Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 41135 dokumen yang sesuai dengan query
cover
R. Danardono Agus Sumarsono
"ABSTRAK
Penelitian ini membahas penerapan jaringan saraf tiruan untuk pengelolaan dala pengujian kinerja mesin diesel berbahan bakar campuran solar aditif. Jaringan digunakan untuk memprediksi pengaruh pemberian aditif terhadap kinerja mesin diesel. Asumsi diambil dimana pada kondisi pengujian yang sama maka kinerja mesin diesel hanya merupakan fungsi dari properti bahan bakar yaang digunakannya. Data pelatihan jaringan menggunakan data karakteristik bahan bakar dan kondisi operasi hasil pengujian aditif metil ester nitrat (MEN) dan Omega 903 dalam skala pengujian laboratorium di-departemen teknik mesin UI diolah dengan pendekatan teoritis dan korelasi statistik untuk menentukan variabel input jaringan. Pembuatan jaringan diiakukan dengan menentukan jumlah layer, iterasi maksimum, fungsi transfer dan error maksimum, Simulasi terhadap jaringan yang dipilih memberikan nilai kesalahan rata-rata daya keluaran sebesar 2,5-10% dan kousumsi bahan bakar sebesar 6-28%. Penerapan jaringan untuk memprediksi pengaruh konsentrasi aditif MEN dalam bahan bakar campuran solar-aditif terhadap konsumsi bahan bakar spesifik (BSFC) mesin menunjukkan konsentrasi aditif optimal sebesar 1% yang menghasilkan penurunan BSFC sebesar 0,337 L/kW-jam atau sekitar 13,8%

ABSTRACT
This research paper described a study of the neural networking artificial to predict the influence of blended diesel fuel with additives to the diesel engine performance. Based on the asumption that in the same condition of the experimental, the engine performance is only a function of the fuel properties used. The data experimental is the effects of methyl esther nitrate (MEN) and Omega 903 additives was conducted in the laboratory of ME Department University of Indonesia and analyzed using theoritical approach and statistic correlation to determine the input network variables. The simulation of network shows an average error of 2,5-10% in BHP and 6-28% in BFC output. The network application in predicting the effects of diesel fuel - MEN blends shows an optimum concetration of MEN at 1% which give a minimum brake specific fuel consumption (BSFC) of 0,337 L/kW-h or 13,8% decreasing comparing to the commercial diesel fuel."
Depok: Fakultas Teknik Universitas Indonesia, 2003
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38505
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ardiyansyah
"Jaringan saraf tiruan (JST) merupakan teknik komputasi yang mempunyai kemampuan menggeneralisasi pola-pola data yang bersifat tidak tepat dan dipengaruhi oleh banyaknya gangguan (imprecise and noisy environment). Kemampuan tersebut dapat diterapkan pada pengolahan data kinerja mesin diesel berbahan bakar campuran solar-aditif. Penelitian ini menggunakan asumsi bahwa pada kondisi pengujian yang sama maka kinerja mesin diesel hanya merupakan fungsi dari bahan bakar yang digunakan. Oleh karena itu dengan mengetahui karakteristik bahan bakar yang digunakan maka JST dapat digunakan untuk mengorelasikannya dengan kinerja mesin.
Penelitian ini menggunakan data hasil pengujian pengaruh aditif metil ester nitrat (MEN) yang dilakukan oleh penulis dan aditif Omega 903 terhadap kinerja mesin diesel pada laboratorium mesin diesel Departemen Teknik Mesin FT UI, Salemba. Variabel-variabel input jaringan ditentukan dengan pendekatan teoritis dan statistik terhadap data pengujian dan bahan bakar. Variabel-variabel tersebut meliputi konsentrasi aditif massa jenis, nilai kalor, bilangan setana dan variabel pengujian.
Variabel pengujian dibedakan menjadi pengujian kecepatan konstan yang menggunakan variabel pembebanan sebagai variabel inputjaringan dan pengujian pada keoepatan bervariasi yag menggunakan putaran mesin sebagai input jaringan. Variabel outputjaringan meliputi daya poros keluaran BHP dan konsumsi bahan bakar BFC.
Pembuatan jaringan dilakukan dengan menentukn jumlah layer dan neuronnya, iterasi maksimum, fungsi transfer dan error maksimum. Pasangan data input dan output dilatihkan kepada beberapa jaringan untuk mendapatkan struktur yang optimal. Jaringan dengan iterasi dibawah 200 dan kesalahan minimum dipilih untuk disimulasikan pada data simulasi. Simulasi terhadap jaringan yang dipilih memberikan niai kesalahan rata-rata daya keluaran sebesar 2,5 - 10% dan konsurnsi bahan bakar sebesar 6 - 28%. Penerapan jaringan untuk memprediksi pengaruh konsentrasi aditif MEN dalam bahan bakar campuran solar-aditif terhadap konsumsi bahan bakar spesitik (BSFC) mesin menunjukkan konsentrasi aditif optimal sebesar 1% yang menghasilkan BSFC minimum sebesar 0,337 URW-jam atau penurunan sebesar 13,8%.

Neural network is a computational technique which has an abiligw to generalize paterns of imprecise and noisy environment data. Neural network could be applied to analyze peformances data from diesel engine jiteled by diesel fuel-additives blends. The analysis was based on an asumption that in the same experimental conditions, engine performances were only a junction of jitel properties used.
The data used in this paper were collected from experimental results in the ejffects of methyl ester nitrate UMEAD and Omega 903 additives conducted in diesel engine laboratory, Mechanical Engineering Department, FT UL Salemba. Theoritical and statistical approach were applied to jizel properties data in order to determine the networks input variables consisted of additives concentration, jilel density, heat value, cetane number and test variables.
The test variables were divided to constant speed test which used load, and variable speed test which used engine speed as networks input. Brake horsepower (BHP) and brake fuel consumption (BFC) were used as networks output variables. The number of layers and their neurons, iterations, transfer functions and maximum mean squared errors were determined in the networks design. Set of input-output data pairs were trained to the networlzs in order to get optimum architecture.
Networks with iterations below 200 and minimum enror result were chosen to simulate with simulation data. The simulation ofthe networks gave an average error of 2.5 - 10% in BHP and 6 - 28% in BF C output. The networks application in predicting the ejects of diesel fuel - MEN blends showed an optimum consentration of MEN at 1 % which gave minimum brake spesific fuel consumption (ESF C) of 0. 337 L/kW-h or 13.8 % decrease compared with diesel fuel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
S37056
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiqi Giffari
"Masalah terbesar dalam suatu proses Destilasi adalah sering berubahnya konfigurasi dari aliran masukan, dikarenakan aliran masukan tersebut tersebut berasal dari dari sumur minyak yang sudah pasti besarnya akan selalu berubah, sehingga akan berpengaruh terhadap konfigurasi unit-unit destilasi lainnya. Kebanyakan dari data yang dihasilkan dari proses distilasi merupakan data yang nonlinier dan kompleks jika menggunakan model yang konvensional. Jaringan syaraf tiruan adalah salah satu metode yang banyak dikembangkan untuk membuat sistem permodelan yang berasal dari pengambilan data secara langsung.. Sulitnya menemukan korelasi untuk memprediksi konfigurasi unit utilitas dan proses dengan aliran masukan yang selalu berubah dalam suatu proses distilasi menjadikan metode jaringan syaraf tiruan sebagai salah suatu solusi yang dapat digunakan untuk melakukan suatu prediksi setting kondisi operasi. Pada penelitian ini dilakukan pendefinisian model arsitektur jaringan saraf tiruan dengan menggunalkan backpropagation dan basis radial yang kemudian dilakukan proses pembelajaran dengan data pembelajaran berupa data historis yang didapat dari unit Debutanizer 16-C-104 selama periode April sampai 31 Agustus 2006. Unit ini merupakan unit proses distilasi kepunyaan PT. Pertamina (Persero) UP-VI Balongan. Penelitian ini menghasilkan sebuah perangkat lunak simulasi yang dapat memprediksikan setting temperatur feed, temperatur kondenser, temperatur reboiler, temperatur reflux, dan tekanan kondenser proses destilasi dengan tingkat kesalahan di bawah 1 % menggunakan kedua jenis JST. Sedangkan Jika menggunakan Hysis didapat hasil kesalahan diatas 5 %."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49601
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Armadianto
"Jaringan Syaraf Tiruan memiliki kemampuan yang sangat baik dalam mengenali suatu pola (pattern recognition). Cara kerja JST dalam mengenali pola memiliki kesamaan dengan cara kerja otak manusia. Salah satu metode yang termasuk ke dalam JST adalah metode perambatan balik. Dengan kemampuannya dalam mengenali pola ini diharapkan metode JST - Perambatan Balik dapat memodelkan sistem Pressure Process Rig serta Unmanned Aerial Vehicle yang datanya digunakan pada Skripsi ini dan dapat merancang pengendali untuk sistem tersebut. Kode untuk algoritma perambatan balik pada Skripsi ini dikembangkan dengan menggunakan perangkat lunak MATLAB.

Artificial Neural Networks had a very good ability for pattern recognition. Artificial Neural Networks techniques in recognising pattern had something in common with the works of human brain. One of its method which included in is backpropagation method. With its ability to recognise these patterns, it was expected that artificial neural networks method can model Pressure Process Rig and Unmanned Aerial Vehicle systems which data had been used in this paper and can design controller for that systems. Backpropagation algorithm code in this paper developed using MATLAB software.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46222
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.

Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pudji Setyani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28482
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Rochmatullah
"Tesis ini meneliti metode pengklasifikasian menggunakan metode jaringan syaraf tiruan untuk mengklasifikasikan data aroma. Data aroma adalah data keluaran dari sistem penciuman elektronik. Penelitian ini merupakan lanjutan penelitian sebelumnya yaitu metode pengklasifikasian fuzzy-neuro learning vector quantization (fnlvq). Sebelumnya telah dikembangkan pula metode matrix similarity analysis (msa) guna menentukan kriteria pemberhentian algoritma fnlvq.
Dalam penelitian ini akan dikembangkan dua metode fnlvq yang akan dioptimasikan dengan metode swarm intelligence yaitu fnlvq-particle swarm optimization (pso) dan metode swarm-fnlvq. Dengan menggunakan validasi silang, hasil dari penelitian ini menunjukkan bahwa rata-rata tingkat pengklasifikasian untuk aroma tiga campuran menggunakan fnlvq-pso sebesar 91% dan swarm-fnlvq sebesar 90% dimana kedua metode ini lebih baik daripada fnlvq yang sebesar 79% dan fnlvq-msa sebesar 77%.

This thesis examines a classification method based on artificial neural networks to classifying various mixture of fragrance which is the output of the electronic nose system. This research is a continuation research of earlier fuzzy-neuro learning vector quantization (fnlvq) classification method. Previously a matrix similarity analysis method is developed to determine a stopping criterion of fnlvq algorithms.
This research objective is to develops two modification fnlvq method based on swarm intelligence method namely fnlvq-particle swarm optimization (pso) and swarm-fnlvq methods. By using cross validation, this research showed that the average classification rate of fnlvq-pso is 91% whether swarm-fnlvq is 90%, this two methods is better than conventional fnlvq with 79% and fnlvq-msa at 77%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>