Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 146321 dokumen yang sesuai dengan query
cover
Najma
"Dalam penelitian ini, karbon aktif dari limbah kulit pisang digunakan sebagai sumber karbon untuk pertumbuhan nanokarbon dan karbon nanotube. Proses pertumbuhannya adalah dengan menggunakan metode pirolisis sederhana dan dekomposisi metana. Dibutuhkan suhu yang lebih tinggi untuk menghasilkan CNT dengan pirolisis sederhana yaitu 950°C sedangkan karbon aktif yang diimpregnasi dengan katalis Fe dan didekomposisi metana menghasilkan MWCNT tipe tip-growth. Aliran N2/CH4 memiliki hasil yang lebih baik daripada hanya aliran CH4 dalam suhu 800°C dan waktu reaksi 1 jam.
Karbon aktif yang dikalsinasi terlebih dahulu dapat menghasilkan nanokarbon dengan diameter lebih rendah yaitu 1,5-23nm dari pada karbon aktif tanpa kalsinasi (17-40nm). Konsentrasi metana rata-rata 1%wt Fe/karbon aktif 65,27% lebih besar daripada 5%wt Fe/karbon aktif 64,30%. Karbon aktif dari limbah kulit pisang ini dapat menghasilkan nanokarbon dan karbon nanotube walaupun memiliki luas permukaan rendah.

Activated Carbon (AC) from banana peel waste is used to growth of nanocarbon and carbon nanotube with Simplicity pyrolisis method and methane chemical vapour decomposition. Synthesis nanocarbon with simplicity pyrolisis have to in high temperature 950°C but with catalytic impregnation Fe and activated carbon via methane chemical vapour decomposition can produce MWCNT. CNTs formed over Fe catalyst illustrated a typical tip-growth phenomenon. The ideal condition at reaction temperature of 800°C and reaction time of 1 hour for Nanocarbons growth was noticed under N2/CH4 gas flow ratio of 2:1 rather than only CH4 atmosphere.
Activated carbon with calcination can produce nanocarbon with small diameter (1,5nm-23nm) rather than activated carbon with noncalcination (17-40nm). Average methane concentration 1%wt Fe/AC (65,27%) more high than 5%wt Fe/AC (64,30%). Therefore as a result, banana peel activated carbon can produce nanocarbon although have low-surface area.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42598
UI - Skripsi Open  Universitas Indonesia Library
cover
Imia Ribka
"Nanokarbon adalah material karbon yang diproduksi dengan struktur dan ukuran nanometer. Dekomposisi katalitik metana merupakan salah satu sintesis nanokarbon dengan metode CVD (Chemical Vapour Deposition) yang cukup ekonomis untuk menghasilkan nanokarbon. Penelitian ini dilakukan menggunakan katalis Fe dan karbon aktif sebagai substrat. Karbon aktif yang digunakan dibuat dari kulit buah pisang dengan menggunakan zat aktivasi KOH yang dapat memberikan luas permukaan karbon aktif yang lebih besar. Katalis dan karbon aktif kulit buah pisang dipreparasi dengan menggunakan metode impregnasi. Katalis dan karbon aktif yang telah diimpregnasi direaksikan dengan metana pada temperatur 700°C dan tekanan 1 atm dengan waktu reaksi selama 60, 120, dan 300 menit. Hasil penelitian menunjukkan nanokarbon yang terbentuk pada 60 menit adalah carbon onion quasi-sphere dengan konversi metana sebesar 14%, pada 120 menit membentuk CNT dengan konversi metana sebesar 18% dan pada 300 menit terjadi peningkatan pembentukan nanokarbon berkualitas rendah dengan konversi metana sebesar 44%.

Nanocarbon is a carbon material produced by the nanometer structure and size. Catalytic decomposition of methane is one of the economic methods for synthesis nanocarbon by CVD (Chemical Vapour Deposition) to produce nanocarbon. The research was conducted using the catalyst Fe and activated carbon as catalyst support. Activated carbon was made from banana peel by using KOH as activating agent which can provide a large surface area. Catalyst Fe and banana peel activated carbon prepared by impregnation method. Catalyst and activated carbon which has been impregnated is reacted with methane which the reaction temperature of 700°C and atmospheric pressure during 60, 120 and 300 minutes reaction times. The results showed nanocarbon formed at 60 minute reaction time is carbon onions quasi-sphere with methane conversion of 14%, at 120 minute reaction time is CNT with methane conversion of 18% and at 300 minute reaction time an increase the formation of nanocarbon low quality with methane conversion of 44%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42810
UI - Skripsi Open  Universitas Indonesia Library
cover
Puspa Sari Pratiwi
"Arang aktif dari kulit buah pisang merupakan salah satu sumber karbon yang dapat dimanfaatkan untuk sintesis CNT. Kulit buah pisang dapat dijadikan sebagai sumber karbon karena mengandung karbon sekitar 41,37%, hemiselulosa 12,04%, dan lignin 33,79%. Arang aktif kulit buah pisang dicampurkan dengan minyak mineral 2% (1:10) untuk sintesis CNT pada suhu 1000, 1100, dan 1200 °C selama 60 menit menggunakan metode pirolisis. CNT dikarakterisasi dengan beberapa instrumen, yaitu: Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), dan Fourier Transform Infra Red (FTIR). Hasil sintesis CNT ditunjukkan oleh terbentuknya CNT yang masih terdapat katalis logam Fe di dalam badan CNT pada suhu 1000°C, bamboo shaped like CNT pada suhu 1100°C, dan CNT yang lebih dominan oleh agregat minyak mineral pada suhu 1200°C.
Activated charcoal from banana peel is a source of carbon that can be used for synthesis of CNT. Banana peel can be used as a carbon source for CNT because it contains carbon approximately 41.37%, 12.04% hemicellulose, and lignin 33.79%. Banana peel activated charcoal and 2% mineral oil (1:10) mixture was used as a precursor for synthesis CNT at temperatures of 1000, 1100, and 1200°C for 60 minutes by pyrolysis method. CNT were characterized by several instruments: Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red (FTIR). The results of the synthesis and characterization of CNT is Fe (metal) inside the hollow of the CNT at 1000°C, bamboo shaped like CNT at 1100°C, and CNT is dominated by oil mineral aggregates at 1200°C."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54590
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irma Kartika Sari
"Karbon aktif kulit buah pisang dapat digunakan sebagai prekursor CNT dikarenakan kandungan karbon pada kulit buah pisang sebesar 41,37%. Pada penelitian ini, campuran karbon aktif kulit buah pisang dan minyak mineral 2% disintesis menjadi CNT dengan melibatkan deposisi katalis Fe. Metode sintesis CNT yang digunakan adalah metode pirolisis yang difokuskan pada pengaruh suhu dan waktu reaksi. CNT dianalisis dengan menggunakan Fourier Transform Infra Red (FTIR), X-Ray Diffraction (XRD), dan Transmission Electron Microscopy (TEM). Suhu reaksi 1200°C menyebabkan minyak mineral tidak berfungsi dengan baik dan katalis teracuni. Waktu reaksi yang lebih dari 60 menit menyebabkan terjadinya deaktivasi katalis Fe. Hasil penelitian ini menunjukkan bahwa suhu dan waktu reaksi terbaik untuk sintesis CNT adalah 1100°C dan 60 menit.

Banana peel activated carbon can be used as CNT’s precursor because it has carbon content of 41, 37%. In this experiment, banana peel activated carbon mixed with 2% mineral oil is synthesized to produce CNT which involves Fe catalyst deposition. CNT were synthesized by pyrolysis method which focused on reaction temperature and time effect. CNT were analyzed by Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Mineral oil is not functioning properly and catalyst poisoning at 1200°C. Furthermore, especially under reaction time more than 60 minutes make Fe catalyst to deactivate. These results demonstrate that the best reaction temperature and time for CNT synthesis were 1100°C and 60 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54591
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vincentius Jody Rusli
"Minuman kopi adalah salah satu minuman yang paling banyak dikonsumsi di dunia setiap hari. Secangkir kopi dapat mengandung 80 – 100 mg kafein (1,3,7-trimethylxanthine), senyawa alkaloid purin yang bila dikonsumsi dapat merangsang sistem saraf pusat. Banyak konsumen kopi minum untuk efek saraf ini atau hanya untuk kesenangan pribadi. Namun, meminum kafein secara berlebihan atau mereka yang memiliki toleransi rendah terhadap kafein dapat menghadapi berbagai efek buruk seperti pusing, mual, susah tidur, dan banyak efek negatif pada wanita hamil. Untuk memungkinkan penggila kopi atau mereka yang memiliki toleransi rendah terhadap kafein untuk minum kopi, kopi decaf dibuat. Kopi decaf adalah kopi bebas kafein yang dihasilkan dari biji kopi hijau yang telah melalui proses dekafeinasi. Proses Dekafeinasi Air Swiss adalah pilihan utama penghilangan kafein karena tidak menggunakan bahan kimia apa pun dalam prosesnya. Senyawa kafein dihilangkan dari larutan kopi dengan adsorpsi menggunakan karbon aktif. Karbon aktif mengikat molekul kafein melalui fisisorpsi gaya van der Waals, menciptakan larutan media bebas kafein untuk proses dekafeinasi lebih lanjut. Karbon aktif dapat dibuat dari banyak bahan organik seperti kulit pisang. Kulit pisang yang telah diolah terlebih dahulu biasanya dikarbonisasi dan kemudian diaktifkan secara kimiawi. Pada penelitian ini dilakukan terlebih dahulu aktivasi kimia dengan ZnCl2, H2SO4, dan KOH pada larutan 6N, perbandingan karbon 3:1 pada suhu 85°C selama 3 jam. Karbon aktif kimiawi yang dihasilkan kemudian akan mengalami aktivasi termal pada 500°C selama 1 jam dengan aliran gas N2 ditetapkan pada 0,15 NL/menit. Karbon aktif yang dihasilkan memiliki perkiraan luas permukaan berdasarkan bilangan yodium sebesar 1228,76 m2/g untuk karbon aktif H2SO4, 1220,89 m2/g untuk karbon aktif ZnCl2 dan 1218,46 m2/g untuk karbon aktif KOH. Karakterisasi SEM dan EDS menghasilkan citra permukaan dan kandungan spesies karbon aktif yang dihasilkan dengan karbon aktif KOH yang memiliki struktur pori terbaik dan pengotor paling sedikit diantara ketiga sampel. Kafein diekstraksi dan larutan kopi yang dihasilkan dicampur dengan karbon aktif KOH konsentrasi 15% selama 1 dan 2 jam. Hasil HPLC menunjukkan bahwa setelah 2 jam, 99,4% kafein dihilangkan dari larutan ekstrak kafein baik Arabica maupun Robusta, sehingga membuktikan bahwa karbon aktif yang dibuat dari limbah kulit pisang efektif sebagai adsorben kafein untuk proses dekafeinasi.

Coffee drink is one of the world’s most consumed beverages on a daily basis. A cup of coffee may contain 80 – 100 mg of caffeine (1,3,7-trimethylxanthine), a purine alkaloid compound that when consumed, may stimulate the central nervous system. A lot of coffee consumer drink for this neuro effects or simply for personal enjoyment. However, drinking caffeine in excess or those with low tolerance to caffeine may face various adverse effects such as dizziness, nausea, insomnia, and many negative effects on pregnant women. To allow coffee enthusiast or those that has low tolerance to caffeine to drink coffee, decaf coffee is made. Decaf coffee is caffeine free coffee that is produced from green coffee bean that has gone through the decaffeination process. The Swiss Water Decaffeination process is the leading choice of caffeine removal as it does not use any chemicals in the process. Caffeine compounds are removed from the coffee solution by adsorption using activated carbon. Activated carbon binds the caffeine molecules through physisorption of the van der Waals’ forces, creating a caffeine-free medium solution for further decaffeination process. Activated carbon can be prepared from many organic materials such as banana peels. The banana peel that has been pretreated are usually carbonized and then chemically activated. In this study, chemical activation by ZnCl2, H2SO4, and KOH at 6N, 3:1 solution to carbon ratio at 85°C for 3 hours are conducted first. The resulting chemically activated carbon will then undergo thermal activation at 500°C for 1 hour with N2 gas stream set at 0.15 NL/min. The activated carbon produced are shown to have an estimated surface area based on iodine number equal to 1228.76 m2/g for H2SO4 activated carbon is, 1220.89 m2/g for ZnCl2 activated carbon and 1218.46 m2/g for KOH activated carbon. The SEM and EDS characterization produced images on the surface and species content of the activated carbon produced with KOH activated carbon having the best porous structure and least impurities among the three samples. Caffeine is extracted and the resulting coffee solution are mixed with 15% concentration KOH activated carbon for 1 and 2 hours. The HPLC results shows that after 2 hours, 99.4% of the caffeine are removed from both Arabica and Robusta caffeine extract solution, hence proving that activated carbon prepared from banana peel waste are effective as caffeine adsorbent for decaffeination process."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jervis Sinto
"ABSTRACT
Pencemaran udara akibat emisi gas buang kendaraan bermotor dalam bentuk gas-gas berbahaya seperti karbon monoksida CO dan hidrokarbon HC menjadi masalah bagi kesehatan makhluk hidup di lingkungan sekitarnya. Gas-gas tersebut dapat dijerap dengan karbon aktif yang terbuat dari limbah pertanian seperti kulit pisang karena memiliki kandungan lignoselulosa cukup tinggi dan jumlah yang banyak di Indonesia yaitu sekitar 400-700 ribu ton per tahunnya. Karbon aktif dari kulit pisang dalam penelitian ini dibuat melalui tahap dehidrasi, karbonisasi pada suhu 350 C selama 1 jam, kemudian aktivasi secara kimia menggunakan berbagai konsentrasi larutan H2SO4 selama 1 jam pada suhu 85oC. Sebagai pembanding kemampuan adsorpsi, sebagian karbon aktif saat proses karbonisasi juga diaktivasi secara fisika menggunakan gas N2 dengan laju alir 0,15 NL/menit. Karakterisasi karbon aktif dilakukan dengan uji bilangan iodin, SEM, dan EDX. Melalui uji bilangan iodin, luas permukaan karbon aktif terbaik didapat pada karbon yang teraktivasi fisika-kimia menggunakan H2SO4 6 N, yaitu sebesar 614 m2/g. Sementara luas permukaan karbon aktif pada karbon teraktivasi kimia pada konsentrasi H2SO4 yang sama yaitu sebesar 426 m2/g. Karbon-karbon aktif dengan karakteristik terbaik dari masing-masing metode aktivasi diuji kemampuan adsorpsinya untuk menurunkan kadar emisi gas buang CO dan HC pada sepeda motor. Karbon aktif teraktivasi kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 40,46 dan 31,51. Sementara karbon aktif teraktivasi fisika-kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 56,27 dan 42,63.

ABSTRACT
Air pollution caused by motor vehicle exhaust emissions in the form of harmful gases such as carbon monoxide CO and hydrocarbon HC becomes a problem for the health of living things in the surrounding environment. Those gases can be adsorbed with activated carbon made from agricultural waste such as banana peel because it has quite high lignocellulose content and large amount in Indonesia, which is about 400 700 thousand tons per year. Activated carbon from banana peel in this research is made through the dehydration stage, carbonization at 350oC for 1 hour, then chemical activation using various concentrations of H2SO4 solution for 1 hour at 85oC. In comparison with the adsorption capacity, some of the activated carbon at carbonization process also proceed with physical activation using N2 gas with a flow rate of 0.15 NL min. Characterization of activated carbon is done by iodine, SEM, and EDX tests. Through iodine test, the best surface area of activated carbon is obtained in physical chemical activated carbon with H2SO4 6 N, which is 614 m2 g. Meanwhile, surface area of chemical activated carbon in same H2SO4 concentration is 426 m2 g. The activated carbons with best characteristic from each activation method are tested its adsorption ability to decrease exhaust CO and HC emission content in motorcycle. Chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 40.46 and 31.51 respectively. While physical chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 56.27 and 42.63 respectively."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Itamar Pascana Ningrum
"Adsorbed Natural Gas ANG adalah sebuah metode penyimpanan gas dengan memanfaatkan material berpori sebagai adsorben untuk menyerap gas metana sebagai adsorbatnya dan menciptakan kondisi penyimpanan dengan tekanan yang lebih rendah 7-40 bar dengan kapasitas yang besar. Adsorben yang digunakan memegang peran vital dalam teknologi ANG. Karbon aktif adalah jenis adsorben yang paling banyak digunakan pada sistem adsorpsi gas alam, hal tersebut dikarenakan karbon aktif memiliki volume mikropori dan mesopori yang relatif besar. Karbon aktif dapat terbuat dari berbagai bahan dasar seperti tempurung kelapa, eceng gondok, sekam padi, kulit pisang, bonggol jagung dan lain ndash; lain. Salah satu bahan dasar yang cukup potensial dan seringkali keberadaannya tidak dimanfaatkan secara optimal karena jumlahnya yang tergolong banyak adalah kulit durian. Berdasarkan literatur pengujian kulit durian menunjukan bahwa kulit durian berpotensi digunakan sebagai bahan pembuatan karbon aktif. Hal ini dikarenakan kulit durian memiliki kandungan selulosa terbanyak sekitar 50-60 dan lignin 5 . Setelah proses karbonisasi kandungan karbon pada kulit durian dapat mencapai 78 . Pembuatan karbon aktif dari kulit durian dilakukan dengan menggunakan aktivator kimia KOH dan melakukan aktivasi secara fisika dengan menggunakan panas pada suhu 600 C selama 1 jam. Luas permukaan yang didapatkan pada penelitian ini yaitu sebesar 2.005,381 m2/g. Proses pengujian kapasitas penyimpanan gas metana, dilakukan pada suhu 270C, 350C, dan 450C, dengan variasi tekanan sebesar 3 bar, 8 bar, 15 bar, 25 bar, dan 35 bar. Karbon aktif komersial juga digunakan sebagai pembanding. Hasil kapasitas penyimpanan gas metana terbaik pada temperatur 270C dan tekanan 35 bar dengan menggunakan karbon aktif dari kulit durian diperoleh sebesar 0,04287 kg/kg, dan menggunakan karbon aktif komersial diperoleh sebesar 0.04386 kg/kg. Berdasarkan kedua hasil yang diperoleh, dapat terlihat dengan jelas bahwa karbon aktif dari kulit durian memiliki perbedaan nilai yang tidak terlalu signifikan dengan karbon aktif komersial. Hal ini berarti karbon aktif kulit durian memiliki kemampuan kapasitas penyimpanan yang baik seperti karbon aktif komersial yang telah banyak dijual dipasaran.

Adsorbed Natural Gas ANG is a method of gas storage by utilizing porous material as an adsorbent for absorbing methane gas as adsorbat and create the conditions of storage at a lower pressure 7 40 bar with a large capacity. The adsorbent used holds a vital role in ANG technology. Activated carbon is a type adsorbents most widely used in the natural gas adsorption system, it is because activated carbon has microporous and mesoporous volume is relatively large. Activated carbon can be made from different materials such as coconut shell, water hyacinth, rice husks and banana peels, corn stalks and etc. One of the basic ingredients of considerable potential and its presence is often not used optimally because there are quite a lot of durian peel. Based on the literature shows that the durian peel could potentially be used as materials for activated carbon. This is because the durian peel contains most about 50 60 cellulose and lignin 5 . After the carbonization process the carbon content of durian peel can reach 78 . Manufacture of activated carbon from durian peel is done by using a chemical activator KOH and activate physics by applying heat at 600 C for 1 hour. The surface area obtained in this study is 2.005,381 m2 g. In testing storage capacity of methane gas, carried out at a temperature of 270C, 350C and 450C, with variations in pressure of 3 bar, 8 bar, 15 bar, 25 bar and 35 bar. Commercial activated carbon is also used as a comparison. The best result storage capacity of methane gas at a temperature 270C with a pressure 35 bar, by using activated carbon from durian peel obtained by 0,04287 kg kg and by using commersial activated carbon obtained by 0.04386 kg kg. Based on the two results obtained, it can be seen clearly that activated carbon from durian peel has a difference of value that is not too significant with commercial activated carbon. This means that durian peel activated carbon has good storage capacity capabilities such as commercial activated carbon that has been sold in the market."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67201
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simbolon, Roselina
"Pada penelitian ini, botol plastik atau polietilen tereftalat (PET) digunakan sebagai sumber karbon untuk pembentukan nanocarbon. Limbah PET dikonversi menjadi gas hidrokarbon, kemudian menjadi nanocarbon pada permukaan katalis. Metode yang digunakan pada sintesis nanocarbon dari limbah PET adalah pirolisis. Sintesis nanocarbon dilakukan dengan katalis pelat nikel, mengunakan gas argon sebagai carrier gas. Preparasi precursor katalis nikel, dilakukan dengan metode dekomposisi urea. Suhu operasi pada sintesis nanocarbon dari limbah PET dipilih pada suhu 800oC, sebagai suhu optimum pembentukan nanocarbon. Hasil gas hidrokarbon yang terbentuk dianalisa dengan GC-TCD. Hasil nanocarbon yang terbentuk akan dianalisa dengan karakterisasi FE-SEM EDX dan XRD.

In this experiment, plastic bottles or polyethylene terephthalate (PET) is used as a carbon source for the formation of nanocarbon. Waste PET is converted into hydrocarbon gas, then became nanocarbon on the catalyst surface. Pyrolysis method used in this experiment for synthesis of nanocarbon from waste PET. Synthesis of nanocarbon with nickel plate catalyst using argon gas as carrier gas. Preparation of nickel catalyst precursor, is done by the method of decomposition of urea. Operating suhue on the synthesis nanocarbon from waste PET is chosen at a suhue of 800oC, which selected as the optimum suhue formation of nanocarbon. Results of hydrocarbons gas analyzed with GC-TCD. Result from synthesis nanocarbon will be analyzed with the characterization of FE-SEM-EDX and XRD."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gerald Mayo Leopold
"Saat ini energi dianggap sebagai kebutuhan utama di dunia. Sayangnya, energi dari bahan bakar fosil menghasilkan karbon dioksida dalam jumlah besar sehingga meningkatkan efek rumah kaca di dunia ini. Untuk mengatasi masalah ini, banyak negara berkembang telah mengkonversi bahan bakar fosil ke gas alam. Selanjutnya, gas alam masih mengandung zat pengotor, sehingga pemurnian gas alam dari zat pengotor sangat penting.
Penelitian ini akan membangun simulasi pemurnian yang dicapai dengan dua simulasi yang berbeda. Pada simulasi pertama komponen akan terdiri dari metana, nitrogen dan karbon dioksida dengan persentase komposisi 80% metana dan 10% dari karbon dioksida dan nitrogen masing-masing. Simulasi kedua akan terjadi tanpa nitrogen dan dengan persentase 80% metana dan 20% dari karbon dioksida. Hasil penelitian menunjukkan bahwa karbon dioksida dapat terserap awal 50%. Di sisi lain metana tidak dapat dimurnikan dengan baik ketika ada nitrogen ada dalam proses adsorpsi.

Nowadays energy is considered as primary requirement in the world. Unfortunately, the energy from fossil fuel emits large number of carbon dioxide increasing the greenhouse effect in this world. In order to overcome this problem, many develop countries are converting fossil fuel into natural gas. Furthermore, natural gas is still occupied with impurities, therefore purification of Natural gas from impurities are very important.
This study observed the purification simulation process which attained with two different run. The first run components were consists of methane, nitrogen and carbon dioxide with percentage composition 80% of methane and 10% of carbon dioxide and 10 % nitrogen respectively. The second run occurred without nitrogen and with percentage 80% of methane and 20% of carbon dioxide. Result show that carbon dioxide can be adsorbed nearly 50 %. On the other hand methane cannot be well purified when there is nitrogen exist in the adsorption process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46592
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dinda Prastika Nabila Nahda
"Superkapasitor menjadi salah satu media penyimpanan energi listrik yang dapat digunakan sebagai alternatif baterai. Pada penelitian ini, telah dilakukan studi terhadap kinerja superkapasitor elektroda karbon mesopori yang disintesis dari kulit pisang. Mula-mula kulit pisang dikeringkan di bawah sinar matahari, lalu dihaluskan menjadi bubuk kulit pisang. Bubuk kulit pisang ini disintesis menjadi karbon mesopori dengan cara dipanaskan dan dikarbonisasi menggunakan template (pencetak). Pencetak yang digunakan adalah gel silika 60 dan MCM-41. Karbon mesopori yang dihasilkan dikarakterisasi menggunakan TGA, XRD, XRF, TEM, spektrofotometri Raman, N2-physisorption, dan FTIR untuk mengetahui sifat yang terbentuk. Karbon mesopori hasil sintesis dengan pencetak MCM-41 menghasilkan luas pemukaan spesifik sebesar 467,24 m2/g, sedangkan dengan pencetak silika gel 60 pada perbandingan prekursor karbon dan silika gel 3:1 menghasilkan luas permukaan spesifik 476,97 m2/g. Evaluasi kinerja sebagai superkapasitor dilakukan dengan membuat komposit nickel foam-karbon mesopori hasil sintesis dan menggunakannya sebagai elektroda kerja untuk superkapasitor. Pengujian dilakukan dengan menggunakan CV, GCD, dan EIS. Elektroda dari karbon mesopori hasil sintesis dengan pencetak MCM-41 memberikan nilai kapasitansi spesifik sebesar 38,71 F/g pada scan rate 0,1 V/s dan 12,20 F/g pada densitas arus 0,05 A/g. Elektroda dari karbon mesopori dengan pencetak gel silika 60 perbandingan 3:1 (MC-S-3@NF) menghasilkan nilai kapasitansi spesifik sebesar 23,14 F/g pada scan rate 0,1 V/s dan 7,91 F/g pada densitas arus 0,05 A/g. Sedangkan uji stabilitas elektroda MC-S-3@NF sebanyak 2500 siklus meningkatkan persen kapasitansi elektroda sebesar 30%.

Supercapacitors have become one of the electrical energy storage that can be used as an alternative to batteries. In this study, research has been conducted on the performance of mesoporous carbon supercapacitor electrodes synthesized from banana peels. Initially, banana peels were dried under sunlight, then ground into banana peel powder. This banana peel powder was synthesized into mesoporous carbon by heating and carbonizing it using a template. The templates used were silica gel 60 and MCM-41. The synthesized mesoporous carbon was characterized using TGA, XRD, XRF, TEM, Raman spectroscopy, N2-physisorption, and FTIR to determine the properties of material. Mesoporous carbon synthesized using the MCM-41 template resulted in a specific surface area of 467.24 m2/g, while using the silica gel 60 template at a carbon and silica gel precursor ratio of 3:1, it yielded a specific surface area of 476.97 m2/g. The performance evaluation as a supercapacitor was conducted by creating a composite of nickel foam-synthesized mesoporous carbon and using it as the working electrode for the supercapacitor. Supercapacitor evaluation was carried out using CV, GCD, and EIS. The synthesized mesoporous carbon with the MCM-41 template electrode provided a specific capacitance value of 38.71 F/g at a scan rate of 0.1 V/s and 12.20 F/g at a current density of 0.05 A/g. The mesoporous carbon with the silica gel 60 template at a 3:1 ratio electrode (MC-S-3@NF) yielded a specific capacitance value of 23.14 F/g at a scan rate of 0.1 V/s and 7.91 F/g at a current density of 0.05 A/g. Meanwhile, the stability test of the MC-S-3@NF electrode for 2500 cycles increased the electrode capacitance percentage by 30%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>