksponen di dapat untuk masing-masing perubahan konsentrasi larutan lumpur. Hasil menunjukan kekentalan sesaat dari larutan Lumpur tidak proposional dengan tegangan geser dan gradient kecepatan tetapi berhubungan dengan model power law.

Mud fluid have many type consisted of many material mixture, where as fluid of non-Newtonian or fluid viscoelastic. Target of this research is to test the nature of stream viscosity and make the stream curve for the mud of lapindo brantas by using circular pipe and spiral pipe P/Di = 4,3. Diameter is 12.7 mm. tension shift and gradient speed got with the calculation, from data of measurement of variation of stream speed at each its gradient pressure. Assess the power low exponent in earning to the each change of concentration of mud condensation. momentary result as viscosity from mud condensation don?t proposional with the tension shift and gradient speed but relating to model of power law."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S38034
UI - Skripsi Open  Universitas Indonesia Library
cover
Gibb, Hamilton A.R., Sir
Djakarta: Tintamas, 1952
297.8 GIB a
Buku Teks SO  Universitas Indonesia Library
cover
Sealtial Mau
"Penggunaan energi yang effisien menjadi tantangan dunia saat ini untuk terus ditingkatkan. Berbagai metode terus dikembangkan oleh para peneliti dan ilmuan untuk mencapai apa yang diharapkan. Dalam sistem perpipaan, energi dibutuhkan untuk dapat menggerakkan fluida yang akan dialirkan. Ilmu mekanika fluida berperan penting untuk dapat mengkarakteristik  fluida saat mengalir. Secara umum fluida dibagi menjadi dua kelompok yaitu fluida Newtonian dan non-Newtonian.  Fluida dapat dapat mengalir dengan effisien dalam sistem perpipaan ketika hambatan dapat diatasi. Kerugian energi yang dibutuhkan untuk memindahkan fluida disebut kerugian jatuh tekanan. Singkatnya, sumber energi pompa untuk sistem perpipaan sebanding dengan hambatan dan fluida yang dialirkan. Pengurangan hambatan dapat dilakukan melalui kontrol aliran yang dibagi menjadi dua kelompok yaitu kontrol aktif dan kontrol pasif. Kontrol aktif diaplikasikan dengan cara menambahkan zat aditif sedangkan kontrol pasif dengan memberi perlakuan melalui geometri saluran perpipaan. Dalam penelitian ini kontrol aktif dan kontrol pasif diaplikasikan. Aplikasi kontrol aktif dengan menambahkan aditif serat nata de coco ke dalam fluida dasar air dan kontrol pasif dengan menggunakan pipa spiral 3-lobe untuk mengalirkan lumpur. Aplikasi serat nata de coco sebagai aditif untuk dapat mereduksi hambatandrag pada buffer region. Konsentrasi yang digunakan ialah 25 ppm, 50 ppm dan 100 ppm yang dialirkan pada rangkaian uji pipa horizontal dengan pengukuran nilai pressure drop pada jarak 1000 mm. Selain itu, aplikasi pipa spiral 3-lobe untuk mengatasi pengendapan aliran lumpur melalui kecepatan tangensial yang dihasilkan oleh geometri pipa spiral itu sendiri. Fluida kerja lumpur yang digunakan dalam penelitian ini divariasikan dalam beberapa konsentrasi yakni Cw 20%, 30% dan 40%. Fluida kerja yang dialirkan melalui sistem perpipaan disetup secara horizontal serta pengukuran 'pressure drop' melalui dua titik dengan jarak 1550 mm. Untuk pengujian debit pada dua metode ini digunakan untuk menghitung bilangan Reynolds. Dari hasil perhitungan diketahui bahwa aplikasi serat 'nata de coco' pada pipa dapat meningkatkan pengurangan hambatan 'drag' melalui mereduksi 'drag' yang terjadi pada 'buffer layer'. Selain itu, aplikasi pipa spiral untuk mengalirkan lumpur terbukti menurunkan kecepatan kritis pada aliran jika dibandingkan dengan pipa bulat.

The efficient use of energy is a challenge for the world today to increase continuously. Various methods continue to be developed by researchers and scientists to increase the expected. In the piping system, the energy needed to flow the fluid. Fluid mechanics plays an important role in being able to characterize fluid flow. In general, fluids divided into two groups, namely Newtonian and non-Newtonian fluids. Working fluid will be flow efficiently in the piping system when obstacles can be overcome. Energy losses needed to flow the fluid is called the pressure drop. In brief, the energy source of the pump for the piping system is proportional to the obstacles and the streamed fluid. To reduce the obstacles, flow control is used and divided into two groups namely active control and passive control. Active control is applied by adding additives while passive control by treats or change the geometry of the pipeline channel. In this study, active control and passive control applied. Active control by adding nata de coco fiber additive becomes based fluid and passive control by using a 3-lobe spiral pipe to flow the slurry. The application of nata de coco fiber as an additive can reduce drag resistance in the buffer region. The concentrations used are 25 ppm, 50 ppm, and 100 ppm, which are flowed in the horizontal test pipe circuit by measuring the pressure drop at a distance of 1000 mm. In addition, the 3-lobe spiral pipe application to overcome the particle deposition in mudflow through tangential velocity generated by the geometry of the spiral pipe. The working fluid used in this study varied in several concentrations namely Cw 20%, 30%, and 40%. The working fluid that flowed through the piping system set up horizontally and the measurement of pressure drop through two points with a distance of 1550 mm. The mass flow rate testing on both methods used to calculate Reynolds numbers. From the calculation results, it is known that the application of nata de coco fiber in pipes can increase the drag reduction by reducing the drag that occurs at the buffer region. Also, the application of 3-lobes spiral pipe to flow the slurry has been shown to reduce the critical velocity inflow when compared to circular pipes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2697
UI - Disertasi Membership  Universitas Indonesia Library
cover
Adhi Waskitajati
"Cadangan energi primer yang terus menipis mendorong manusia untuk berusaha mencari sumber energi lain sebagai penggantinya. Energi alternatif sebagai energi yang mampu diperbarui diharapkan dapat menjadi solusi untuk diversifikasi bahkan menjadi pengganti sumber energi primer seperti bahan bakar minyak. Salah satu pemanfaatan energi alternatif adalah konversi biomassa menjadi biogas yang dapat dimanfaatkan sebagai sumber bahan bakar. Untuk mengaplikasikan energi alternatif tersebut, dalam penelitian ini dilakukan pembuatan prototype, pengujian dan simulasi pada satu digester anaerob sebagai alat utama penghasil biogas. Tujuannya adalah ingin mengetahui berapa banyak biogas yang mampu dihasilkan oleh alat uji dan mensimulasikan reaksi kimia yang terjadi di dalam digester serta mempelajari faktor-faktor yang mempengaruhinya. Pengujian dilakukan dengan memberikan input slurry dengan substrat eceng gondok (Eichhornia crassipes) sebanyak 4×10-3 m3/hari pada temperatur 290C dengan periode hydraulic retention time 40 hari. Pada pengujian di peroleh volume biogas total yang dihasilkan sebesar 461×10-3 m3. Sedangkan pada simulasi CFD dilakukan simulasi reaksi C6H12O6 menjadi CH4 dan CO2. Hasil yang diperoleh pada simulasi menunjukan bahwa fraksi massa untuk CH4 dan CO2 yang diperoleh masing-masing sebesar 0,2477 dan 0,7129. Selisih fraksi massa antara CH4 dan CO2 secara teoritis terhadap fraksi massa hasil simulasi secara berturut-turut bernilai 9,81 % dan 2,34 %.

Primary energy reserves are going declining and people seek other energy sources as a replacement. Today, alternative energy sources or renewable energy sources are being constantly developed and utilized. Alternative energy is the energy that can be renewed and expected become a solution to diversify or even be a substitute for primary energy sources such as fuel oil. One of the utilization of alternative energy is the biomass conversion into biogas which can be utilized as a fuel source. In this study, the author develop prototyping, testing and simulation of anaerobic digester to produce biogas. The objective is to find out how much biogas could be produced by a prototype and to simulate the chemical reaction occur inside the digester and also to study the factors that influence the performance of biogas production. Testing conducted by feeding the slurry of water hyacinth (Eichhornia crassipes) as much as 4×10-3 m3/day at a temperature of 290C with 40 days hydraulic retention time. For the result, total volume of biogas reached 461×10-3 m3. The CFD simulations conducted reaction of C6H12O6 into CH4 and CO2. The simulation results obtain the range of mass fraction for two species CH4 and CO2 are 0 - 0.2477 and 0 - 0.7529, respectively. Difference mass fraction value between CH4 and CO2 theoretically against the simulation results are about 9,81% and 2,34%, respectively."
2011
S158
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>