Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 12922 dokumen yang sesuai dengan query
cover
Aditya Indra Bayu
"ABSTRAK
Turbin angin tipe Savonius adalah turbin angin sumbu vertikal (VAWT) yang memiliki kelebihan di konstruksinya yang sederhana, kemampuan untuk menerima angin dari segala arah, kemudahan dalam perawatan dan tidak menghasilkan suara yang bising. Karakteristik ini membuatnya cocok diterapkan untuk daerah perkotaan ataupun perumahan. Yang menjadi kendala utama adalah lokasi penempatan yang cenderung berkecepatan angin rendah. Penelitian ini bertujuan untuk menentukan konfigurasi yang tepat untuk turbin angin Savonius agar mampu memberikan performa yang baik pada kecepatan angin rendah. Hasil penelitian dan studi kasus menunjukkan bahwa untuk setiap variasi parameter geometrik Savonius turut serta mempengaruhi performa secara keseluruhan. Nilai Overlap Ratio antara 0.15 dan 0.25 memberikan performa yang optimal bagi nilai Cp. Dengan desain dan
konfigurasi Overlap R atio yang tepat diharapkan mampu menambah performa untuk kecepatan angin rendah.

ABSTRACT
Savonius wind turbine is a vertical axis wind turbine which has many advantages such as simple construction, capabilites to accepting wind in omni directional, easiness in maintenance and low noise pollution. These characteristic make it ecspecially suited as an alternative electricity source in cities and urban area. The only problem lies in
the low wind velocity which resulting in low torque and power output. This research aimed to decide the best configuration for Savonius wind turbine si it give the best performance possible. Research and various studies shows that for every geometric parameters give a boost in performance. An Overlap Ratio value of 0.15 and 0.25
gives the optimum Cp value according to various sources. With the right design and optimum configurations of Overlap Ratio, hopefully could increase the performance significantly in low wind velocity.
"
Fakultas Teknik Universitas Indonesia, 2012
S42797
UI - Skripsi Open  Universitas Indonesia Library
cover
Buyung Junaidin
"Konsumsi energi yang berasal dari bahan bakar fosil yang semakin tinggi dan ketersediannya di alam yang terbatas sehingga jumlahnya semakin berkurang, memaksa orang untuk mencari alternatif sumber energi lain. Energi angin menjadi salah satu energi alternatif yang penting dan diperhitungkan sejak adanya krisis energi dan isu lingkungan (polusi udara) akibat penggunaan bahan bakar fosil. Energi angin dimanfaatkan dengan cara mengubah gerakan angin menjadi energi listrik dengan turbin angin (wind turbine). Banyak turbin angin dengan skala besar yang telah dibuat atau dikembangkan di berbagai negara karena terbukti sangat efektif untuk menghasilkan energi listrik. Turbin angin skala kecil juga ikut dibuat dan dikembangkan hingga saat ini karena beberapa kelebihannya jika dibandingkan dengan turbin angin skala besar. Kelebihannya itu diantaranya tidak terbatasnya daerah atau lokasi pemasangan turbin angin karena ukurannya yang kecil sehingga dapat di tempatkan di daerah seperti perkotaan. Untuk turbin angin skala kecil, jenis vertical axis wind turbin (VAWT) sangatlah cocok digunakan didaerah perkotaan karena karakteristik VAWT yang dapat bergerak tanpa tergantung arah angin, hal ini sesuai dengan karakteristik angin perkotaan. Selain itu, VAWT dapat bergerak dan menghasilkan energi listrik pada kondisi kecepatan angin yang rendah. Penelitian ini fokus pada perancangan VAWT skala kecil yang dapat diaplikasikan pada kecepatan angin rendah dan berubah-ubah arah seperti karakteristik angin di perkotaan Indonesia serta analisis aerodinamika menggunakan metode double-multiple stream-tube (DMS). "
Yogyakarta: Pusat Penelitian dan Pengabdian pada Masyarakat (P3M) STTA, 2017
621 JIA 9 : 2 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Ahmad Dien Warits
"Energi angin dapat dimanfaatkan dengan horizontal axis wind turbine seperti TSD-500 di Muara Gembong, Bekasi. Namun produksi listrik TSD-500 belum optimal. Berdasarkan data angin lokasi dan dengan metode Blade Element Momentum Theory (BEMT) dihasilkan desain blade baru. Hasilnya berupa desain blade turbin angin beradius 1 m menggunakan airfoil SD 7032 (low Reynolds number airfoil) yang chord-nya dilinearisasi dengan CP sebesar 0,38 yang stabil di tip speed ratio ±7. Kapasitas turbin angin meningkat dari 500 W menjadi 1.400 W. Blade desain baru ini diprediksi dapat memanfaatkan angin di lokasi sebesar 26%, lebih besar dari blade sebelumnya yang hanya 19,76%."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63243
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdur Rouf
"Turbin Angin Sumbu Vertikal (TASV) merupakan jenis turbin angin yang dengan kecepatan angin rendah dapat menghasilkan listrik dan cukup mudah diterapkan pada beban kelistrikan yang terisolasi. Penelitian ini bertujuan untuk mendapatkan desain sistem TASV dan sistem pasokan listrik yang paling optimal baik secara teknis maupun ekonomis untuk memenuhi kebutuhan energi listrik di daerah Tertinggal, Terdepan dan Terluar (3T). Dengan pendekatan statistik Ordinary Kriging, nilai kecepatan rara-rata tahunan di Raja Ampat diestimasikan berdasarkan data historis kecepatan angin yang berasal dari Badan Meteorologi, Klimatologi dan Geofisika 2019 (BMKG) dan data National Oceanic and Atmospheric Administration 2019 (NOAA) sehingga distribusi kecepatan angin dapat diproyeksikan dengan menggunakan pendekatan distribusi Weibull dan Rayleigh. Parameter yang divariasikan meliputi spesifikasi turbin, kapasitas daya dan kecepatan angin. Hasil penelitian menunjukkan bahwa desain TASV yang optimal untuk diimplementasikan di Raja Ampat adalah turbin 10 kW tipe darrieus dengan blade lurus, cut-in speed 1.5 m/s, kecepatan rated 9 m/s dan faktor kapasitas 20.9%. Untuk kebutuhan energi listrik rata-rata 1,074/pelanggan/tahun, Produksi Energi Tahunan sebesar 18,337 kWh/unit/turbin, 1-unit TASV dapat mensuplai energi listrik kepada 12 pelanggan atau 1-unit turbin dalam radius 1 km2 dengan kepadatan penduduk rata-rata 48 Jiwa/km2. Untuk memasok jumlah permintaan di Raja Ampat sebesar 459,797 kWh ditahun 2021, dibutuhkan sebanyak 25-unit TASV dengan LCOE 20.2 Sen USD / kWh / unit atau lebih rendah dari Biaya Produksi yang Diatur (21.34 sen USD / kWh). Hasil ini menunjukkan TASV merupakan alternatif yang tepat secara teknis dan ekonomis untuk beban kelistrikan di negara-negara kepulauan dengan banyak daerah terisolasi seperti Indonesia.

Vertical Axis Wind Turbine (VAWT) can generate electricity just by low wind speed and simply able to apply for isolated demands. This study aims to obtain the most optimal VAWT system design and power supply system both techno-economic to meet the demands in disadvantaged, frontier and outermost (3T) areas. By Ordinary Kriging method, the annual average velocity in Raja Ampat was estimated based on historical wind speed data from the 2019 Meteorology, Climatology and Geophysics Agency (BMKG) and the 2019 National Oceanic and Atmospheric Administration (NOAA) so that the wind speed distribution can be projected using the Weibull and Rayleigh distribution. The varied parameters include turbine specifications, power capacity and wind speed. The results showed that the optimal VAWT design was the 10 kW straight blade Darrieus turbine, with a cut-in speed of 1.5 m/s, an rated speed of 9 m/s and a capacity factor of 20.9%. For demands an average of 1,074/customer/year, Annual Energy Production of 18,337 kWh turbine unit, then 1 unit can supply the demand for 12 customers or 1 units within a radius of 1 km2, with an average population density of 48 people/ km2. To supply the total demand in Raja Ampat of 459,797 kWh in 2021, 25-unit VAWT with a LCOE of 20.2 Cents USD/kWh or lower than the Regulated Production Cost (21.34 cents USD / kWh) were required. These results suggest that VAWT is a techno-economic viable alternative for electricity demand in archipelagic countries with many isolated areas such as Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Miguel Bintang Samuel
"Pengembangan teknologi energi terbarukan di Indonesia memiliki potensi besar dengan kapasitas teknis energi angin sebesar 60,6 GW. Namun, kecepatan angin yang relatif rendah menjadi tantangan. Skripsi ini bertujuan untuk merancang dan menganalisis kinerja turbin angin vertikal Aeromine, yang sudah dipatenkan pada paper, menggunakan pemodelan matematika dari teori cakram aktuator pada kecepatan angin rendah (2-5 m/s) dengan menggunakan Computational Fluid Dynamics (CFD) dan pengujian terowongan angin dengan prototipe hasil 3D Print. Dua profil airfoil, S1210 dan S1223, serta dua modifikasi inlet, yaitu wind concentrator Invelox dan nozzle yang di isolasi dari aliran freestream, dievaluasi untuk meningkatkan efisiensi turbin. Hasil simulasi menunjukkan bahwa airfoil S1223 memiliki koefisien lift yang lebih tinggi, tetapi hasil eksperimen menunjukan peningkatan drag yang signifikan menghambat kinerja keseluruhan. Desain inlet dengan wind concentrator meningkatkan laju aliran udara, sementara isolasi dari freestream meningkatkan tekanan statis pada inlet. Pada kecepatan rendah, turbin Aeromine mencapai efisiensi terbaik sebesar 1,5% dari total energi angin yang tersedia, menghasilkan 2,17 Watt pada kecepatan 5 m/s. Efisiensi rotor dalam sistem Aeromine juga meningkat sebesar 205,4% dari batas Betz pada 5 m/s dibandingkan konfigurasi HWAT, dimana konfigurasi terbaik adalah airfoil S1210 dengan inlet nozzle terisolasi. Strategi peningkatan terbaik berfokus pada peningkatan daya hisap dengan mengurangi kecepatan di sekitar inlet untuk meningkatkan tekanan statis sesuai prinsip Bernoulli dan menggunakan airfoil dengan efisiensi lift yang baik. Dengan desain airfoil dan inlet yang dioptimalkan, turbin Aeromine terbukti lebih efektif di area dengan kecepatan angin rendah, meskipun efisiensi konversi total energi angin masih rendah dimana pengembangan lebih lanjut bisa dilakukan.

The development of renewable energy technology in Indonesia holds significant potential, with a technical wind energy capacity of 60.6 GW. However, the relatively low wind speeds present a challenge. This thesis aims to design and analyze the performance of a paper patented Aeromine wind turbine using mathematical modeling from actuator disk theory at low wind speeds (2-5 m/s) using Computational Fluid Dynamics (CFD) and wind tunnel testing with a 3D-printed prototype. Two airfoil profiles, S1210 and S1223, and two inlet modifications, wind concentrator invelox and nozzle with freestream isolation, were evaluated to improve turbine efficiency. Simulation results showed that the S1223 airfoil had a higher lift coefficient, but experimental results indicated that the significant increase in drag hindered overall performance. The inlet design with a wind concentrator increased the airflow rate, while freestream isolation increased static pressure at the inlet. At low wind speeds, the Aeromine turbine achieved its best efficiency of 1.5% of the total available wind energy, generating 2.17 Watts at 5 m/s. The rotor efficiency in the Aeromine system also increased by 205.4% from the Betz limit at 5 m/s compared to HWAT configuration, with the best configuration being the S1210 airfoil with isolated nozzle inlet. The best improvement strategy focuses on increasing suction by reducing the velocity around the inlet to boost static pressure according to Bernoulli's principle and using airfoils with good lift efficiency. With optimized airfoil and inlet designs, the Aeromine turbine proves to be more effective in areas with low wind speeds, although the overall conversion efficiency of the total available wind energy remains low where future improvement can be focused."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Billal Pizzaro A
"Pemanfaatan energi angin saat ini cukup meningkat sebagai energi terbarukan. Karena angin adalah salah satu bentuk energi alami yang paling mudah diakses dan tidak menghasilkan zat-zat berbahaya. Berdasarkan hasil pemetaan distribusi kecepatan angin, didapat kecepatan angin yang tinggi (6 - 8 m/s) di onshore terjadi di pesisir selatan pulau Jawa, Sulawesi Selatan, Maluku, dan NTT. Sementara kecepatan angin di daerah offshore menunjukkan angka lebih dari 8 m/s terjadi di Offshore Banten, offshore Sukabumi, offshore Kupang.[15] Turbin Angin sumbu vertikal (TASV) merupakan salah satu jenis turbin angin yang lebih mudah diaplikasikan pada tempat yang memiliki potensi angin tidak terlalu besar. [16] Tujuan dari penelitian ini adalah untuk membuktikan potensi TASV pada kabupaten Sukabumi.

The utilization of wind energy as a renewable energy source has been increasing recently. This is because wind is one of the most easily accessible natural energy forms and does not produce harmful substances. Based on the results of wind speed distribution mapping, high wind speeds (6 - 8 m/s) onshore occur on the south coast of Java Island, South Sulawesi, Maluku, and NTT. Meanwhile, wind speeds in offshore areas show figures of more than 8 m/s occurring in Offshore Banten, Offshore Sukabumi, and Offshore Kupang[15]. Vertical axis wind turbines (VAWTs) are one type of wind turbine that is easier to apply in places with relatively low wind potential.[16] The purpose of this research is to prove the potential of VAWTs in Sukabumi Regency."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Akbar
"Saat ini turbin angin kecepatan rendah sedang mengalami banyak modifikasi guna memaksimalkan kinerja generator sesuai dengan keadaan geografis di Indonesia. Banyak model generator yang dicoba dalam menghasilkan listrik. Pada pembahasaan skripsi ini digunakan generator axial karena cocok dengan keadaan angin kecepatan rendah. Model dan modifikasi dari generator ini pun sangat memegang peranan penting terhadap kinerja generator. Desain dari generator ini menggunakan arus 3 phasa dengan stator tanpa inti besi, serta rotor ganda yang mengapit stator. Disamping itu menggunakan 9 magnet permanen jenis strontium ferrite Br 0.8 T dan 9 kumparan pada stator. Desain ini dibuat berbeda dengan generator axial kecepatan rendah lainnya. Oleh karena itu hasil uji dari generator ini akan di analisa sehingga kita dapat mengetahui nilai efisiensi dari generator yang dibuat sesusai desain yang ditentukan.

Nowdays the low speed wind turbine is modifying to optimize the perfomance of generator appropriate with geographic conditions in Indonesia. Various types of generator which used to producing power. In this thesis author uses an axial generator due to appropriate with low speed wind conditions. The model and the modification of this generator hand the important role of generator performance. The design of this generator use 3 phase coreless stator, and the stator is placed between double rotor. In addition, this generator use 9 strontium ferrite Br 0.8 T permanent magnet and 9 coil in the stator. This design is made different from other low speed axial generator. Therefore, assay results from these generators will be analyzed so that we can know the value of the efficiency of the generator which is made according to the specified design."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42464
UI - Skripsi Open  Universitas Indonesia Library
cover
Agung Hartansyah
"Berkurangnya sumber bahan bakar fossil sebagai sumber energi memicu perkembangan yang pesat pada teknologi energi terbarukan. Energi angin sebagai salah satu energi terbarukan berpotensi untuk menyelesaikan masalah tersebut khususnya di Indonesia. Pemanfaatan Energi angin menjadi energi listrik sudah di Implementasikan di Indonesia, salah satunya di Muara Gembong yang dilakukan oleh Universitas Indonesia. Pengembangan Kincir Angin khususnya komponen Blade harus disesuaikan dengan karakteristik angin di Indonesia. Untuk mendapatkan Desain yang optimal diperlukan evaluasi terhadap karakteristik Blade yang terpasang. Evaluasi yang dilakukan menggunakan metode numerik software Qblade.
Hasil simulasi menunjukan efisiensi Blade (Cp) 0,485 pada TSR 5,5. Torsi maksimal Blade di capai pada 300rpm-550rpm pada kecepatan angin 3m/s-12m/s. Pengukuran langsung kecepatan angin dari bulan November 2014-Mei 2015 menunjukan Kecepatan angin 1m/s-2m/s menunjukan probabiliti 18% namun energi yang dihasilkan 0 watt. Sedangkan energi terbesar dihasilkan pada kecepatan angin 6m/s-7m/s yaitu sebesar 26kWh walaupun probabiliti kecepatan angin 7%.
Hasil simulasi dari struktur blade menunjukan beban kritis terjadi pada pangkal Blade tepatnya pada sudut twist terbesar yaitu 12,40. Secara keseluruhan struktur Blade cukup kuat untuk menahan beban yang diakibatkan oleh angin. Bedasarkan data-data evaluasi di atas menunjukan bahwa karakteristik dari Blade yang terpasang memang di khususkan untuk kecepatan angin yang tinggi yaitu >7m/s.

Sort of fossil fuel as energy resource of the world triggers a rapid development in renewable energy. Wind energy as one of renewable energy resource has a great potential to solve world’s energy needs especially in Indonesia. The utilization of wind energy to electric energy has been implemented in Indonesia in Muara Gembong done by University of Indonesia. The wind turbine development especially in blade component has to be suited with Indonesia wind characteristics. In order to obtain an optimum design an evaluation for the implemented blade performance is significantly needed. The evaluation is conducted by numerical method using QBlade software.
The simulation results show the blade efficiency (Cp) of 0.485 at TSR of 5.5. The maximum torque generated is on the range rotational speed of 300-500 rpm at wind speed of 3-12 m/s. A direct measurement in wind speed has conducted in November 2014 - May 2015. Although the measurement results show wind speed range of 1-2 m/s with probability value of 18%, the energy generated is 0 watt. While the highest value of energy generated by this wind energy which is at wind speed range of 6-7 m/s is 26 KWh with probability value of 7%.
The blade structure simulation result shows the critical load occur at blade hub region precisely at twist of 12.4o. The overall blade structure is actually strong enough to withstand the load produced by wind. Consequently, based on evaluation data obtained, it is proven that the implemented blade performance is specifically designed at high wind speed condition (>7 m/s).
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59247
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fery Hermawan
"Semakin berkurangnya energi yang tidak dapat diperbaharui membuat orang berpikir untuk mencari solusi energi alternatif. Di antaranya adalah pemanfaatan energi yang dapat diperbaharui yang terdapat di lingkungan sekitar, atau pemanfaatan bentuk energi yang terbuang menjadi bentuk energi lainnya, sesuai dengan tujuan Zero Energy Building (ZEB). Salah satu pemanfaatan energi yang terdapat di lingkungan adalah turbin angin yang memanfaatkan energi angin.
Dalam penelitian ini, dilakukan simulasi pengaruh bentuk eksentrisitas dan bentuk terhadap karakterisitik savonius itu sendiri, yang berupa meshing, tekanan, dan kecepatan udara. Simulasi menggunakan metode CFD berbasiskan perangkat komputasi. Model yang disimulasikan adalah yang memiliki gap 48 mm, 60 mm, 76 mm, 89 mm, 114 mm, 140 mm, 165 mm, dan 216 mm. Kemudian model yang mendapat nilai error terendah dimodifikasi bentuknya dengan menambah luas permukaan menjadi tiga kalinya. Bentuk yang pertama dengan sudut serang sudu linear, dan kedua dengan sudut serang sudu berbeda 60o pada tiap lapisannya.
Hasil simulasi menunjukkan bahwa semakin besar luas permukaan akan meningkatkan daya pada turbin itu sendiri. Turbin savonius tanpa penambahan luas yang memiliki error rendah terdapat pada gap 114 mm yang memiliki daya tertinggi secara simulasi 0,110360406 Watt pada putaran -20 rpm, torsi -0,052719939 N.m, dan error-nya sebesar 79,084%. Sedangkan dengan penambahan luas permukaan, maka bentuk turbin dengan sudut serang sudu 60o memiliki error terendah dengan nilai 57,87% dan daya menurut simulasi 0,666869687 Watt. Sedangkan error turbin savonius model sudut serang sudu linear tertinggi adalah 64,373% dengan daya 0,563935102 Watt.

The non-renewable energy that on the wane make the people think to look for alternative energy solutions. Among them is the utilization of renewable energy contained in the environment, or the utilization of wasted energy into other energy forms, in accordance with the purpose of Zero Energy Building (ZEB). One of the utilization of energy contained in the environment is the use of wind energy for wind turbines.
In this study, carried out simulations of the effects of eccentricity and form to characteristic savonius of itself, like meshing, pressure, and air velocity. Simulations using CFD method based on computing devices. The model is simulated with a gap 48 mm, 60 mm, 76 mm, 89 mm, 114 mm, 140 mm, 165 mm and 216 mm. Later models had the lowest error value is modified form, by adding surface area thrice. The first form an blade angle of attack mean linear, and the second with a different blade angle of attack 60o on each pad.
Simulation results show that the greater the surface area will increase the power of the turbine itself. Savonius turbine without the addition of a large low error are the 114 mm gap that has supreme power in a simulation 0.110360406 Watt on rotation -20 rpm, -0.052719939 Nm of torque, and error of 79,084%. Meanwhile, with the addition of surface area, the form of turbine blade angle 60o attack has the lowest error with a value of 57,87% and power by simulation 0.666869687 Watt. While error savonius turbine blade model point of attack is the lowest linear with 64,373%, 0.563935102 Watt power.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50781
UI - Skripsi Open  Universitas Indonesia Library
cover
Hartadi Lukman
"Stabilitas struktur turbin angin terapung lepas pantai diperlukan agar turbin angin bisa bekerja di laut lepas. Stabilitas struktur dapat dikategorikan dengan pembatasan pergerakan rotasi pitch. Stabilitas struktur bisa ditentukan apabila respon struktur terhadap gaya eksitasi diketahui. Analisa untuk mengetahui respon struktur bisa dilakukan dengan metoda coupled atau uncoupled. Analisa coupled memakan banyak waktu dan biaya sehingga respon struktur dianalisa secara uncoupled dengan analisa frekuensi domain yang cukup efisien dan murah.
Pada penelitian ini dilakukan dua simulasi untuk mengetahui pengaruh parameter tersebut terhadap respon dari dua jenis struktur turbin angin terapung lepas pantai, yaitu simulasi respon turbin angin terapung lepas pantai tipe HyWind dan tipe SWAY terhadap perubahan lingkungan laut atau sea state. Hasil dari simulasi ini akan kemudian dipergunakan sebagai pembanding antara respon kedua jenis sistem dengan parameter yang disamakan.
Analisa coupled dengan metode frekuensi domain menunjukkan hasil yang cukup akurat untuk kondisi laut norrnal. Hasil simulasi menunjukkan bahwa sistem SWAY mempunyai stabilitas yang lebih baik dari sistem HyWind. Pengaruh gaya gelombang terhadap rotasi arah pitch akan semakin meningkat dengan meningkatnya kondisi lingkungan laut, sedangkan pengaruh gaya angin dan arus semakin menurun. Stabilitas sistem turbin angin terapung lepas pantai tipe SWAY dalam arah pitch dapat dikategorikan sangat baik, hal ini dilihat dari hasil simulasi yang menunjukkan bahwa hingga sea state 6, sistem SWAY masuk dalam kategori operating.

Structural stability is needed by floating offshore wind turbine so it can be operated in the open sea. Structural stability can be categorized by the limitation in pitch motion. The stability of structure can be defined by knowing the structural responses. The analysis for structural responses can be done by coupled or uncoupled analysis. Coupled analysis will consume more time and cost. So, uncoupled analysis with frequency domain was choosen to make the analysis efficient and cheaper.
In this research, two simulations were done in order to calculate the response of two SPAR system floating offshore wind turbine, HyWind and SWAY with a variation of sea state. The results will then be used to compare the response of the two system with the same parameters.
Uncoupled analysis with frequency domain method have good accuracy for normal sea state. The simulation shows that the SWAY system have a better stability than the HyWind system. The influence of wave forces on pitch will increase by increasing the sea state, whereas the influence of wind and current forces will decrease. SWAY system has a good stability in pitch. This can be seen from the result of simulation that shows that SWAY system stays within the operating category for sea state 1 until 6.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T45506
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>