Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 83096 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 2000
06 Ham s-2
UI - Laporan Penelitian  Universitas Indonesia Library
cover
[Universitas Indonesia, ], 2007
S30394
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aris Priyanto
"Teknologi adsorpsi dengan memanfaatkan karbon aktif merupakan teknologi pengendalian VOC yang cukup banyak digunakan karena murah dan sederhana serta mempunyai efisiensi yang cukup tinggi untuk me-recover VOC.
Uji adsorpsi aseton dan kloroform terhadap karbon aktif kering (kadar air ± 0%) dan basah (kadar air ± 10%) pada temperatur adsorpsi 27°C menghasilkan kurva terobosan yang mengikuti S-shape dari emisi 10°, 20° dan 30°C, sedangkan kurva terobosan dan kapasitas adsorpsi dibawah ini hanya untuk emisi 30°C terhadap aseton dan kloroform. Dari kurva terobosan dapat dilihat karbon aktif kering mampu mengadsorp kadar uap aseton dari 29 mg/L sampai 409,81 mg/L, uap kloroform dari 29 mg/L sampai 900,83 mg/L. Untuk karbon aktif basah dapat mengadsorp kadar uap aseton dari 17 mg/L sampai 410,33 mg/L, dan uap kloroform dari 17 mg/L sampai 1002,95 mg/L.
Dari kurva terobosan dapat ditentukan kemampnan adsorpsi karbon aktif atau kapasitas adsorpsi karbon aktif (q*) untuk mengadsorp adsorbat. Karbon aktif kering mampu mengadsorp uap aseton sebesar 8184,53 μmol/gr karbon aktif kering; uap kloroform sebesar 7700,21 μmol/gr karbon aktif kering. Untuk karbon aktif basah dapat mengadsorp uap aseton sebesar 5420,06 μmol/gr karbon aktif basah; uap kloroform sebesar 5764,20 μmol/gr karbon aktifbasah.
Penentuan Iaju adsorpsi dilakukan pada daerah linier dari kedua jenis adsorbat. Laju adsorpsi aseton pada temperatur adsorpsi 27°C untuk karbon aktif keting mengikuti persamaan r = 0,1290 (q*- q) untuk daerah linier 0-57 menit, dengan karbon aktif basah, r = 0,1391(q*- q) untuk daerah linier 0-50 menit; klorofom, karbon aktif kering, r = 0,119 (q* - q) untuk daerah linier 0-65 menit, karbon aktif basah, r = 0,1293 (q* - q) untuk daerah linier 0-60 menit.
Kapasitas adsorpsi adsorbat pada karbon aktif dipengaruhi oleh temperatur adsorpsi. Hasil perhitungan panas adsorpsi aseton menggunakan karbon aktif kering menghasilkan harga panas adsorpsi (Q) sebesar - 29 kJ/mol dan dengan karbon aktif basah - 14 kJ/mol sedangkan pada adsorpisi kloroform sebesar -10 kJ/mol pada karbon aktif kering dan -15 kJ/mol pada karbon aktif basah. Ini menunjukkan adsorpsi yang terjadi merupakan adsorpsi fisika."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S49142
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dan Mugisidi
"ABSTRAK
Karbon aktif dari tempurung kelapa dimodifikasi dengan menggunakan natrium
asetat dengan konsentrasi 3%, 5%, 10%, 15%, 20% dan 30% dan dipergunakan pada
kolom penyerapan untuk mempelajari penyerapan ion tembaga dan campuran ion-
ion Cu, Ni dan Cr. Air limbah sintetis yang mengandung ion Cu(I1) diailirkan melalui
karbon aktif tanpa modifikasi dan yang telah dimodifikasi. Penyerapan karbon alctif
sebelum dan sesudah modifikasi mengikuti model kinetika Avrami. Karbon aktif
tanpa modifikasi mampu menyerap hingga.20 mg ion Cu(II) dan hasil penyerapan
yang tertinggi didapat dari karbon aktif yang dimoditikasi dengan menggunakan
15% nanium asetat yaim 45 mg inn Cu(ll) mu 2,2 kan dibandingkan dengan karbon
aktif tanpa modifikasi. Setelah regenerasi dengan menggutamakan 20% NaOH, karbon
aktif yang telah dimodifikasi mampu menyerap ion Cu(II) hingga mencapai 60 mg
ion Cu(II) atau 3 kali karbon aktif yang tidak dimodifikasi. Pada penyerapan ion-ion
campuran, karbon aktif yang telah dimodifikasi lebih selektif terhadap ion Cu(II)
dan ion Cr(Vl) daripada terhadap ion Ni(ll`).

ABSTRACT
Activated carbon Hom coconut shell was modified with natrium acetate at
concentrations of 3%, 5%, 10%, 15%, 20% and 30%, and used in a fixed-bed
column to study the adsorption of copper and mixed Cu-Ni-Cr ions. Synthetic
wastewater containing Cu(II) ions was passed through plain activated carbon and
modified activated carbon. The adsorption of ion Cu(lI) onto activated carbon fit
with Avrami kinetics model. Plain activated carbon was able to adsorb 20 mg of
Cu(II), and the highest adsorption capacity was found for the activated carbon
modified by treatment with 15% natrium acetate, which adsorbed 45 mg of .Cu(II) or
2.2 times as much as the plain activated carbon. After regeneration with 20% NaOH,
activated carbon modified by treatment with 15% natrium acetate was able to adsorb
60 mg of Cu(II) or 3 times as much as the plain activated carbon. In the case ofa
mixed ion solution, the absorbent was more selective for Cu(ll) and Cr(Vl) ions than
Ni(Il) ions."
2007
D1232
UI - Disertasi Membership  Universitas Indonesia Library
cover
Popy Meiliana Puspandari
"Telah dilakukan penelitian pada biji buah mengkudu ( Morinda citrifolia)
dengan metoda ekstraksi menggunakan ekstraktor sokhlet memakai dua
macam pelarut yaitu etanol dan kloroform. Hasil ekstraksi di analisls dengan
KLT. IR dan GC-MS. Darl analisls tersebut didapat senyawa yang biologis
aktif pada ekstrak etanol dan ekstrak kloroform. Senyawa tersebut adalah
kumarin-scopoletin dengan rumus molekul C10H8O4 dan monoterpenoidlimonene
dengan rumus molekul C10H18."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aria Ranaldo
"Pemisahan ion tembaga dengan karbon aktif modifikasi sodium asetat dan asetilaseton sudah dilakukan, penelitian ini bertujuan untuk meningkatkan kapasitas adsorpsi karbon aktif terhadap ion Cu baik dengan sistem batch dan sistem kolom.
Modifikasi dimulai dengan merendam 55 gr karbon aktif dengan 100 ml 0,6M sodium asetat dan 100 ml 0,6M asetilaseton selama 3 hari, setelah 3 hari karbon aktif dipisahkan dan dikeringkan pada suhu 500C selama 24 jam untuk modifikasi dengan sodium asetat sedangkan modifikasi asetilaseton dikeringkan pada suhu kamar selama 1 jam sebelum digunakan sebagai penyerap.
Proses dilakukan dengan sistem kolom dengan berat sample 15 gr, debit 2 ml/mnt dan keluaran diambil setiap 7,5 menit, sistem batch dilakukan dengan berat sampel 3 gr dengan volume sampel 50 ml diaduk dengan kecepatan 300 rpm selama 20 menit.
Modifikasi sodium asetat sistem kolom terjadi peningkatan kapasitas sebesar 47% dan sistem batch terjadi peningkatan sebesar 234% bila dibandingkan dengan yang tidak dimodifikasi, Modifikasi asetilaseton sistem kolom terjadi penurunan kapasitas sebesar 85% dan sistem batch terjadi peningkatan sebesar 8% bila dibandingkan dengan yang tidak dimodifikasi.
Modifikasi sodium asetat sistem batch terjadi peningkatan kapasitas sebesar 209% bila dibandingkan dengan modifikasi asetilaseton, sedangkan pada sistem kolom terjadi peningkatan kapasitas sebesar 878%.

The adsorption of copper ion by sodium acetate and acetylacetone modified active carbon had been conducted; the purpose of this research is to increase the active carbon?s copper ion adsorption capacity using batch system and column system.
Modification is preceded with immersing 55gr active carbon with 100ml 0.6M sodium acetate and 100ml 0.6M acetylacetone for 3 days, after 3 days active carbon is separated and dried at 50oC for 24 hr for modification with sodium acetate; whereas, for modification with acetylacetone, active carbon is dried at room temperature for 1 hr before being used as adsorbent.
Process was conducted using column system with sample weighing 15gr, flow rate 2ml/mnt and effluent was obtained every 7.5mnts; whereas, batch system was conducted with sample weighing 3gr, sample volume 50ml mixed with velocity 300rpm for 20mnts.
Modification with sodium acetate resulted with increase in adsorption capacity as much as 47% using the column system and 234% using the batch system when comparing to the unmodified active carbon.
Modification with acetylacetone resulted with decrease in adsorption capacity as much as 85% using column system and; however, increase in adsorption capacity as much as 8% using batch system when comparing to the unmodified active carbon.
Modification with sodium acetate resulted with increase in adsorption capacity as much as 209% using batch system and 878% using column system when comparing to modification with acetylacetone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Asep Susanto
"Kualitas udara di dalam ruangan sangat panting,
karena sebagian besar orang menghabiskan waktunya dengan
men^irup udara di ruangan. Keberadaan zat pencemar udara di
dalam ruangan dalam jumlah yang cukup tinggi dapat
mengakibatkan kegelisahan dan bahaya-bahaya yang serius
terhadap kesehatan. Zat pencemar udara seperti uap pelarut
organik dapat mengakibatkan iritasi pada hidung,
tenggorokan, kulit/ dan mata karena proses penghirupan dan
kontak kulit yang terbuka. Pada tingkat konsentrasi
tertentu, zat pencemar udara ini dapat mengakibatkan sakit
kepala yang berat dan menimbulkan efek pembiusan.
Penelitian ini bertujuan untuk menentukan
konsentrasi emisi harian uap pelarut organik seperti aseton n-butil alkc^hol, n—bu'tll 8861:81;, dan iaopropil alkohol dl
iruang piroses produksl cal;. TuuJuannya adalah untuk aelakukan
evaluasl keadaan linekungan udara dl ruang lersebut, Hnn
barga emlsl harlan yang diperoleh dibandln^an dengan nilal
anbang batas zat penc^kar tersebut di udara.
Penganbilan c^n1x}h uap dllakukan ctengan pen^lsapan
aejmlah volume udara melalui kol(» adsorben karbon aktif.
Uap-uap yang diadsorpsi k^udlan dlelusi dengan pelarut CS^
dan basil eluslnya dlanallsls secara kronalxigrafl g«« unbuk
menentukan konsentraslnya.
Hasll penelltlan menunjukkan bafawa kolom adsorben
karbon aktlf B^un^lnkan unbuk dlpakal dalam pengaidsllan
con1;ob uap pelarub organlk pada konsenbrasl yang cukup
3
rendab (^
emlsl barlan uap aseton, n-butll alkobol, n-butll asetat,
dan Isopropll alkobol naslng-maslng 1540,30; 1379,94;
1478,80; dan 2929,91 t^g/m . Blla dlbandlngkan dengan nilal
anbang batas (liAB)-nya, konsentrasl «ilsl barlan tersebut
■OTBib cukup rendab. Adapun nllal aibang batas untuk uap
aseton, n—but11 alkobol, n—but11 asetat dan Isopropll
alkobol dl udara nwslng-nnsing adalab 1,161x10**; 1,181x10®;
2,322x10®; dan 4,644x10® fJg/m "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1995
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Khairunisa
"Usaha untuk meningkatkan efisiensi penggunaan karbon aktif pada penurunan konsentrasi fenol dalam air dilakukan dengan memberikan perlakuan elektrokimia. Perbandingan antara teknik adsorpsi dengan karbon aktif, teknik oksidasi elektrokimia pada elektrode Pt, dan kombinasi keduanya dilakukan untuk mengamati perbedaan diantara ketiganya pada kondisi optimum. Optimasi yang diperoleh dengan teknik adsorpsi berupa waktu kontak adsorben (karbon aktif) dengan adsorbat larutan fenol dalam air selama 60 menit dan larutan fenol dalam NaCl 0,1 M selama 45 menit, serta jumlah karbon aktif untuk mengadsorpsi larutan fenol sebesar 1 gram. Pada teknik oksidasi optimasi yang diperoleh berupa potensial 5 V yang diberikan pada sel elektrokimia. Hasil optimasi yang didapat pada teknik adsorpsi dan oksidasi digunakan juga pada teknik kombinasi. Dengan menggunakan kondisi optimum, konsentrasi fenol pada teknik adsorpsi dapat diturunkan hingga 29,72%; pada teknik oksidasi 36,02%; dan pada teknik kombinasi 50,58%. Hasil yang sama juga diperoleh untuk nilai COD fenol yang mengalami penurunan hingga 19,73% (adsorpsi); 12,21% (oksidasi); dan 11,37% (kombinasi). Penurunan konsentrasi fenol dan COD diukur menggunakan spektrofotometer UV-Vis."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S30417
UI - Skripsi Open  Universitas Indonesia Library
cover
Lucky Jayadi
"ABSTRAK
Salah satu alternatif penyimpanan hidrogen adalah dengan metode adsorpsi menggunakan karbon aktif, karena karbon aktif memiliki kemampuan adsorpsi yang yang besar berkaitan dengan luas permukaan dan ukuran porinya. Untuk meningkatkan daya adsorpsi dari adsorben dapat dilakukan dengan menjadikan sebanyak mungkin porinya yang termasuk kategori micropori sehingga sesuai dengan ukuran molekul hidrogen sebagai adsorbate[28]. Cara yang dilakukan
untuk itu adalah dengan membuatnya menjadi partikel berukuran nano melalui proses ball-milling, selanjutnya dibentuk menjadi padatan melalui penekanan mekanis dengan penambahan likuida lignoselulosa sebagai pengikat dan dilakukan proses aktivasi kembali secara fisika. Dari hasil penelitian ini didapatkan bahwa pencampuran antara likuida lignoselulosa dan serbuk patikel nano untuk membentuk padatan karbon aktif sangat cocok digunakan dalam perbandingan 3:4 atau 4:4.
Dengan mengubah bentuk karbon aktif granular menjadi padatan partikel nano karbon aktif dan proses aktivasi kembali secara fisika (reaktivasi) mampu meningkatkan kapasitas adsorpsinya terhadap gas hidrogen yakni 0.0014779 kg/kg untuk bentuk granular, 0.0016873 kg/kg untuk bentuk pelet dengan raktivasi 1 jam, 0.0027261 kg/kg untuk bentuk pelet dengan reaktivasi 3 jam, dan 0.0020384 kg/kg
untuk bentuk pelet dengan reatkivasi 6 jam untuk masing-masing kondisi pada tekanan ± 4000 kPa dan suhu -5oC.

ABSTRACT
One of the alternative for hydrogen storing is adsorption method using activated carbon because the activated carbon has big adsorption ability related by the surface area and the pore size. The way to increase the adsorption ability from adsorbent can be done by making as many as the pore which is micro pore category so it will
suitable with the size of hydrogen molecule as a adsorbate[28]. The way is by making it to be a nano particle through ball milling process then it is formed as a solid by using mechanical pressure then it is added by lignocelluloses liquid as a binder and then there is a activation process physically. The result from experiment
is the mixing between lignocelluloses liquid and powder of nano particle activated carbon to make solid of activated carbon very suitable at comparison 3:4 or 4:4. By changing the form of granular activated carbon to nano solid activated carbon and by giving activation process physically (reactivation) can increase the adsorption
capacity of hydrogen gases that is 0.0014779 kg/kg for granular form, 0.0016873 kg/kg for solid form activation in 1 hour, 0.0027261 kg/kg solid form activation in 3 hours, and 0.0020384 kg/kg solid form activation in 6 hours for each in pressure at ± 4000 kPa and temperature at -5oC."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1426
UI - Skripsi Open  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1992
S40889
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>