Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 181209 dokumen yang sesuai dengan query
cover
Eka Rahmawati
"Pengaruh suhu terhadap distribusi produk hidrokarbon dari hasil reaksi aseton khususnya hidrokarbon aromatik perlu diteliti secara detail. Penelitian ini dilakukan untuk mendeteksi keberlangsungan reaksi aseton menjadi hidrokarbon menggunakan katalis HZSM-5 terhadap distribusi produk serta mendeteksi terbentuknya kokas yang disebabkan oleh deaktivasi katalis pada rentang suhu 275°C-350°C. Produk yang terbentuk dianalisis menggunakan GC-MS (Gas Chromatography-mass spectroscophy). Terdapat keterkaitan antara pengaruh suhu terhadap distribusi produk dan kemampuan shape selective catalyst dan komponen pembentukan kokas yang menyebabkan katalis terdeaktivasi.
Hasil uji reaksi aseton menunjukkan bahwa pengaruh suhu terhadap distribusi produk mekanisme reaksi dominan terbentuk isobutena, mesetil oksida dan diaseton alkohol. Sedangkan pembentukan kokas senyawa yang dominan yaitu jumlah rantai karbon C21-C30 sekitar 40-60% dan >C40 sekitar 27-59%. Hasil uji keasaman semakin tinggi suhu maka tingkat keasaman katalis semakin tinggi.

Effect of temperature on the product distribution of hydrocarbon from the reaction of acetone especially aromatic hydrocarbons need to be studied in detail. This study was conducted to detect the continuity of the reaction of acetone into hydrocarbons using HZSM-5 catalyst on product distribution and detecting the formation of coke caused by the catalyst deactivation on the temperature range 275°C-350°C. The product was analyzed using GC-MS (Gas Chromatography- Mass Spectroscophy). There is a link between the effect of temperature on product distribution and the ability to shape selective catalysts and components of coke formation which causes the catalyst deactivation.
Acetone reaction test results indicate that the effect of temperature on product distribution of the dominant reaction mechanism is formed isobutene, mesetil oxide and diacetone alcohol. While the formation of coke which is the dominant compound chain of carbon C21-C30 about 40-60% and> C40 approximately 27-59%. From the test result acidity the higher the temperature the higher the acidity of the catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43048
UI - Skripsi Open  Universitas Indonesia Library
cover
Altha Marissa
"ABSTRAK
Katalis HZSM-5 biasa digunakan untuk mengkonversi aseton menjadi hidrokarbon. Katalis ini akan mengalami deaktivasi pada waktu tertentu dan hal tersebut dipengaruhi oleh kandungan rasio Si/Al. Pada penelitian ini, katalis diuji dengan mengunakan reaktor unggun tetap (fixed bed), dengan variasi Si/Al 27, 75 dan 140. Karakterisasi katalis menggunakan metode BET, FT-IR dan uji keasaman. Dari penelitian diperoleh hasil bahwa katalis dengan rasio Si/Al=75 memiliki stabilitas konversi aseton selama 7 jam dan memiliki tingkat keasaman paling tinggi. Penyebab deaktivasi katalis yaitu terbentuknya kokas. Keberadaan kokas ini diamati dengan mengunakan FT-IR pada rentang 1540-1600 cm-1 dan metode BET yang menunjukan penurunan luas permukaan sebesar 85-90%. Regenerasi katalis telah berhasil dilakukan dengan mengunakan udara. Luas permukaan katalis setelah regenerasi diperoleh sebesar 285,4 m2/gram dan terdapat pita kokas pada spektrum serapan FT-IR dengan rentang bilangan gelombang 1540-1600 cm-1.

ABSTRACT
HZSM-5 catalysts used to convert acetone into hydrocarbons. The catalyst will undergo deactivation at any given time and it is influenced by the content ratio of Si / Al. In this study, the catalyst was tested by using a fixed bed reactor (fixed bed), with variations of Si / Al 27, 75 and 140. Characterization of catalysts using the BET method, FT-IR and acidity test. From the studies obtained results that the catalyst with the ratio Si / Al = 75 has the stability of the conversion of acetone for 7 hours and has the highest acidity. The cause of catalyst deactivation is coke formation. The presence of coke is observed by using FT-IR in the range 1540-1600 cm-1 and BET methods that show a decrease of 85-90% of surface area. Regeneration of the catalyst has been successfully performed by using air. The surface area of the catalyst after regeneration is obtained at 285.4 m2/gram and there is a ribbon coke in the FT-IR absorption spectrum with the wavenumber range 1540-1600 cm-1."
Fakultas Teknik Universitas Indonesia, 2011
S1117
UI - Skripsi Open  Universitas Indonesia Library
cover
Arief Surya Wibawa
"ABSTRAK
Senyawa aromatik dan olefin dapat diperoleh dari reaksi aseton dengan
menggunakan katalis HZSM-5. Kemampuan katalis dalam mengkonversi aseton
diuji dengan mengunakan reaktor unggun tetap (fixed bed) pada suhu 350o-430oC,
tekanan atmosferik, dan mengunakan aliran carrier gas N2 sebesar 30 ml/menit
dengan rasio katalis Si/Al=75. Kemudian produk yang terbentuk dianalisa dengan
menggunakan GC-MS. Komposisi senyawa aromatik yang terbentuk pada suhu
reaksi 400o dan 430oC 30,86% lebih besar daripada suhu 350oC. Komposisi
senyawa aromatik turun 44,63% selama reaksi enam jam. Kokas yang terbentuk
pada suhu reaksi 350oC 4,74% lebih banyak daripada suhu 430oC. Terbentuknya
kokas mengakibatkan kemampuan shape selective catalyst menurun karena
diameter pori katalis akan semakin menyempit dari 0,63 nm menjadi kurang dari
0,57 nm.

ABSTRACT
Aromatics and olefins can be obtained from the reaction of acetone using HZSM-
5 catalyst. Ability of the catalyst in converting the acetone is tested by using fixed
bed reactor at temperature 350o-430oC, atmospheric pressure, and using flow rate
30 ml / min of N2 as carrier gas with ratio of the catalyst Si/Al = 75. Then the
product is analyzed by using GC-MS. Composition of aromatic compounds
formed in the reaction temperature of 400o and 430oC 30.86% greater than the
temperature of 350oC. Composition of aromatic compounds decreased 44.63%
during six hour reaction. Coke formed in the reaction temperature of 350oC is
4.74% more than the temperature of 430oC. Coke formation causing ability of
shape selective catalyst is reduced because the catalyst pore diameter will be
narrowed from 0.63 nm to less than 0.57 nm."
Fakultas Teknik Universitas Indonesia, 2012
S43197
UI - Skripsi Open  Universitas Indonesia Library
cover
Ika Sumanti
"Gas sintesis merupakan campuran gas hidrogen (H2) dan gas karbon monoksida (CO) yang dapat dikonversi menjadi campuran hidrokarbon rantai panjang melalui sintesis Fischer-Tropsch (FT). Sintesis FT memerlukan rasio molar H2/CO sekitar 1 yang berasal dari biomassa. Tujuan penelitian ini adalah membuat dan mempelajari kinerja katalis Fe-Mn untuk sintesis FT yang sudah diterapkan di industri. Sintesis FT dilakukan dalam reaktor fixed bed pada tekanan 20 bar dan suhu 250-280°C. Karakterisasi katalis Fe-Mn industri dilakukan dengan X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), dan BET.
Hasil penelitian menunjukkan bahwa rasio Fe:Mn dan suhu berpengaruh terhadap aktivitas dan selektivitas katalis. Dengan rasio Fe:Mn tinggi dalam katalis (3Fe:Mn)/AG konversi CO dan selektivitas CO2 dibandingkan dengan katalis (Fe:3Mn)/AG. Peningkatan suhu reaksi juga menyebabkan meningkatnya konversi CO dan selektivitas produk. Dengan suhu 280°C pada katalis (3Fe:Mn)/AG, selektivitas produk CH4 , C2, C3, C6+, CO2 diperoleh, sedangkan pada suhu 250 °C hanya memberikan selektivitas C6+ dan CO2. Suhu optimum untuk katalis (3Fe:Mn)/AG adalah 280°C.

Synthesis gas is a mixture of hydrogen (H2) and carbon monoxide (CO) which can be converted into a mixture of long chain hydrocarbons through Fischer-Tropsch synthesis (FT). FT synthesis requires H2/CO molar ratio of about 1 derived from biomass. The purpose of this research is to create and study the performance of Fe-Mn catalysts for FT synthesis which has been applied in industry. FT synthesis performed in a fixed bed reactor at a pressure of 20 bar and a temperature of 250¬280°C. Characterization of Fe-Mn catalyst industry is done by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and BET.
The results showed that Fe:Mn ratio and temperature affect the catalyst activity and selectivity. With a Fe:Mn ratio is high in the catalyst (3Fe:Mn)/AG CO conversion and selectivity of CO2 compared with the catalyst (Fe:3Mn)/AG. The increasing reaction temperature also caused the CO conversion and product selectivity to increase. With a temperature of 280°C on the catalyst (3Fe:Mn)/AG, the product selectivity of CH4, C2, C3, C6+, CO2 were obtained, while at a temperature of 250°C only C6+ selectivity and CO2 were obtained. The optimum temperature for the catalyst (3Fe: Mn)/AG is 280°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S379
UI - Skripsi Open  Universitas Indonesia Library
cover
Fatimatuts Tsani
"Dalam penelitian ini telah dilakukan preparasi katalis NiMo/γ-Al2O3 dengan metode impregnasi. Pemilihan katalis berbasis nikel ini karena nikel termasuk oksida logam transisi yang memiliki karakter yang dapat diaplikasikan sebagai katalis dan memiliki energi permukaan yang rendah dibandingkan logam transisi. Selain itu, oksida logam lebih banyak digunakan sebagai bahan katalis karena ketersediannya besar dialam, murah serta waktu hidupnya lama. Sebagai penyangga digunakan alumina. Alumina merupakan salah satu katalis penyangga yang terbaik karena mempunyai surface area yang besar untuk logam dengan disperse tinggi dan sifat mekanik yang kuat sehingga dapat digunakan pada reaktor.
Data XRD menunjukkan ukuran kristal dalam katalis NiMo/γ-Al2O3 pada suhu kalsinasi 480°C adalah 252,006 nm dan pada suhu kalsinasi 600°C adalah 84,155 nm. Sementara data BET menunjukkan luas permukaan katalis pada suhu kalsinasi 480°C sebesar 82,11 m2/g dan 110,84 m2/g pada suhu kalsinasi 600°C. Luas permukaan pada alumina sebelum diimpregnasi adalah 255 m2/g. Penurunan luas permukaan katalis ini dikarenakan terbentuknya oksida- oksida Mo, Ni dan P selama proses kalsinasi.
Analisis SEM menunjukkan bahwa katalis yang diperoleh memiliki diameter agregat sebesar 0,5 µm untuk katalis NiMo/γ-Al2O3 dengan suhu kalsinasi 480°C dan 0,4375 µm untuk katalis NiMo/γ-Al2O3 dengan suhu kalsinasi 600°C.
Pengukuran densitas dan viskositas dilakukan pada produk pirolisis untuk dibandingkan dengan lubricant. Pada penelitian ini didapatkan densitas sebesar 0,8821 g/mL dan viskositas sebesar 9,812. Dari data ini, diketahui bahwa dengan menggunakan katalis NiMo/γ-Al2O3 bisa didapatkan produk pirolisis yang hampir mendekati fraksi lubricant.

In this research has been done a preparation of NiMo/γ-Al2O3 catalyst by impregnation method. The selection of catalist is based on the nickel because it?s included in transition metal oxides that possess applicable character as a catalyst and lower surface energy compared with transition metal. Besides that, metal oxides is more applicated as catalyst material supported by it's abundant availability in nature, easy and longer life time. This research used Alumina as the support. Alumina is one the best support catalyst because it has a large surface area for metals with high dispersion and strong mechanical properties that can be used in reactors.
The XRD data shown that the crystal size in NiMo/γ-Al2O3 catalyst at the calcination temperature 480oC is 252.006 nm and at the calcination temperature 600oC is 84.115 nm. Meanwhile, the BET data shown that the catalyst surface area at calcination temperature 480°C and 600°C sequencely is 82.11 m2/g and 110.84 m2/g at 600°C. The surface area before imprenation is 255 m2/g. The reduction of this catalyst surface area is due to the formation of oxides Mo, Ni and P during the process of calcination.
SEM analysis shown that catalyst obtained possess a diameter of 0.5 µm and 0.43 µm for NiMo/γ-Al2O3 catalyst at calsination temperature 480°C and 600°C, in sequenece.
The measurement of density and viscosity has been done for pirolysis product to be compared with diesel fuel. In this study, earned that the density of 0.88219 g/mL and viscosity of 9.812 cP. From this data, it is known that by using the catalyst can be obtained NiMo/γ-Al2O3 pyrolysis products with density and viscosity close to lubricant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S384
UI - Skripsi Open  Universitas Indonesia Library
cover
Astri Pertiwi
"Teknologi konversi senyawa hasil fermentasi menjadi senyawa aromatik maupun olefin masih jarang dikembangkan. Pada penelitian ini bermaksud mengembangkan serta melakukan peningkatan kinerja katalis asam yang berasal dari zeolit alam untuk reaksi proses perengkahan senyawa ABE (aseton-butanoletanol). Proses aktifasi dan modifikasi merupakan cara untuk meningkatkan kualitas dari zeolit yaitu dengan meningkatkan keasaman pada inti aktif zeolit alam. Aktifasi zeolit alam dilakukan dengan pertukaran ion selama 20-120 jam menggunakan NH4Cl 1M pada temperatur ruang untuk menggantikan ion Ca2+ dengan NH4+ sehingga didapatkan NH4-NZ. Serta kalsinasi pada 600_C selama 2 jam agar struktur zeolit lebih stabil dan lebih tahan pada temperatur reaksi yang cukup tinggi. Peningkatan keasaman dilakukan dengan penambahan Boron oksida (B2O3) dengan cara impregnasi pada permukaan zeolit alam sehingga menghasilkan spesi peroksida (O22-) yang dapat meningkatkan kinerja katalis serta mengatur perubahan dimensi pori. Hasil dari karakterisasi katalis yang dilakukan meliputi komposisi kimiawi yaitu rasio Si/Al 5,17, %kristalinitas dari zeolit yang telah dipreparasi mengalami peningkatan menjadi 50% dan penambahan B2O3 tidak membentuk senyawa baru (terdispersi merata di permukaan zeolit), keasaman 5%B2O3/HNZ memiliki jumlah keasaman yang tinggi sebesar 3 _mol/_C dan acid strength pada rentang temperatur 375 dan 425_C. Kinerja katalis B2O3/HNZ diuji dengan melibatkannya dalam reaksi konversi senyawa ABE dalam reaktor pipa unggun tetap (packed bed) pada tekanan atmosferik dengan berbagai variasi rasio B2O3 (5,10 dan 15%) dalam zeolit, temperatur operasi (375~480_C). Yield hidrokarbon dari hasil konversi senyawa ABE umumnya menghasilkan %yield hidrokarbon kurang dari 20%. Pada reaksi menggunakan katalis dengan loading 5% B2O3 diperoleh % yield hidrokarbon yang relatif tinggi mencapai 41,9%."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49597
UI - Skripsi Membership  Universitas Indonesia Library
cover
Awaliatul Barkah
"Poliester sukrosa (SPE) merupakan senyawa yang memiliki struktur mirip dengan lemak alami, suatu substitusi lemak nonkalori yang tidak tercerna serta tidak terabsorpsikan. Ester sukrosa dengan derajat esterifikasi rendah banyak diaplikasikan sebagai emulsifier dan yang berderajat esterifikasi tinggi digunakan sebagai fat replacer. Sebagian besar produksi karbohidrat poliester dilakukan secara kimiawi dan saat ini masih dilindungi oleh paten. Sintesis ester sukrosa secara enzimatik dapat dilakukan dengan menggunakan enzim lipase dalam pelarut organik dengan kandungan air yang sedikit.
Penelitian ini bertujuan untuk melakukan studi reaksi esterifikasi antara sukrosa dengan asam lemak hasil hidrolisis minyak kelapa dengan menggunakan enzim lipase Candida rugosa dalam pelarut nheksana. Enzim lipase yang digunakan memiliki aktivitas spesifik 2,45 U/mg. Analisis dengan IR menunjukkan produk hasil reaksi esterifikasi memiliki gugus ester, yang ditunjukkan dengan adanya serapan pada bilangan gelombang 1739 cm1. Analisis dengan HPLC menunjukkan bahwa ester sukrosa yang terbentuk merupakan campuran mono, di, tri, dan tetraester dengan perbandingan 40,28%, 42,05%, 13,65%, dan 4,03%. Hasil optimasi reaksi esterifikasi diperoleh bahwa kondisi optimum dari reaksi adalah pada waktu reaksi 18 jam, temperatur 30 oC, dan perbandingan mol sukrosa dengan asam lemak sebesar 1:40. Berdasarkan uji kualitatif sederhana pembentukan emulsi, produk hasil sintesis dapat digunakan sebagai emulsifier.

Sucrose polyester is a compound that has a similiar structure with natural fat, a noncaloric fat substitute that is non digestible and non absorbable. Sucrose ester with a low degree of substitution could be applied as an emulsifier and a high degree of substitution could be used as fat replacer. Most of sucrose esters were prepared by conventional chemical esterification and still protected by patent. The enzymatic synthesis of sucrose ester can be carried out by using lipase in organic solvent with a less water content.
This research aims to study the esterification reaction between sucrose and hydrolized coconut oil fatty acid performed in nhexane using Candida rugosa lipase. The specific activity of enzyme that used in this study is 2,45 U/mg. FTIR analysis showed that the product of esterification reaction has an ester group shown by the absoption at wave number 1739 cm1. HPLC analysis showed that the synthesized product were a mixture of mono, di, tri, and tetraester with the composition ratio 40,28%, 42,05%, 13,65%, and 4,03%. The optimum condition of esterification reaction were achieve at reaction time 18 hours, temperature 30 oC, and mole ratio of sugar to fatty acid 1:40 mmol. Based on simple qualitative test of emulsion formation, the product of esterification reaction could be used as an emulsifier.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S363
UI - Skripsi Open  Universitas Indonesia Library
cover
Ius Pratama
"Simulasi yang dilakukan pada bagian hulu produksi bioetanol generasi dua ini bertujuan untuk mengoptimisasi biaya proses produksi secara sederhana dan dapat dikembangkan selanjutnya variasi metode dalam proses sehingga selanjutnya dapat dilihat tingkat efektivitas dari proses yang dilakukan. Metode yang digunakan ialah dengan hidrolisis asam dalam pemecahan polimer gula yang kemudian difermentasi dengan yeast yang mengandung S.cereviseae. Data yang digunakan berasal dari beberapa penelitian sebelumnya yang dimasukkan sebagai data dan kemudian disimulasikan dengan SuperPro Designer. Analisa sensitivitas variabel pun dilakukan untuk mengetahui variabel yang paling mempengaruhi keekonomian proses.

This upstream bioethanol process simulation aim to optimize process
production cost and the simulation can be modified to any variation of method in the process in bioethanol production to compare the effectivity of each variation. Acid hydrolization is applied in this process design, the acid will crack the polimer of cellulose and fermented by yeast which contain S.cereviseae. The source data in the simulation are obtained from the previous researches that have relation with the process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42625
UI - Skripsi Open  Universitas Indonesia Library
cover
Richo Candra Riski Bastama
"Dalam penelitian ini telah dilakukan pencampuran dimethyl ether (DME) dan liquefied petroleum gas (LPG) sebagai bahan bakar, kemudian menguji emisi gas buang serta nyala api dari hasil pembakaran bahan bakar tersebut pada kompor. DME yang ditambahkan pada LPG sebesar 10%, 20%, 30%, 35%, 40% dan 50% (v/v). Gas emisi yang di analisa adalah gas oksida-oksida sulfur (SOx), oksida-oksida nitrogen (NOx), dan karbon monoksida (CO). Pengambilan sampel gas emisi SOx dan NOx menggunakan alat Stack gas sampler (SGS), sedangkan gas CO menggunakan alat gas analyzer. Gas SOx dianalisa menggunakan spektrofotometer dengan metode turbidimetri sedangkan gas NOx dianalisa dengan metode phenol disulfonic acid . Efek penambahan DME pada LPG menurunkan emisi gas buang SOx, NOx dan CO. Pada LPG 100%, emisi gas SOx yang dihasilkan sebesar 5,85 mg/m3, sedangkan pada campuran LPG 90%:DME 10%, LPG 80%:DME 20%, LPG 65%:DME 35%, dan LPG 50%:DME 50%, emisi SOx yang dihasilkan masing-masing sebesar 5,187; 4,565; 4,190; dan 4,083 mg/m3. Emisi gas NOx yang dihasilkan pada pembakaran LPG 100% sebesar 18 ppm, sedangkan pada campuran LPG 90%:DME 10%, LPG 80%:DME 20%, LPG 65%:DME 35%, dan LPG 50%:DME 50%, emisi yang dihasilkan masing-masing sebesar 10,425; 6,681; 6,870; dan 5,079 ppm. Emisi gas CO yang dihasilkan pada LPG 100% sebesar 9 ppm, sedangkan pada campuran LPG 90%:DME 10%, LPG 80%:DME 20%, LPG 70%:DME 30%, dan LPG 60%:DME 60%, emisi CO yang dihasilkan sebesar 7; 4; 3; dan 3 ppm. Masing-masing nyala yang dihasilkan pada campuran gas LPG-DME lebih biru dibandingkan gas LPG.

In this research has been done mixing dimethyl ether (DME) and LPG as fuel, then test the exhaust emissions and flames from the burning fuel on the stove. DME is added to LPG by 10%, 20%, 30%, 35%, 40% and 50% (v / v). Gas emissions in the analysis is the gas sulfur oxides (SOx), nitrogen oxides (NOx) and carbon monoxide (CO). The sampling of gas emissions of SOx and NOx using a Stack gas sampler (SGS), while the CO gas using a gas analyzer. SOx gases were analyzed using a spectrophotometer by the turbidimetri method while NOx gases were analyzed by the phenol disulfonic acid method. Effect the addition of DME to LPG is to lower emissions of SOx, NOx and CO. In the LPG 100%, SOx gas emissions generated is 5.85 mg/m3, while the LPG mixture of 90%: 10% DME, LPG 80%: 20% DME, LPG 65%: 35% DME and LPG 50%: DME 50%, SOx emissions are generated respectively are 5.187; 4.565; 4.190; and 4.083 mg/m3. NOx emissions generated on combustion of LPG 100% is 18 ppm, while the LPG mixture of 90%: 10% DME, LPG 80%: 20% DME, LPG 65%: 35% DME and LPG 50%: 50% DME, emissions produced respectively are 10.425; 6.681; 6.870; and 5.079 ppm. Emissions of CO gas is produced on 100% LPG is 9 ppm, while the LPG mixture of 90%: 10% DME, LPG 80%: 20% DME, LPG 70%: 30% DME and LPG 60%: 60% DME, emissions CO produced are 7; 4; 3; dan3 ppm. Each flame generated in LPG-DME gas mixture is more blue than the LPG gas. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S887
UI - Skripsi Open  Universitas Indonesia Library
cover
Humala Paulus Halim
"Teknologi Enhanced Oil Recovery, khususnya chemical flooding surfaktan metil ester sulfonat (MES), dibutuhkan untuk meningkatkan produksi minyak. Pada penelitian ini, nonyl phenol ethoxylate (tergitol) digunakan sebagai surfaktan sekunder dan konsentrasinya divariasikan untuk formulasi surfaktan. Tujuannya adalah memperoleh formula surfaktan yang memenuhi syarat chemical flooding. Parameter keberhasilan dari formulasi adalah tingkat kelarutan dalam air dan nilai Interfacial Tension (IFT) 10-3 dyne/cm. Parameter atau variabel yang diuji adalah konsentrasi optimum setelah penambahan tergitol, pengaruh penambahan alkali, dan pengaruh waktu pemanasan terhadap nilai IFT dan kelarutan. Hasil penelitian menunjukkan semua formula yang dibuat memiliki kelarutan yang baik, sedangkan nilai IFT terbaik terdapat pada formula MES (40%), tergitol (20%), dan EGBE (40%) dengan konsentrasi 0,3% terhadap brine water. Penambahan alkali dan waktu pemanasan berpengaruh terhadap perubahan nilai IFT. Peningkatan nilai IFT terjadi setelah konsentrasi alkali ditambahkan sebesar 1% dan dipanaskan selama 1 dan 7 hari.

Enhanced Oil Recovery technology, especially chemical flooding of methyl ester sulfonate (MES) surfactant is required to increase crude oil production. This research is conducted by selecting nonyl phenol ethoxylate (tergitol) as secondary surfactant and varying its concentration to surfactant formulation. The purpose is gaining formula of surfactant that fulfills the chemical flooding requirement. The success of this formulation is the solubility level in water and the interfacial tension (IFT) to 10-3 dyne/cm. The test procedure is searching the optimum concentration after tergitol addition, effect of alkali addition, and the influence of heating time duration to IFT value and solubility. All formulas have good solubility. The best IFT value is obtained from MES (40%), tergitol (20%), and EGBE (40%) with 0,3% concentration to brine water. The alkali addition and heating time affect IFT value changes. It is increasing after alkali concentration has been 1% and heating for 1 and 7 days."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S381
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>