Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 67732 dokumen yang sesuai dengan query
cover
Feri Ardi
"Penyegaran udara merupakan suatu proses mendinginkan udara sehingga mencapai temperatur dan kelembaban yang ideal. Kebanyakan unit pengkondisi udara digunakan untuk kenyamanan (comfort air conditioning), yaitu untuk menciptakan kondisi udara yang nyaman bagi orang yang berada di dalam suatu ruangan. Saluran udara (ducting) merupakan bagian dari sistem pengkondisian udara yang berfungsi untuk mendistribusikan udara dingin ke ruangan yang akan dikondisikan. Fenomena kondensasi pada textile ducting terjadi pada ducting yang digunakan. Kondensasi pada textile ducting terjadi pada permukaan lapisan bagian dalam dan luar dari ducting dan dapat berupa tetesan air yang jatuh dari ducting yang digunakan. Textile ducting dapat dibuat dari material permeable dan impermeable yang disesuaikan dengan kebutuhan pemakaian. Cara untuk mengetahui fenomena kondensasi pada textile ducting yaitu dengan melakukan pengamatan secara langsung pada textile ducting yang digunakan untuk melihat tetesan air yang jatuh dari ducting yang digunakan.

Air refresher is a process to cool the air so as to achieve the ideal temperature and humidity. Most air conditioning units is being used for comfort (comfort air conditioning), which is to create a comfortable air conditions for people who are in a room. Air duct (ducting) is part of the air conditioning system which serves to distribute cool air into the room to be conditioned. The phenomenon of condensation on the ducting occurs in textile ducting used. Condensation on the textile ducting occurs on the surface of the inner and outer layers of the ducting and can be either water droplets falling from the ducting being used. Textile ducting can be made of permeable and impermeable materials that are tailored to user needs. How to know the phenomenon of condensation in textile ducting is to make direct observations on textile ducting used to see water droplets falling from the ducting being used."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1255
UI - Skripsi Open  Universitas Indonesia Library
cover
Adrian
"Menara pendingin adalah salah satu fasilitas yang terdapat di unit pembangkit yang layak mendapatkan perhatian khusus yang disebabkan antara lain karena letaknya di luar sehingga udara sekitar bisa menyebabkan keadaan yang tidak diinginkan dan disamping itu kelalaian dalam melaksanakan kegiatan maintenance routine dapat mengakibatlcan pengaruh yang besar terhadap biaya operasi dan juga akan mempercepat kerusakan yang terjadi pada komponen-komponen yang disebabkan oleh korosi. Menara pendingin memindahkan panas dari air sirkulasi ke udara sekitar melalui proses evaporasi. Hal terpenting untuk memperkecil peluang terjadinya kerak dan korosi yang terjadi adalah dengan melaksanakan program maintenance yang sesuai terhadap perlakuan air (water treatment). Program inspeksi yang terjadwal juga adalah salah satu kunci untuk mengetahui lebih awal problem yang akan terjadi. Dalam rangka untuk mengoptimalkan fungsi kerja menara pendingin, maka dilakukan pengevaluasian terhadap menara pendingin dan dilakukan setelah menara pendingin ini dioperasikan selama periode tertentu. Dalam melakukan pengevaluasian untuk menghitung kinerja digunakan pengevaluasian secara thermal (thermal test). Dari hasil pengevaluasian dapat dikatakan bahwa kinerja menara pendingin ini masih cukup baik (96%). Penurunan kinerja disebabkan oleh terganggunya proses perpindahan panas yang terjadi akibat terbentuknya kerak atau kotoran yang melekat pada paking-paking, nosel-nosel distribusi air, dan drift eliminator selama empat tahun beroperasi. Pembersihan maksimum yang clilakukan terhadap kerak atau kotoran yang terbentuk hanya dapat dilakukan pada saat unit pembangkit tidak beroperasi.

The cooling tower is a part of power plant facility deserves special attention because it is located outdoors, the weather and atmospheric may lead to unexpected damage. The neglect of necessary routine maintenance can have a big impact on cost of operation and an early component failure through corrosion. Cooling tower transfer heat from circulating water to the atmosphere through evaporation, The maintenance of a proper water treatment program is important in order to minimize scale built-up and corrosion. A regular inspection program is also a key to early problem detection. The evaluation of cooling tower is done after it is operated on certain period in order to optimize performance of cooling tower. A thermal test is used to determine cooling tower performance. The result of test is still acceptable (96%). The performance degradation is caused by scale built-up on packing, water distribution nozzles and drift eliminators over four years operation, as a result in heat and mass transfer process is disturbed. The maintenance schedule program to clean cooling tower can be done when the unit shut-down."
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37276
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Penggunaan heat exchanger atau alat penukar kalor merupakan suatu hal yang sangat panting dalam industri sekarang ini. Kondenser, salah satu jenis dan heat exchanger, merupakan alat penukar kalor yang merubah fluida gas menjadi cair. Unjuk kerja kondenser yang optimal merupakan hal yang panting dalam menurunkan biaya operasional Salah satu parameter unjuk kerja kondenser adalah
Angka Kondensasi. Pada percobaan ini, sebuah pipa kondenser tembaga dltempatkan secara vertikal di dalam sebuah labung kaca. Pipa kondenser tersebut dihubungkan dengan tiga buah termokopel yang menghitung temperatur rata-rata permukaan kondenser dan dua buah termokopel yang menghitung besar temperatur air pendingin keluar dan masuk dalam kondenser. Di dalam tabung kaca, air yang berada pada dasar tabung dipanaskan hingga temperatur saturasi uap. Uap tersebut mengalir ke atas dan mengenai permukaan kondenser dan diserap kalornya oleh air pendingin yang mengalir di dalam kondenser. Percobaan ini dilakukan dengan mengatur besar laju air pendingin yang masuk ke dalam kondenser. Angka Kondensasi merupakan fungsi dari koefisien perpindahan kalor dan Angka Reynolds. Angka Kondensasi dapat diketahui melalui parameter koefisien perpindahan kalor dan beda temperature…
"
Fakultas Teknik Universitas Indonesia, 1998
S37159
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Budi Prayitno
"Kami telah membahas fungsi partisi dari kondensasi Bose-Einstein di dalam perangkap parabola yang dinyatakan oleh persamaan Gross-Pitaevskii satu dimensi. Fungsi partisi itu sendiri dirumuskan hanya dengan meninjau semua tingkat-tingkat energi dari osilator kuantum makroskopik yang mirip seperti di dalam mekanika statistika. Solusi-solusi dari tingkat-tingkat energi untuk kasus ini dapat diturunkan dengan mengikuti metode yang menggunakan teori perturbasi bebas waktu. Pada kasus ini, persamaan Gross-Pitaevskii satu dimensi dapat diperlakukan sebagai osilator kuantum makroskopik dengan menerapkan kondisi bahwa faktor nonlinearnya sangat kecil. Selain itu, perumusan analitik untuk energi tingkat dasar dapat diperoleh dengan menggunakan metode tersebut. Namun demikian, tingkat-tingkat eksitasinya tidak diberikan secara eksplisit. Saat ini, kami melanjutkan pekerjaan sebelumnya untuk menurunkan tingkat-tingkat keadaan lainnya supaya dapat merumuskan fungsi partisi. Akan tetapi, kami tidak mendapatkan bentuk analitik dari fungsi partisi karena integral dari suku-suku nonlinear tidak dapat membentuk hubungan rekursif. Akibatnya, tidak hanya fungsi partisi tetapi juga energi bebas Helmholtz dan entropi harus dikaji ulang untuk memeriksa sifat konvergennya.

We have discussed the partition function of the Bose-Einstein condensation in parabolic trap associated to the one-dimensional Gross-Pitaevskii equation. The partition function itself is constructed by considering all the energy levels of the macroscopic quantum oscillator which is similar to statistical mechanics. The solutions of the energy levels for this case can be derived by pursuing the method that applies the time-independent perturbation theory. In this case, the one-dimensional Gross Pitaevskii equation can be treated as the one-dimensional macroscopic quantum oscillator on condition that the nonlinearity is very small. Moreover, the analytical expression for the ground state energy can be obtained by applying the method. However, the higher level states were not explicitly provided. In this research we followed up on the former work to derive explicitly the other states in order to formulate the partition function. However, we did not find the closed form of the partition function since the results of nonlinear term integral could not form the recursion relation. As a consequence, not only should the partition function but also the Helmholtz free energy and entropy should be reevaluated to check their convergences. "
Direktorat Riset dan Pengabdian Masyarakat UI, 2012
J-pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Research to nanofluida have a lot of conducted to indicate that nanofluida has a great potency for
better heat transfer. Nanofluida is mixture between solid particle of nanosize with the based-fluid.
Nano particle suspended in based-fluid permanently which is because of eristence of Brownian eject.
Before nanofluida can be applied in commercial purpose, the furthermore experiment is needed. In this
research conducted the measurement of heat transfer coefficient jilm condensation which used vertical
condenser and nanofluids Al2O3-water as cooling fluids With variation of flow rote of cooling fluid and
volume concentration of nanofluid as well, the experimental result shows the enhancement of
condensation heat transfer coefficient with nanofluid compared to base fluids : 12- 19% for 1% particles
concentration and 23-33 % for 4% particles concentration.
"
Jurnal Teknologi, 19 (1) Maret 2005 : 1-9, 2005
JUTE-19-1-Mar2005-1
Artikel Jurnal  Universitas Indonesia Library
cover
Pandiangan, Korlina
"Banyak industri mengeluarkan air limbah yang berbahaya dan memiliki toksisitas tinggi. Senyawa fenol merupakan salah satu senyawa yang non-biodegradable dan beracun (toxic), yang sangat berbahaya bagi lingkungan sekitar apabila dibuang secara sembarangan. Proses ozonasi telah dikembangkan sebagai salah satu metode untuk mendegradasi senyawa fenol ini. Akan tetapi penyisihan fenol dalam air limbah cukup sulit dilakukan dengan menggunakan ozonasi tersebut, mengingat sifat ozon yang mudah terdekomposisi menjadi oksigen. dengan demikian keberadaan ozon dalam air limbah untuk mengoksidasi fenol tidak bertahan lama. sehingga fenol yang teroksidasi (tersisih) juga sedikit. Oleh sebab itu, untuk membantu kerja ozon dalam mendegradasi fenol digunakan karbon aktif dan zeolit sebagai katalis. Telah diketahui bahwa karbon aktif dan zeolit merupakan suatu bahan yang memiliki permukaan yang reaktif dan mempunyai luas permukaan yang tinggi [4]. Dengan demikian masalah penyisihan fenol dalam limbah diharapkan dapat diatasi dan dengan penambahan katalis tersebut dapat meningkatkan laju penyisihan dan persentase penyisihan fenol. Pada penelitian ini akan diamati pengaruh penurunan kadar fenol terhadap waktu ozonasi baik pada suasana basa maupun asam, menggunakan katalis maupun tanpa katalis. Kemudian akan diamati juga jenis katalis yang paling efektif terhadap penyisihan fenol pada ozonasi limbah fenol. Proses pengolahan limbah fenol pada penelitian ini dilakukan secara batch (secara tumpak). Limbah yang digunakan adalah limbah sintetik yang terbuat dari larutan fenol dengan konsentrasi 10-50 mg/L, pada suasana basa (pH 10-11) dan suasana asam (pH 6-7). Pengujian kinerja proses ozonasi dilakukan untuk mengamati senyawa fenol dengan metode aminoantipirin dengan menggunakan spektrofotometer sinar tampak. Hasil penelitian menunjukkan bahwa proses penyisihan fenol dalam air limbah dapat dilakukan dengan proses ozonasi menggunakan katalis maupun tanpa katalis, pada suasana asam maupun basa. Ozonasi fenol ini dipengaruhi oleh konsentrasi awal (Co) dan pH limbah fenol. Semakin tinggi Co fenol, waktu yang dibutuhkan untuk mencapai baku mutu, akan tetapi untuk pencapaian persentase penyisihan tergantung kondisi. Untuk ozonasi tanpa katalis, zonasi berlangsung lebih baik pada suasana (pH 10-11), dibandingkan dengan suasana asam (pH 6-7). Pada rentang pH 10-11, dengan Co fenol 20 mg/L terjadi kenaikan persentase penyisihan, dengan persentase penyisihan fenol maksimum sebesar 99.7420%. Untuk penyisihan fenol maksimum, pada rentang pH 10-11, dengan Co fenol rendah (10, 20 mg/L), penyisihan fenol maksimum beradajauh di bawah baku mutu, yaitu sebesar 0.0512 mg/L, dengan persentase penyisihan tertinggi adalah 99.7420%. Waktu optimum penyisihan fenol tersebut adalah pada waktu 60 menit. Untuk ozonasi fenol menggunakan katalis, laju penyisihan fenol dapat berlangsung lebih cepat. Akan tetapi persentase penyisihan fenol yang diperoleh menggunakan katalis lebih rendah dibandingkan ozonasi tanpa katalis. Ditinjau dari laju penyisihan fenol, katalis karbon aktif lebih baik digunakan dibandingkan dengan katalis zeolit. Pada rentang pH 6-7, dengan Co fenol 50 mg/L, waktu 15 menit persentase penyisihan mengalami peningkatan sebesar 66.4416%. Ditinjau dari persentase penyisihan fenol, katalis zeolit lebih baik digunakan dibandingkan dengan katalis karbon aktif. Akan tetapi jika dibandingkan dengan persentase penyisihan fenol tanpa katalis, persentase penyisihan hingga baku mutu tanpa katalis lebih tinggi dibandingkan menggunakan katalis zeolit. Pada rentang pH 10-11, dengan Co fenol 10 mg/L, selama 120 menit, persentase penyisihan oleh katalis zeolit tertinggi sampai baku mutu sebesar 93.9045%, sedangkan untuk persentase penyisihan fenol tanpa katalis dapat mencapai 98.4406%. Jadi, jika ditinjau dari laju penyisihan dan persentase penyisihan fenol, dapat disimpulkan katalis zeolit lebih efektif digunakan pada ozonasi fenol."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49606
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andri Rahmansyah
"ABSTRACT
Penulis mempelajari sifat-sifat bintang gelap menggunakan model interaksi diri, model pertukaran meson vektor dan model kondensat Bose-Einstein. Bintang gelap merupakan kumpulan dari materi gelap boson. Materi gelap boson berada dalam keadaan dasar. Sifat-sifat dari bintang gelap yang dipelajari oleh penulis yaitu massa dan jari-jari bintang, deformasi pasang-surut, momen inersia dan hubungan I-Love-Q. Dengan diketahui sifat-sifat tersebut, penulis dapat mengetahui interaksi yang terjadi pada materi gelap boson. Massa materi gelap boson ditetapkan yaitu 300 MeV dan 400 MeV. Nilai konstanta kopling pada model interaksi diri, nilai massa interaksi pada model pertukaran meson vektor dan nilai panjang hamburan pada model kondensat Bose-Einstein diambil dari hasil simulasi numerik materi gelap dingin dan tidak bertumbukan CCDM yang memenuhi persamaan 0.1 ?cm?^2/g le; ?/m_b le;1 ?cm?^2/g.

ABSTRACT
We study properties of dark stars on self interaction model, exchange vector meson model and Bose Einstein condensate model. Dark stars are compact objects formed from bosonic dark matter. Bosonic dark matter is in ground state. The properties of the dark stars studied by us are the mass and radius of stars, tidal deformation, inertia moment, and I Love Q relation. By knowing these properties, we can see the interactions that occur in bosonic dark matter. Bosonic dark matter mass is set at 300 MeV and 400 MeV. Coupling constant on self interaction model, interaction mass on exchange vector meson model, and scattering length on Bose Einstein condensate model determined by the result of numerical simulations CCDM which requires 0.1 ?cm?^2/g le; ?/m_b le;1 ?cm?^2/g. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yulfari Oktesa Harun
"Penyegaran udara merupakan suatu proses mendinginkan udara sehingga mencapai temperatur dan kelembaban yang ideal. Kebanyakan unit pengkondisi udara digunakan untuk kenyamanan (comfort air conditioning), yaitu untuk menciptakan kondisi udara yang nyaman bagi orang yang berada di dalam suatu ruangan. Saluran udara (ducting) merupakan bagian dari sistem pengkondisian udara yang berfungsi untuk mendistribusikan udara dingin ke ruangan yang akan dikondisikan. Tipe ukuran dan lokasi diffuser akan menentukan distribusi temperatur dan gerakan udara dalam ruangan. Banyak kekurangan ditemui dalam diffuser sebagai penyebar udara dalam ruangan. Hampir semua diffuser membentuk daerah stagnasi, distribusi temperatur tidak merata dan kecepatan semburan yang besar serta banyak lagi kekurangan lainnya. Sehingga diperlukan suatu cara atau alat yang dapat mengurangi kerugian diatas maupun penemuan baru sebagai pilihan lain pengganti diffuser ini. Textil ducting merupakan saluran udara sekaligus sebagai pendistribusian (diffuser). Textile ducting memiliki kelebihan baik dari segi teknis, kesehatan, biaya maupun estetika. Dari segi teknis, texile ducting telah memenuhi kriteria kenyamanan dan ditribusi udara. Dari segi kesehatan textile ducting dapat berfungsi sebagai filter udara, pemasangannya yang cepat dan mudah serta banyaknya pilihan warna yang tersedia.

Refreshing of air is an process make cool air so that reach ideal dampness and temperature. Air-Duct (ducting) is the part of system which functioning to distribute cool air to room. Measure type and location of diffuser will determine temperature distribution and air movement in room. Many insuffiencies met in diffuser as spreader of air in room. The textile diffuser is a duct and a distribution element at the same time. Textile ducting have excess either from technical facet, health, expense of and esthetics. Of technical facet, ducting texile have fulfilled freshment criterion and of ditribusi air. Of facet health of ducting textile can function as air filter, installation of which quickly and easy to set and available a lot of number colour choices."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S37530
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mualifah
"Ion magnesium (Mg2+) merupakan salah satu faktor utama yang berperan dalam kondensasi kromatin menjadi kromosom. Berbagai penelitian mengenai pengaruh Mg2+ terhadap struktur kromosom sel HeLa telah dilakukan, namun hingga saat ini pengaruh Mg2+ terhadap pola banding yang menunjukkan bagian heterokromatin dan eukromatin belum diketahui. Penelitian ini dilakukan untuk mengetahui pengaruh Mg2+ terhadap kondensasi kromosom sel HeLa menggunakan teknik G-Band-Trypsin-Leishman (GTL) banding karyotyping. Sediaan sebaran metafase kromosom diperoleh dari kultur sel HeLa, kemudian dilakukan banding menggunakan pewarna Leishman. Pengaruh Mg2+ dievaluasi dengan memberikan tiga larutan yang berbeda, yaitu larutan XBE5 yang mengandung 5 mM Mg2+ sebagai kontrol, larutan XBE (0 mM Mg2+), dan larutan 1 mM EDTA sebagai chelator kation. Data yang diperoleh dianalisis secara kualitatif dengan mengamati struktur dan pola banding kromosom, serta secara kuantitatif dengan menganalisis nilai kromosom berdasarkan jumlah band yang dihasilkan sesuai dengan Quality Assessment (QA) dari International System for Human Cytogenetics Nomenclature (ISCN). Hasil penelitian menunjukkan bahwa pada 5 mM Mg2+ struktur kromosom padat dengan nilai 2 hingga 3 dan memiliki pola banding yang jelas. Sementara itu, kromosom pada 0 mM Mg2+ memiliki area kromosom yang meluas dan struktur kromosom lebih fibrous dengan pola banding yang tipis. Kromosom pada 0 mM Mg2+ memiliki nilai panjang 2 hingga 4. Struktur kromosom pada 1 mM EDTA masih terlihat dengan struktur fibrous, namun dengan batas yang sulit ditentukan dan pola banding yang dihasilkan kabur. Nilai kromosom pada 1 mM EDTA berkisar antara 3 hingga 6. Hasil pengamatan struktur, pola banding, dan nilai kromosom yang diperoleh menunjukkan kromosom pada 0 mM Mg2+ dan 1 mM EDTA lebih panjang dari kromosom kontrol (5 mM Mg2+). Kromosom pada 5 mM Mg2+ lebih padat dengan band yang dihasilkan lebih jelas jika dibandingkan dengan kromosom yang diberikan perlakuan dengan 0 mM Mg2+ dan 1 mM EDTA. Hal ini menunjukkan bahwa magnesium diperlukan untuk menjaga kondensasi struktur kromosom sel HeLa.

Magnesium ion (Mg2+) is one of the major factors responsible for chromosome condensation. Studies about the effects of Mg2+ on chromosome structure of the HeLa cell have been reported, however, the effects of Mg2+ on the banding pattern showing the heterochromatin and euchromatin areas are yet to be investigated. This research was carried out to determine the effect of Mg2+ on chromosome condensation of the HeLa cells structure using karyotyping by G-Band-Trypsin-Leishman (GTL) banding technique. Chromosome were obtained from the cultured HeLa cell. The chromosomes banding was evaluated using Leishman dye. The effect of Mg2+ was evaluated by giving three different solutions, namely XBE5 solution containing 5 mM Mg2+ as a control, XBE solution (0 mM Mg2+), and 1 mM EDTA solution as cation chelator. The obtained data was analyzed qualitatively by observing the structure and banding pattern of the chromosomes, as well as quantitatively by analyzing the value of chromosomes based on the number of bands produced according to the Quality Assessment (QA) from International System for Human Cytogenetics Nomenclature (ISCN). The results showed that at 5 mM Mg2+, chromosome structure was more solid with a value of 2 to 3 and had a clear banding pattern. Meanwhile, the chromosomes treated with buffer containing 0 mM Mg2+ showed an expanded chromosome area and a more fibrous structure with a pale banding pattern, the chromosome at 0 mM Mg2+ showed a value of 2 to 4. Futhermore, the structure of chromosomes treated with EDTA was still visible with fibrous structure, but with boundaries that were difficult to determined and the blurred banding pattern. The value of the chromosome in 1 mM EDTA ranges from 3 to 6. Based on the observations of the structure, banding pattern, and the value obtained, the chromosomes at 0 mM Mg2+ and 1 mM EDTA were longer than those treated with 5 mM Mg2+. Chromosomes at 5 mM Mg2+ were more condensed with the clear bands compared to those treated with 0 mM Mg2+ and 1 mM EDTA. These results further emphasize that Mg2+ is required for chromosome condensation and maintenance of chromosome structure of the HeLa cell."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Waluyo
"Sistem pengkondistan udara telah meniadi suatu komoditi yang sangat penting pada zaman modern ini. Sistem tersebut didukung oleh empat komponen utama, yaitu evaporator, kompresor, kondensor, serta katup ekspansi untuk berlangsungnya suatu siklus komproesi uap. Proses pengkondisian udara pada intinya adalan proses pertukaran kalor yang melibatkan sualu alat penukar kalon yaitu kondensor dan evaporator, dimana kalor diserap di evaporator selanjutnya dibuang di kondensor. Kenyataan menunjukkan bahwa kondensor dan evaporator sebagai alat penukar kalor tidak bisa dipakai begitu saja dalam semua kondisi atau jarang (bahkan tidak) bisa memberikan fungsinya sebagai alat penukar kalor yang optimum.
Untuk mengatasi masalah di atas, kondensor dan evaporator perlu dirancang khusus sesuai dengan fungsinya, media yang saling bersinggungan dimana tempat terjadinya proses pertukaran kalor, serta penyesuaian (matching) dengan batasan-batasan yang ada (diketahui atau diinginkan), serta kekompakan dengan komponen-komponen lain dalam sistem pendingin tersebut. Penganalisaan kondensor dalam hal ini adalah kondensor berpendingin udara serta evaporatornya adalah jenis water-chilled evaporator, atau evaporator dimana media yang didinginkannya adalah air.
Metodologi penulisan yang digunakan dalam pengumpulan berbagai macam data dan referensi, ditempuh melalui dua macam cara, yaitu : pertama studi kepustakaan, yaitu dengan melakukan pencarian data-data dan referensi mengenai teori, proses, atau tahap-tahap perhitungan melalui berbagai macam literatur. Kedua penelitian lapangan, yaitu pengambilan data atau penentuan variabel-variabel yang biasa terdapat di pasaran.
Dalam penganalisaan, berbagai hal perlu diketahui terlebih dahulu, yaitu beban pendinginan yang diinginkan (50TR), jenis refrigeran yang digunakan (R-22), temperatur penguapan (5°C), temperatur pengembunan (45°C) serta harus diperhatikan temperatur udara sekitar(33°C).
Dari perhitungan diperoleh hasil : Iuas permukaan perpindahan kalor pada kondensor= 90,9 mz, dengan total panjang pipa tembaga 460,69 m, daya kompresor 31,19 kW, sena daya motor penggerak fan 4,125 kW. Sedangkan untuk water-chilled evaporator; diameter shell (ID2) = 43,8 cm. diameter tube (OD2) = 1,9 cm, (ID1 = 1,23 cm, jumlah tube (N1 =150, panjang (L) = 243.8 cm.
Dari perhitungan di atas dapat dislmpulkan bahwa dalam perancangan kondensor dan evaporator banyak variabel yang saling berpengaruh, bahkan saling berlawanan. Di satu sisi meningkatkan koefisien perpindahan kalor, di sisi lain menambah Iuas permukaan dan biaya, serta masih banyak lagi kombinasi-kombinasi yang Iain, tetapi yang jelas bahwa persyaratan pertukaran kalor (beban) harus tetap terpenuhi, disamping harus mempertimbangkan faktor biaya, ukuran fisis, serta karakteristik penurunan tekanan. Untuk itu, datam perancangan dipertukan ketelitian untuk mendapatkan kombinasi-kombinasi yang optimum."
Depok: Fakultas Teknik Universitas Indonesia, 1998
S36862
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>