Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 100057 dokumen yang sesuai dengan query
cover
Nikodemus Joko E.M.
"Sistem tata udara presisi atau yang lebih dikenal dengan Precision Air Conditioning (PAC) merupakan mesin refrigerasi yang dapat mengendalikan temperatur dan kelembaban dari suatu data center sesuai dengan yang diinginkan, yaitu pada temperatur 20-25oC dan kelembaban relatif (RH) 40-55%. Pengendali yang digunakan adalah pengendali cerdas yang mengacu pada model state space. Pengendali jenis ini membutuhkan nilai state dalam desainnya. Namun pada realisasinya, sulit untuk menentukan state sistem tata udara presisi ini karena berbagai macam faktor, seperti keterbatasan peralatan elektronik, serta alasan ekonomi.
Dalam kegiatan penelitian ini, akan diimplementasikan suatu metode yang digunakan untuk mengestimasi state. Metode yang digunakan adalah metode yang menggunakan algoritma identifikasi MOESP secara rekursif. Melalui proses dekomposisi nilai tunggal dan perhitungan matematis sederhana, akan diperoleh informasi estimasi state untuk waktu sekarang N N x? dan estimasi state untuk satu langkah ke depan pada waktu sekarang N N x 1 ? + . Proses validasi dilakukan cara membandingkan hasil estimasi state dengan state keluaran dari model yang diperoleh dari hasil identifikasi offline. Hasil estimasi state terbaik diperoleh melalui sistem tata udara presisi yang bersifat linier. Hasil estimasi state sangat bergantung dari model sistem yang diperoleh.

Precision Air Conditioning (PAC) is a refrigeration machine that can control temperature and humidity of a data center. The ideal temperature and Relative Humidity (RH) is 20-25oC and 40- 55%. The controller used is a smart controller that refers to the state space model. Controller of this type requires the value of states and parameters needed in the designing. But in its realization, it is difficult to determine the accurate states and parameters of the Precision Air Conditioning because of variety of factors, such as the limitations of electronic equipment, as well as economic reasons.
In this research, will implement a method used to estimate the state. The method used is a method that uses a recursive identification algorithm MOESP. Through the Single Value Decomposition (SVD) process and simple mathematical calculations , it will obtain the current state estimation N N x? and state estimation for the next step at the present time N N x 1 ? + . The validation process carried out to compare the estimated state with state from model obtained from offline identification. The best state estimation obtained through the linier system of Precision Air Conditioning value. State estimation results are dependent of the system model that is obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42770
UI - Skripsi Open  Universitas Indonesia Library
cover
Zul Andri Muqodam
"Sistem tata udara presisi merupakan sistem yang mempunyai dua masukan, yaitu kecepatan putaran kipas dan kompresor, dan dua keluaran ,yaitu temperature dan kelembaban, umumnya disebut sebagai sistem Multi Input dan Multi Output (MIMO). Sistem MIMO ini menyebabkan pencarian model fisik dari sistem tata udara presisi menjadi relative sangat sulit. Oleh karena itu, diperlukan identifikasi sistem yang bersifat black box. Selain itu, dibutuhkan identifikasi model yang bersifat adaptif dan prediktif, sehingga model yang didapatkan lebih baik dalam merepresentasikan sistem tata udara presisi.
Identifikasi subspace diakui sangat efisien untuk model system yang multivariable, dan estimasi yang dilakukan hanya dari state system yang berasal dari pengaturan data input dan output. Dalam penelitian ini, metode subspace yang akan digunakan untuk memprediksi sistem tata udara presisi adalah PO MOESP. PO MOESP merupakan salah satu metode dari 4SID yang sangat baik digunakan untuk identifikasi multivariable. Dalam penelitian ini, metode tersebut digunakan secara offline dan online. Metode PO-MOESP ini selanjutnya akan diuji berbagai data, antara lain data linear, data nonlinear model PAC, dan data PAC hasil eksperimen, dimana seluruh data tersebut akan diproses secara offline dan Rekursif.
Metode PO-MOESP Rekursif yang akan digunakan dalam penelitian ini akan diujicobakan ke suatu peralatan PAC. Jadi hasil yang diharapkan dari proses identfikasi ini adalahmetode identifikasi yang dapat bekerja dan memberikan identifikasi yang akurat merepresentasikan suatu sistem tata udara presisi, dimana identifikasi ini selanjutnya akan digunakan untuk model predictive control (MPC).

Precision Air Conditioning System has two inputs, namely the rotation speed of the fan and compressor, and two outputs, namely temperature and humidity, commonly referred to as Multi Input and Multi Output(MIMO). MIMO system is causing a physical model of the search system of air relative precision becomes very difficult. Therefore, required identification that are black box systems. In addition, the model identification is required to be adaptive and predictive models obtained thus better represent the system of air in precision.
Subspace identificationis recognized very efficiently for a multivariable system models, and estimation is done only from the state system derived from the data input and output settings. In this study, subspace methods to be used to predict the system of air is PO-MOESP precision. PO-MOESP is one of the methods used 4SID excellent for multivariable identification. In this study, the method used offline and recursive. PO-MOESP this method will be tested a variety of data, including linear data, data nonlinear model of PAC, PAC data and experimental results, where all data will be processed offline and recursive.
PO-MOESP recursive method to be used in this study will be tested to a PAC equipment. So the expected results of this identification process is the identification method that can work and provide an accurate identification represents a system of air-precision, where the identification is then used to model predictive control (MPC)."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44146
UI - Skripsi Membership  Universitas Indonesia Library
cover
Victor
"Sistem tata udara presisi merupakan sistem multivariabel yang mempunyai beberapa masukan dan keluaran (MIMO). Hal ini menyebabkan mencari model fisik dari sistem ini menjadi relatif sulit. Sehingga diperlukan identifikasi sistem yang bersifat black box. Selain itu, dibutuhkan identifikasi model yang bersifat adaptif, sehingga model yang didapat lebih baik dalam merepresentasikan sistem tata udara presisi.
Identifikasi model ruang keadaan multivariabel pada sistem tata udara presisi dilakukan dengan menggunakan metode 4SID. Sistem tata udara presisi direpresentasikan dalam model linear dan sistem tidak linear. Model linear didapat dari model ruang keadaan, sedangkan sistem tidak linear didapat dari persamaan matematis sistem tersebut. Metode 4SID yang digunakan adalah MOESP rekursif dan PO-MOESP rekursif. Setelah didapat model ruang keadaan menggunakan kedua metode tersebut, selanjutnya dilakukan tes validasi dari model ruang keadaan yang didapat. Parameter yang digunakan untuk mengetahui tingkat validasi identifikasi adalah menggunakan nilai kesalahan (Jee). Selain itu, pada penelitian ini juga dituliskan hasil identifikasi model ruang keadaan menggunakan metode linearisasi dan N4SID offline.
Hasil identifikasi secara offline yang terbaik dari model linear yang dilakukan adalah menggunakan metode N4SID. Untuk identifikasi secara rekursif, metode MOESP rekursif dan PO-MOESP rekursif pada penelitian ini belum dapat merepresentasikan sistem tidak linear. Metode-metode identifikasi rekursif ini relatif baik dalam mengidentifikasi model tidak linear dari sistem tata udara presisi berdasarkan nilai kesalahan (Jee). Pada penelitian ini, MOESP rekursif untuk identifikasi model linear menghasilkan model yang lebih baik disbanding PO-MOESP rekursif berdasarkan nilai kesalahan (Jee) juga.

Precision Air Conditioning System is a multivariable system with multi input and multi output (MIMO). It makes difficult to find out physical model of this system. Therefore, it is necessary to identify system using black box model. Besides, it is also necessary to identify model adaptively, so that it could represent the system better.
Identification of multivariable state space model in precision air conditioning system uses 4SID method. PAC system is represented by linear model and nonlinear system. Linear model of PAC is formed by state space model, and nonlinear system is formed by mathematical modeling of such system. 4SID methods that used are recursive MOESP and recursive PO-MOESP. After state space model is formed, the state space model is validated. Parameter that used for this validation is lost function (Jee). In this research, there are also identifications of state space model using linearization method and offline N4SID method.
The best result of offline identification of linear model in this research is N4SID method. In recursive identification, recursive MOESP and recursive PO-MOESP could not represent nonlinear system well. These recursive algorithms could represent linear model well based on criterion of lost function (Jee). In this research, the result of recursive MOESP identification is better than recursive PO-MOESP based on criterion of lost function (Jee) also.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S188
UI - Skripsi Open  Universitas Indonesia Library
cover
Achmad Fachrezi Az
"

Penelitian ini membahas konstruksi distribusi Marshall-Olkin-Kumaraswamy-Eksponensial (MOKw-E), yang merupakan kombinasi distribusi Marshall-Olkin (MO) dan Kumarawasmy-Eksponensial (Kw-E). Distribusi ini dikenal sebagai model fleksibel yang dapat diaplikasikan untuk data dengan berbagai bentuk distribusi. Estimasi parameter dilakukan menggunakan Maximum Likelihood Estimation (MLE) dengan bantuan dua metode numerik, yaitu metode Nelder-Mead dan metode Gradien Konjugat Fletcher Reeves. Kedua metode ini banyak digunakan dalam penyelesaian permasalahan optimasi karena memiliki tingkat efisiensi yang tinggi dengan komputasi yang sederhana tetapi memberikan hasil yang akurat. Kedua metode ini akan dibandingkan dengan melihat nilai Mean Squared Error (MSE) yang merupakan suatu metrik untuk melihat seberapa cocok model dengan data yang digunakan. Terakhir, model yang dikembangkan diaplikasikan pada data severitas klaim asuransi pengangguran untuk menunjukkan kemampuan model dalam memodelkan data severitas klaim. Model tersebut akan dibandingkan dengan model yang dibangun dari distribusi Kw-E dengan melihat nilai Akaike Information Criteria (AIC) dan Bayessian information criteria (BIC) untuk menunjukan bahwa model yang dikembangkan lebih baik dibandingkan model asalnya.


This research discusses the construction of the Marshall-Olkin-Kumaraswamy-Exponential (MOKw-E) distribution, which is a combination of the Marshall-Olkin (MO) and Kumaraswamy-Exponential (Kw-E) distributions. This distribution is known as a flexible model applicable to data with various distribution shapes. Parameter estimation is performed using Maximum Likelihood Estimation (MLE) with the assistance of two numerical methods the Nelder-Mead method and the Conjugate Gradient Fletcher Reeves method. Both methods are widely used in solving optimization problems due to their high efficiency with simple computations yet accurate results. These methods will be compared by examining the Mean Squared Error (MSE) values, which is a metric to assess how well the model fits the data. Finally, the developed model is applied to unemployment insurance claim severity data to demonstrate the model's capability in representing severity claim data. The model will be compared with a model built from the Kw-E distribution by evaluating the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values to show that the developed model is superior to the original model.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
UI-IJIL 6 (1-4) 2008/2009
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Sibarani, Biger
"Skripsi ini membahas identifikasi sistem pendingin dalam bentuk model ruang keadaan. Data masukan dan keluaran diperoleh dari simulasi penurunan model matematis linier sistem ke dalam blok - blok simulink. Model yang dihasilkan adalah orde empat dengan 4 state variable; Suhu beban, suhu dinding evaporator, kapasitas pendingin (cooling capacity) evaporator, dan tekanan pada suction manifold. Identifikasi sistem dengan N4SID menghasilkan model ruang keadaan yang lebih baik dibandingkan dengan MOESP. Uji validasi model didapatkan dari kriteria loss function, nilai VAF, AIC, dan FPE. Efek pembobotan pada algoritma identifikasi tidak mengubah karakteristik keluaran model. Uji controllability dan observability diperlukan untuk membantu perancang untuk mendisain pengendali maupun observer.

This final project focus on identification of refrigeration system in state ' space form. Input and output data is given from linier mathematics reduction into a simulink block. The model has four state variable included; goods temperature, wall temperature, cooling capacity, and suction manifold pressure. N4SID model gives better performance than MOESP. Weighting in identification don't influence the model output.Validation test like loss function, VAF, AIC, and FPE criterion has given for both model. Controllability and observability test of the model has been taken to help engineer to design the controller and the observer."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51399
UI - Skripsi Open  Universitas Indonesia Library
cover
Adthya Y. H
"ABSTRAK
Konsumsi energi yang paling banyak pada suatu data centre digunakan untuk
pendinginan peralatan IT. Untuk menghasilkan pendingin dengan konsumsi energi
yang lebih hemat, dapat bekerja pada variasi beban panas yang dihasilkan
peralatan IT, dapat mengendalikan suhu sebesar 20-25 oC, dan kelembapan 40-
55% dirancang sistem presisi tata udara. Penelitian ini akan diimplementasikan
suatu algoritma identifikasi yang bersifat black box yang berarti tidak
membutuhkan a-priori knowledge. Innovasi pada penelitian ini adalah
memanfaatkan algoritma MOESP untuk mengidentifikasi secara rekursif pada
sistem nonlinier dan MIMO. Pengendali yang diusulkan adalah Model Predictif
Control (MPC) untuk mengkompensasi pengaruh gangguan dan ketidakakuratan
model, dan memiliki adaptasi yang lebih cepat dibandingkan pengendali klasik.
Model identifikasi dibentuk melalui proses identifikasi sistem berbasis
eksperimen berupa masukan kecepatan kipas dan tegangan kompresor dan
keluaran suhu dan kelembapan. Dari masukan dan keluaran akan diolah
menghasilkan ruang keadaaan yang nantinya akan digunakan untuk dikendalikan
menggunakan MPC.

ABSTRACT
The most energy consumption in data centers is used for cooling IT equipment.
To produce a cooler with a more efficient energy consumption, can work on a
variation of the heat load generated IT equipment, can control the temperatures of
20-25 ° C, humidity 40-55% and the precision of air systems are designed. This
study will implement an identification algorithm that is a black box which means
that does not require a-priori knowledge. Innovations in this research is to utilize
the algorithm recursively MOESP to identify the nonlinear and MIMO systems.
The proposed controller is Model Predictif Control (MPC) to compensate for the
effect of disturbances and inaccuracies model, and has a more rapid adaptation
than classical controllers. Model identification was established through the
process of system identification experiments based on the input of the fan speed
and voltage output of the compressor and the temperature and humidity. Of input
and output will be processed produce circumstances that space will be used for the
controlled use of MPC."
Fakultas Teknik Universitas Indonesia, 2012
S42247
UI - Skripsi Open  Universitas Indonesia Library
cover
UI-IJIL 6 (1-4) 2008/2009
Artikel Jurnal  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>