Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157971 dokumen yang sesuai dengan query
cover
Didik Sukoco
"Sumber energi terbarukan yang sangat menjanjikan adalah solar cell dan kincir angin karena portabilitas, fleksibilitas yang tinggi dan nilai investasi relatif rendah. Sejauh ini teknologi solar cell memiliki keunggulan karena membutuhkan perawatan sangat minim dan memiliki umur sekitar 20 tahun[27]. Effisiensi diwujudkan dengan kemampuan solar cell mengubah energi matahari menjadi energi listrik. Pada saat ini solar cell mudah didapat dengan kisaran harga US $3/Watt per satuan luas.
Pada kincir angin sumber energi mekanik dari putaran blade akan di konversi ke sumber energi listrik. Meskipun sederhana dalam konsep, tetapi desain turbin dalam perhitungan blade sangat komplek untuk menghasilkan energi yang optimal. Namun kelemahan dari kedua sumber energi terbarukan tersebut adalah tidak menentu ketersediaannya, sedangkan konsumen membutuhkan penyediaan energi yang stabil dengan sustainability 100%. Untuk itu agar sistem energi terbarukan lebih bermanfaat, sistem harus dilengkapi dengan kendali dan management energi listrik yang akan menstabilkan output energi listrik yang dihasilkan.
Diperlukan suatu bank baterai dalam kelangsungan sustainable suplai energi listrik yang dihasilkan. Dalam riset ini, telah merancang bangun suatu kendali energi dengan mengintegrasikan pemodelan matematik sistem baterai. Sistem kendali didukung oleh bank baterai, mikrokontroller dan rangkaian elektronik.
Selanjutnya unjuk kerja sistem dapat ditingkatkan dengan melakukan karakteristik energi yang tersimpan dalam baterai, sehingga energi baterai selalu dapat di monitor. Hal ini memungkinkan sistem selalu dapat mengendalikan energi listrik yang tersedia dalam sistem tersebut.

Renewable energy sources is a very promising that is solar cell and windmill because of it portability, flexibility and value of investment is relative low. Now solar cell technology have an advantage because it require for little maintenance and have lifetime of about 20 years [27]. Efficiency solar cell is realized with it ability to convert solar energy into electrical energy. At currently this solar cell is easy to get with range of price arround U.S. $ 3/Watt per unit area.
At the windmill source of mechanical energy from the blade rotation will be converted into electrical energy source. Although simple in concept, but the design of turbine blade is so complex calculation to generate the optimal energy. But the weakness of both renewable energy sources is uncertain availability, while the consumer requires a stable supply of energy with 100% sustainability. In order to a renewable energy system more useful, the system must be equipped with control and management of electrical energy that will stabilize the output of electrical energy that produced.
It needs a battery bank to keep the sustainable of electrical energy that produced. In this research, has been designing up a control energy by integrating the mathematical modeling of battery systems. Control system supported by battery bank, microcontrollers and electronic circuits.
Furthermore, system performance can be enhanced by the characteristics of the energy stored in batteries, hence the energy of battery always be monitored. It enable the system is always able to control the electrical energy that available in that system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31086
UI - Tesis Open  Universitas Indonesia Library
cover
Budiyanto
"Sumber energi terbarukan merupakan sumber energi yang potensial untuk dikembangkan, seperti tenaga angin, matahari, dan air. Perkembangan teknologi elektronika daya seperti invertor memberikan solusi atas penggunaan energi terbarukan pada sistem jaringan listrik mikro (microgrid) arus bolak - balik, namun sistem ini sering mengalami persoalan pada frekuensi, tegangan, daya aktif dan daya reaktif saat dua buah atau lebih invertor bekerja bersamaan, sehingga perlu peralatan sinkronisasi dan pengendali yang rumit. Pengembangan sistem jaringan listrik miko arus searah (JLMAS) juga dikembangkan seiring dengan perkembangan peralatan rumah tangga yang dapat dioperasikan dengan sumber arus searah, hal ini juga merupakan solusi dari keterbatasan pada jaringan listrik mikro arus bolak - balik. Dalam sistem JLMAS penggabungan dua buah atau lebih sumber energi terbarukan dapat dengan mudah diparalel, dengan syarat tegangan dan polaritanya sama. Sehingga ini menjadikan peluang untuk mengembangkan sistem JLMAS.
Pembangkit energi terbarukan seperti sel surya dan turbin angin sangat dipengaruhi oleh kondisi alam sehingga produksi listrik yang dihasilkan tidak stabil dan bahkan terhenti sama sekali, untuk itu perlu dilengkapi dengan baterai yang fungsinya selain sebagai penyimpan energi juga untuk menjaga agar pasokan daya listrik ke jaringan listrik mikro menjadi lebih kontinyu. Saat baterai mengalami penurunan dan tidak mampu dalam memberikan suplai energi maka perlu adanya baterai cadangan yang dapat memasok energi ke sistem jaringan. Agar baterai cadangan dapat bekerja maka perlu ada pengendali untuk mengatur kerja baterai tersebut. Beberapa penelitian tentang pengendali tegangan dari pembangkit energi terbarukan telah dilakukan, namun masih dalam satu sistem pembangkit. Penelitian ini bertujuan untuk mengendalikan sistem JLMAS dari dua atau lebih sumber energi terbarukan dan satu baterai cadangan yang mensuplai ke jaringan lisrtik mikro.
Dalam penelitian ini didapatkan sistem pengendali JLMAS yang dapat mendeteksi besarnya tegangan baterai PV dan baterai cadangan pada tegangan 10,8 - 13,6 Vol, yang berfungsi untuk mengatur SOCmin dan SOC maks pada baterai. Tegangan yang digunakan pada sistem JLMAS adalah 254 Vas, tegangan ini dihasilkan dari pengembangan invertor menjadi konvertor penaik tegangan AS-AS dari 12Volt menjadi 254 Volt. Hasil analisa dan perencanaan JLMAS dengan kapasitas daya 1200 VA, dengan penempatan beterai secara terintegrasi besarnya kapasitas pembangkit sel surya pada masing - masing sebesar 9729,42 Wp, sedangkan besarnya kapasitas baterai lokal (baterai PV) sebesar 850 Ah dan baterai cadangan 5000 Ah dengan lama waktu penyimpanan energi 3 hari. Dalam sistem JLMAS beban yang digunakan adalah beban arus bolak - balik berbasis swiching (SMPS) sehingga tanpa harus mengunakan invertor.

The renewable energy source is a source of potential energy to be developed, such as wind, solar, and water energy. The development of power electronics technology such as inverter provides a solution for the use of renewable energy on an AC micro grid system (microgrid), but this system often has problems on frequency, voltage, active power and reactive power when two or more inverters work together, so synchronization and controlling complex equipment are needed. The developing of DC micro grid systems (JLMAS) is also done along with the development of household appliances that can be operated with direct current source. It is also a solution of the limitations on AC micro grid. In JLMAS system combining two or more sources of renewable energy can be easily paralleled, on conditions that the voltage and polarity are the same. So it creates the opportunity to develop a system JLMAS.
The renewable energy such as solar cells and wind turbine are strongly influenced by natural conditions so that electricity production is not stable and even stopped altogether, for it needs to be equipped with a battery that has functions not only as an energy storage but also to ensure the supply of electrical power to the micro grid becomes more continuous. When the battery has decreased and is not able to provide energy supplies, it needs a backup battery that can supply energy to the network system. For backup battery in order to work properly it needs a voltage controller for controlling the battery operation. Some researches on controlling the voltage of renewable energy generation has been done, but still in a generating system. This research aims to control the JLMAS system from two or more sources of renewable energy and a battery backup supplying to the micro electric network.
In this research, it is obtained that the control system of JLMAS that can detect the magnitude of voltage of PV battery and a spare battery at a voltage of 10,8 to 13.6 Volt, which works to regulate SOC min and max on the battery. The voltage used in the JLMAS system is 254Vdc, this voltage is resulted from the development of an inverter to become a boost converter from 12 Volt to 254 Volt. Results of analysis and planning JLMAS with 1200 VA power capacity, with placement of battery in integrating, the magnitude of solar cell generation capacity on each amounting to 9729,42 Wp, while the magnitude of the local battery capacity (battery PV) of 850Ah and a 5000 Ah of battery backup with the duration of energy storage time is 4 days. In JLMAS system is used alternating current load based on switching (SMPS) without using inverter.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1489
UI - Disertasi Membership  Universitas Indonesia Library
cover
Tomi Agustianto
"Sistem transportasi di Indonesia yang masih belum memuaskan dan aman menjadi topic yang tidak pernah selesai dibahas, penanggulangannya pun masih belum ada titik terang. Untuk itu dibutuhkan sistem transportasi seperti monorel yang mengadaptasi sistem dari luar negeri. Sistem yang mampu dikendalikan dan dimonitoring secara otomatis melalui komputer, tanpa masinis, aman, nyaman dan efisien. Seperti misal sistem monorel di Jepang yang menggunakan tenaga listrik, rel menggunakan beton tunggal dan dijalankan secara komputerisasi atau otomatis. Atau misal monorel di Jerman yang mempunyai jalur menggantung di atas, tentunya dapat mengantisipasi tipe penumpang Indonesia yang terbiasa naik ke atap kereta.
Untuk membuat sistem transportasi yang dapat dikendalikan dan dimonitoring secara otomatis diperlukan rancangan sistem persinyalan yang tepat dan telah disesuaikan dengan Peraturan Mentri Perhubungan mengenai perkeretaapian/monorel. Pada rancang bangun sistem persinyalan dan monitoring monorel ini digunakan sistem simulator yang dibuat dari software Microsoft Visual C# yang mampu menyediakan tampilan yang lengkap untuk membuat simulator yang dapat mengendalikan monorel, monitoring, hingga komunikasi antar unit monorel atau pusat kendali dengan unit-unit monorel. Dengan menggunakan Microsoft Visual C# ini telah berhasil dibuat simulator sistem persinyalan dan monitoring monorel yang sudah siap untuk diimplementasikan pada infrastruktur monorel yang sebenarnya.

Unsatisfied and unsecured transportation system in Indonesia is still an unfinished topic to discuss. There for required a monorail transportation system as an adapted system from overseas. The system which is capable of automatically controlled and monitored by computer, without driver, safe, comfort and efficient. For example, monorail system in Japan that used electricity, using single concrete as the rail, and computerized or automated. Or another example, monorail in Germany that has hung over track, which can anticipate Indonesian passenger’s type who like to used up to the roof of the train.
To create a transportation system that can be controlled and monitored automatically, requires an appropriate design of signaling system and has been adapted to the Department of Transportation’s regulation about train/monorail. In this design and build control and monitoring of monorail system used monorail system simulator which made of Microsoft Visual C# software that is able to provide a complete interface that can control the monorail, monitoring, and communication between monorail units or between control center with monorail units. By using Microsoft Visual C#, it has been successfully created a simulator signaling and monitoring system that is ready to be implemented in the actual monorail infrastructure.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45111
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahayu Windasari
"Permintaan masyarakat akan tersedianya listrik yang kian meningkat, terkadang tidak disertai dengan sikap yang bijaksana dalam penggunaannya. Seringkali terjadi pemborosan karena waktu pemakaiannya tidak tepat, ditambah kurangnya kesadaran msayarakat untuk menghemat pemakaian listrik. Oleh karena itu, diperlukan adanya perangkat yang dapat memonitoring secara langsung berapa besar konsumsi listrik yang digunakan. Atas dasar pemikiran tersebut maka dibuatlah rancangan alat yang mampu memonitoring penggunaan daya dan energi listrik secara real-time agar pemakaian listrik menjadi tepat guna. Alat monitoring ini menggunakan Power Line Carrier (PLC) yang memanfaatkan jala-jala listrik dari PLN pada jaringan tegangan rendah pada peralatan rumah tangga. PLC dipilih karena kelebihannya yaitu tidak perlu membangun jaringan baru lagi sebab bisa menggunakan jaringan listrik yang sudah ada. Alat ini dibagi menjadi dua modul utama yaitu modul pengirim dan penerima. Pada modul pengirim, digunakan PLC KQ330, mikrokontroler Arduino UNO, sensor PZEM-004T untuk pengukur besaran listrik berupa arus, tegangan, daya aktif dan energi serta LCD 16x2 sebagai penampil datanya. Modul penerima terdiri dari PLC KQ330, mikrokontroler Arduino UNO, dan modul WiFi ESP32 yang akan menghubungkan modul penerima ke internet melalui platform Internet of Things (IoT), bernama Thinger.io sehingga pengguna dapat mengakses hasil monitoringnya melalui gadget apapun. Informasi besaran listrik ini akan dikirimkan melalui komunikasi serial pada mikrokontroler. Kinerja sistem diukur berdasarkan keberhasilannya mengirimkan data antara sisi pengirim dan penerima secara real-time dengan nilai simpangan rata-rata yang kecil. Berdasarkan hasil pengujian, didapatkan bahwa simpangan pada pembacaan sensor pengukuran listrik PZEM, memiliki nilai sebesar 0.11% untuk tegangan, 0.15% untuk arus, dan 0.48% untuk daya.

The increasing of public demand for the availability of electricity, sometimes not balanced by a wise attitude in its use. Waste often happens because the time of use is not right, plus the lack of public awareness to save electricity usage. Therefore, it is needed a device that can monitor directly how much electricity consumption is used. On the basis of these ideas the design of devices that are able to monitor the use of electricity and electrical energy in real time is made so that electricity usage is needed. This monitoring tool uses a Power Line Carrier (PLC) that utilizes electricity grids from PLN on a low voltage network on household appliances. PLC was chosen because of its superiority, which is that it does not need to build a new network anymore because it can use an existing electricity network. This tool is divided into two main modules, the transmitting and receiving modules. In the transmitting module, the PLC KQ330, the Arduino UNO microcontroller, the PZEM-004T sensor are used to measure the electrical quantities in the form of current, voltage, active power and energy and a 16x2 LCD as the display. The receiver module consists of a KQ330 PLC, an Arduino UNO microcontroller, and an ESP32 WiFi module that will connect the receiver module to the internet via the Internet of Things (IoT) platform, called Thinger.io so that users can access the monitoring results through any gadget. Information on the amount of electricity will be sent via serial communication to the microcontroller. System performance is measured based on its success in sending data between the transmitter and receiver sides in real-time with a small average deviation value. Based on the test results, it was found that the deviation on the PZEM electric measurement sensor readings, has a value of 0.11% for voltage, 0.15% for current, and 0.48% for real power."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rokhmatun Zakiah Darajad
"Energi listrik merupakan salah satu kebutuhan utama oleh masyarakat khsusunya untuk menyuplai peralatan-peralatan elektronik rumah tangga yang fungsinya untuk memudahkan aktivitas sehari-hari. Namun, sistem yang tidak tesentralisasi dikhawatirkan menyebabkan pemakaian listrik yang tidak terkendali terlebih saat rumah ditinggal lama oleh pemiliknya. Sehingga, manajemen listrik yang efektif dan efisien sangat diperlukan dalam mengatasi permasalahan tersebut dengan cara pemasangan perangkat elektronika tambahan sebagai pendukung untuk memonitor konsumsi daya dan energi listrik khususnya pada beban yang dimungkinkan menyerap daya paling besar. Seiring dengan berkembangnya Internet of Things (IoT), dapat dirancang suatu sistem monitoring yang menerapkan teknologi IoT yaitu teknologi LPWAN (Low Power Wide Area Network). LoRa (Long Range) merupakan salah satu teknologi IoT yang memiliki jarak jangkauan yang jauh, konsumsi energi yang rendah, serta harga yang relatif murah. Dalam penelitian ini digunakan modul PZEM 004T V3.0 sebagai sensor energi dan LoRa 915MHz sebagai komunikasi tiga node berperan sebagai pengirim dimana masing-masing terpasang pada beban rumah tangga dan satu buah penerima berperan sebagai gateway yang menggunakan mikrokontroler ESP32. Selain itu, sistem akan terhubung ke jaringan internet untuk menampilkan hasil monitor daya dan energi secara real time pada salah satu platform IoT Cayenne. Kinerja sistem diukur berdasarkan hasil uji fungsionalistas sistem yakni kecocokan data antara pengirim dan penerima serta jangkauan jarak LoRa pada jarak 5 m dan 23 m di sekitar rumah. Berdasarkan hasil pengujian, diperoleh kecocokan data antara sisi receiver dan transmitter baik pada jarak 5 meter maupun 23 meter serta rata rata hasil RSSI yakni 88.4 dBm pada jarak 5 meter dan 109.55 pada jarak 23 meter.

Electrical energy is one of the main needs by the community specifically to supply household electronic appliances whose function is to help us in daily activities. However, decentralized system is feared to cause uncontrolled electricity usage especially when the house is left for a long time by the owner. Thus, effective and efficient electricity management is required in overcoming these problems by installing additional electronic devices as a support to monitor power and electrical energy consumption, especially at loads that are likely to absorb the most power. Along with the development of the Internet of Things (IoT), a monitoring system that can implement IoT technology, called LPWAN (Low Power Wide Area Network) technology which could be designed. LoRa (Long Range) is one of the IoT technologies that has a long range, a low energy consumption, and a relatively cheap price. In this study, PZEM 004T V3.0 module was used as an energy sensor and the 915MHz LoRa as three-nodes communication act as a sender where each is connected on a household load also one receiver acts as a gateway using the ESP32 microcontroller. In addition, the system would be connected to the internet then displayed power and energy results in real time on the IoT platforms; Cayenne. The performance of the system was measured based on the results of the system functionality test which were the compatibility of the data between the sender and receiver and the LoRa distance range; 5 m and 23 m at the house surrounding. According to the test results, a match result was obtained between the receiver and transmitter at both 5 meters and 23 meters and the average RSSI results were -88.4 dBm at 5 meters and -109.55 at 23 meters."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Arifandi
"Kebutuhan daripada elemen penyimpan baterai dalam sistem arus searah menjadi semakin penting dengan kebutuhan akan manusia akan energy yang efisien dan juga terbarukan. Kemampuan dari energi listrik untuk dapat disimpan memungkinkan pemanfaatan energi listrik dalam menyumbang manfaat untuk masyarakat dan juga memungkinkan untuk meningkatkan rasio elektrifikasi terutama untuk daerah terpencil.
Dalam mengoperasikan baterai, diperlukan pertimbangan terutama dalam parameter yang terukur yaitu tegangan dan arus dari operasi baterai. Melalui media mikrokontroller jenis Arduino, maka monitoring melalui sensor analog untuk mengukur masing ndash; masing parameter yang terkait memungkinkan pemantauan dalam pengoperasian daripada baterai.
Berdasarkan hasil percobaan yang dibangun, sistem rancang bangun memberikan simpangan sebesar untuk masing ndash; masing tegangan dan arus adalah 0,122 V dan 0,005819 A. Hasil yang diperoleh menunjukkan bahwa simpangan untuk parameter tegangan masih termasuk kedalam batas yang diperbolehkan, namun untuk parameter arus masih memerlukan penelitian lebih lanjut.

The requirement of energy storage element increases in Direct Current electrical systems as the need for an efficient and renewable source of energy. The capability of electrical energy to be stored brings the possibility to contribute the needs of society for power and to increase the ratio of electrification especially in remote areas.
On operating a battery, there are several parameters that are needed to be carefully considered which are its voltage and current. Through a microcontroller such as an Arduino, the process of monitoring a battery in its operation becomes possible through analog sensors to measure each parameters.
Through the experimentation that is conducted, the system gives the highest deviation for both its voltage and current as much as 0.122 V and 0.005819 A. the given margin of error for the voltage parameter is still within the given limit for allowed deviation, but the current parameter still needs further research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67679
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elsa Alfiansyah
"Dalam suatu proses pengukuran daya listrik fotovoltaik penting dilakukan pemantauan secara teratur agar semua kegiatan dapat terkontrol dengan baik. Suatu cara yang efektif dan efisien adalah dengan menggunakan sistem monitoring yang bersifat realtime, dimana semua proses pengukuran tegangan dan arus yang sedang berlangsung dapat dipantau secara seksama pada saat itu juga.
Pada tugas akhir ini dibahas suatu sistem monitoring fotovoltaik dengan memanfaatkan mikrokontroler dan komputer. Mikrokontroler berfungsi sebagai kontrol aksi monitoring fotovoltaik sekaligus menghubungkannya dengan komputer. Komputer berfungsi sebagai tempat memproses data-data yang dikirim oleh mikrokontroler dan menampilkannya pada monitor dengan menggunakan software fotovoltaik.
Perangkat lunak dibuat dalam bahasa basic untuk mikrokontroller, Borland Delphi 6.0 untuk proses data dan tampilan, Microsoft Access untuk manajemen database. Perangkat lunak yang dibuat mampu melakukan monitoring dari modul fotovoltaik untuk mengumpulkan data: tegangan (V) serta arus (I) yang dihasilkan oleh modul fotovoltaik. Dari grafik yang didapat, diketahui bahwa tegangan maksimum yang diperoleh sekitar 202,79 V, dan arus maksimum berharga 0,894 A. Dari hasil pengujian yang dilakukan sistem dapat bekerja dengan baik dan berjalan sesuai dengan yang diharapkan.

It is important to do monitoring in a measurement of photovoltaic electric energy process, so every activity will be well controlled. One way that effective and efficient is by using the realtime monitoring system, where every activity measurement of voltage and current will be watch accurately in the same time, in the real time.
This final project will discuss about using microcontroller and computer in photovoltaic monitoring system. The microcontroller will control the photovoltaic and make connection to the computer while the computer will handle data process and output view with using photovoltaic software.
Software will write in basic language for microcontroller, Borland Delphi 6.0 for data process and output view, Microsoft Access for data base management.The software be able to monitoring from photovoltaic modul and collect voltage and current that are produced by photovoltaic modul. From the graphic we can know that that maximum voltage there about 202,79 V, and maximum current have value 0,894 A. From the test result, the system works properly and successfully.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51141
UI - Skripsi Open  Universitas Indonesia Library
cover
Akbar Kurniawan
"Energi listrik saat ini mempunyai peranan yang sangat penting dalam kehidupan manusia. Namun masih banyak masyarakat yang tinggal di pulau-pulau kecil belum dapat menikmati listrik dengan mudah karena kendala jarak dan biaya yang relatif lebih mahal. Hal tersebut merupakan penyebab sulitnya mencapai target elektrifikasi nasional. Salah satunya adalah Kepulauan Seribu, dimana masih banyak masyarakat yang menggunakan pembangkit berbasis diesel untuk memenuhi kebutuhan listrik mereka. Maka dari itu penelitian ini bertujuan untuk mendapatkan potensi listrik dari sumber energi terbarukan yang ada dan merancang sistem microgrid dengan pembangkit bertenaga matahari (PLTS) dan angin (PLTB) di Kepulauan Seribu, agar dapat dijadikan referensi untuk mengatasi permasalahan elektrifikasi. Sehingga diharapkan dapat meningkatkan taraf hidup masyarakat setempat.

Electric energy currently has a very important role in human life. However, there are still many people who live in small islands who have not been able to enjoy electricity easily due to distance constraints and relatively more expensive costs. This is the reason for the difficulty in achieving national electrification targets. One of them is the Thousand Islands, where there are still many people who use diesel-based plants to meet their electricity needs. Therefore this study aims to obtain the potential of electricity from existing renewable energy sources and design a microgrid system with solar power plants and wind power plants in the Thousand Islands, so that it can be used as a reference to overcome the problem of electrification. So that it is expected to improve the standard of living of the local community."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyuadi Tri Ananto
"Pada sistem yang memanfaatkan perangkat penyimpanan energi seperti baterai, penting untuk mengetahui kondisi parameter - parameter baterai seperti tegangan, arus, dan suhu agar diketahui kapasitas muatan dari baterai secara akurat. Keakuratan pembacaan ini penting agar baterai dapat bekerja dengan optimal. Rancang bangun alat pemantau dan perekam energi baterai, yang merupakan awal dari riset perangkat sistem manajemen baterai yang lebih kompleks, memanfaatkan mikrokontroler dalam membaca masukan berupa tegangan baterai yang kemudian data tegangan ini disimpan dalam personal computer melalui perangkat pengunduh data untuk mikrokontroler. Metode pemantauan melibatkan dua metode adaptif yaitu pertama, metode berbasis pada pengkuran coulometric lewat pembacaan tegangan oleh multimeter dan mikrokontroler saat baterai berada pada kondisi berbeban dan kedua, metode berbasis prediksi tegangan terminal rangkaian terbuka (predicted open terminal voltage) saat kondisi tanpa beban.
Hasil yang diperoleh pada pengukuran berupa persentase kesalahan rata - rata pembacaan nilai kapasitas baterai antara metode pengukuran coulometric multimeter dan mikrokontroler pada rangkaian tanpa beban sebesar kurang dari 2,5% dan rangkaian berbeban kurang dari 6% serta antara metode pengukuran coulometric mikrokontroler dengan predicted open terminal voltage rata - rata sebesar 16%.

On systems that use energy storage devices (batteries) it is important to know the condition of the battery parameters such as voltage, current, and temperature so that the battery state-of-charge is known accurately. The accuracy of reading those parameters are important so that the battery can work optimally. The design of battery discharge monitoring and recording device - as the beginning of the study to more complex battery management systems - is utilizing microcontroller that reads the battery voltage as data input then stored them in a personal computer via microcontroller?s downloader data. The monitoring method involves two adaptive monitoring methods. They are coulometric based measurement method with multimeter and microcontroller as voltage readers at loaded conditions and ?predicted open terminal voltage? based measurement method at no load condition.
The results obtained that the battery state-of-charge which is determined by coulometeric measurement method between multimeter and microcontroller as voltage readers at no load circuit overcomes error rate by less than 2.5% and at loaded circuit by less than 6%. Also the error rate between the coulometric measurement method with microcontroller as voltage reader and predicted open terminal voltage method overcomes error rate by less than 16%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44680
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deza Achmad Zakiy
"Dengan perkembangan teknologi mikrokontroler dan teknologi informasi, teknologi IoT tumbuh dengan pesat. Mikrokontroler adalah salah satu dari teknologi yang memungkinkan untuk mengaplikasikan IoT dalam berbagai bidang contohnya sistem monitoring ruangan menggunakan sensor yang dibutuhkan untuk mengawasi kondisi ruangan khusus seperti laboratorium secara otomatis. Untuk membangun sistem monitoring yang efisien digunakan sebuah modul mikrokontroler yaitu NodeMCU ESP8266. NodeMCU ESP8266 adalah jenis board mikrokontroler yang dilengkapi dengan modul Wifi. Mikrokontroler ini memungkinkan untuk merancang sebuah sistem yang dapat mengirim data hasil pembacaan dari banyak sensor untuk ditampilkan dan dikirimkan ke database server menggunakan modul Wifi. Data yang terkumpul dalam database kemudian akan diolah menggunakan machine learning dengan algoritma Classification and Regression Tree (CART) untuk membuat sebuah model yang kemudian akan diimplementasikan langsung menjadi embedded machine learning pada board mikrokontroler untuk mendeteksi ancaman serta memberikan peringatan dini. Sebelum diterapkan ke dalam mikrokontroler, algoritma CART juga diuji dan dibandingkan dengan beberapa jenis algoritma machine learning lain untuk mendapatkan perbandingan performa. Dengan implementasi tersebut didapatkan sebuah sistem monitoring yang menggunakan algoritma CART sebagai hasil terbaik nilai accuracy sebesar 0.99992 pada training dan 0.999154 pada testing, precision sebesar 0.999154, recall sebesar 0.999946, serta f1-score sebesar 1.0. Algoritma CART juga memberikan waktu proses yang sangat cepat dengan waktu training 0.5 detik dan waktu testing 0.06 detik.

With the development of microcontroller technology and information technology, IoT is growing rapidly. The microcontroller is one of the technologies that make it possible to apply IoT in various fields, for example, a room monitoring system using sensors that are needed to supervise special room conditions such as laboratories automatically. A microcontroller module called NodeMCU ESP8266 is used to build an efficient monitoring system. ESP8266 is a type of microcontroller board that is equipped with a Wifi module. ESP8266 makes it possible to design a system that can send data from multiple sensors to be displayed and sent to the database server using the Wifi module. The data collected in the database will be processed using machine learning by the Classification and Regression Tree (CART) algorithm and then implemented to the microcontroller as embedded machine learning so that system can detect impending early threats and provide early warnings. Before being implemented into a microcontroller, the CART algorithm is also tested and compared to several other types of machine learning algorithms to get a comparison of performance. In the simulation, it achieved the best result, with the accuracy of 0.99992 and 0.999154 ​​in training and testing, respectively. The precision of 0.999154, recall of 0.999946, and f1-score of 1.0 have also resulted. CART algorithm also provides a speedy processing time with training and testing time of 0.5 seconds and 0.06 seconds, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>