Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5378 dokumen yang sesuai dengan query
cover
Beale, R.
New York: Adam Hilger, 1990
008.3 BEA n
Buku Teks  Universitas Indonesia Library
cover
Kezia Sulami
"Machine Learning (ML) sebagai bagian dari Artificial Intelligence (AI) telah membuat komputer mampu melakukan hal-hal yang membutuhkan kecerdasan manusia secara otomatis. Binarized Neural Network (BNN) merupakan arsitektur ML modern yang memiliki keunggulan yakni penggunaan memori yang efisien dan performa yang baik. Namun, seperti neural network pada umumnya, BNN juga merupakan black-box model yang memiliki kesulitan dalam menjelaskan prediksi yang dihasilkan. Penelitian ini menggunakan teknik abduction untuk memperoleh minimal explanations, dalam bentuk himpunan pasangan fitur dan nilainya, dari hasil prediksi BNN. BNN dimodelkan sebagai model Mixed-Integer Linear Programming (MILP) dan selanjutnya disederhanakan menjadi model Integer Linear Programming (ILP) yang merupakan bentuk formal agar dapat dilakukan teknik abduction. Hasil penelitian menunjukkan bahwa teknik abduction dapat digunakan untuk menjelaskan hasil prediksi BNN. Penelitian ini juga menerapkan teknik abduction untuk menghasilkan penjelasan subset-minimal pada hasil prediksi BNN untuk beberapa dataset.

Machine Learning (ML) as part of Artificial Intelligence (AI) has enabled computers to do things that require human intelligence automatically. Binarized Neural Network (BNN) is a modern ML architecture that has some advantages: efficient use of memory and good performance. However, like other neural networks in general, BNN is also a black-box model that has difficulties in explaining the resulting predictions. This research employs the abduction technique to obtain minimal explanations, that is a set of pairs of features and its values, from a BNN prediction. BNN is modeled as a Mixed-Integer Linear Programming (MILP) model and then further simplified into an Integer Linear Programming (ILP) model which is a suitable formalism for finding explanations using abduction. This research shows that the abduction technique can be used to explain BNN predictions. Furthermore, this research applies the abduction technique to produce subset-minimal explanations on BNN predictions for several datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
London: Harper & Row, 1987
006.3 INT
Buku Teks  Universitas Indonesia Library
cover
Chester, Michael
New Jersey: Prentice-Hall, 1993
006.3 CHE n
Buku Teks  Universitas Indonesia Library
cover
Hanif Furqon Hidayat
"Biomassa merupakan salah satu potensi energi alternatif untuk mengurangi ketergantungan penggunaan energi fosil. Indonesia memiliki potensi energi biomassa sebesar 49.810 MW yang berasal dari limbah dan tanaman. Pemanfaatan energi tersebut dapat dilakukan melalui proses gasifikasi yang mengubah biomassa menjadi gas sintetik. Salah satu metode untuk memodelkan proses tersebut adalah dengan menggunakan kecerdasan buatan atau artificial intelligence (AI). Studi literatur yang dilakukan menunjukkan bahwa metode artificial neural network (ANN) adalah pendekatan AI yang sering dipakai untuk melakukan pemodelan proses gasifikasi. Namun, ANN memiliki beberapa kekurangan dalam pemodelan dinamis yang kemudian disempurnakan melalui salah satu pengembangannya yang dinamakan recurrent neural network (RNN) yang mampu memodelkan variabel dependen terhadap waktu. Kesimpulan dari penelitian ini menyarankan agar pengembangan RNN dapat dijadikan acuan untuk membuat sistem kontrol pintar pada prototipe gasifier yang akan datang.

Biomass is one of the alternative energy sources to reduce the usage of fossil energy. The potential of biomass energy in Indonesia reaches 49,810 MW, which comes from organic wastes and plants. Gasification is a process to convert biomass to synthetic gas, which is one of the utilizations of biomass energy. Artificial Intelligence (AI) implemented to model the complex process of gasification. Artificial Neural Network (ANN) is a common approach in AI to model the process in the gasifier. Yet, ANN is still inferior in modeling dynamic process that leads to an improvement of ANN called recurrent neural network (RNN). The result of this study suggests that RNN could be the foundation for the development of smart control for the next prototypes."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Satria Persada
"Perkembangan Artificial Intelligence (AI) sudah berkembang pesat. Dari ketiga arah pengembangan AI yakni computer vision, speech processing dan natural language processing. Speech processing memiliki tren paling rendah di antara ketiga pengembangan tersebut. Meskipun begitu pengembangan di bidang speech processing seperti speech recognition dan keyword spotting sudah banyak di implementasikan seperti model keyword spotting menggunakan Convolutional Neural Network (CNN) di microcontroller, mobile device dan perangkat lainnya. Namun CNN saja belum tentu menghasilkan akurasi yang tinggi maka dicoba Depthwise Separable Convolutional Neural Network (DSCNN) untuk mendapatkan hasil dengan akurasi yang lebih tinggi. Pengembangan model keyword spotting belum banyak diimplementasikan di edge device lainnya, yang dimaksud dengan edge device yaitu perangkat sederhana di sisi pengguna yang kemampuan komputasinya terbatas. Dengan menggunakan DSCNN menunjukkan nilai F1 score yang dibandingkan dengan model CNN. Model DSCNN menghasilkan model dengan nilai F1 score paling optimal dengan 4 layer konvolusi depthwise separable, menggunakan filter konvolusi sebanyak 256 dengan jumlah filter konvolusi depthwise 512 menggunakan optimizer RMSprop dan menggunakan batch size berukuran 126. Dari hasil pengujian dapat diketahui bahwa secara umum DSCNN menghasilkan F1 score yang lebih baik dibandingkan CNN yaitu sebesar 31,8% dengan CNN sebesar 28,35%. Namun DSCNN menggunakan sumber daya yang lebih banyak dan lebih lama waktu responsnya.

The development of Artificial Intelligence (AI) has grown rapidly. Of the three directions of AI development, namely computer vision, speech processing, and natural language processing. Speech processing has the lowest trend among the three developments. However, many developments in speech processing such as speech recognition and keyword spotting have been implemented, such as the keyword spotting model using the Convolutional Neural Network (CNN) in microcontrollers, mobile devices, and other devices. However, CNN alone does not necessarily produce high accuracy, so a Depthwise Separable Convolutional Neural Network (DSCNN) is used to get results with higher accuracy. The development of the keyword spotting model has not been widely implemented in other edge devices, which is meant by edge devices, namely simple devices on the user's side with limited computing capabilities. Using DSCNN shows the F1 score which is compared with the CNN model. The DSCNN model produces a model with the most optimal F1 score with 4 layers of convolution depthwise separable, using a convolution filter of 256 with a convolution depthwise filter of 512 using the RMSprop optimizer and using a batch size of 126. From the test results, in general DSCNN produces F1 score which is better than CNN, which is 31,8% with CNN at 28,35%. However, DSCNN uses more resources and a longer response time."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Flasinski, Mariusz
"In the chapters in Part I of this textbook the author introduces the fundamental ideas of artificial intelligence and computational intelligence. In Part II he explains key AI methods such as search, evolutionary computing, logic-based reasoning, knowledge representation, rule-based systems, pattern recognition, neural networks, and cognitive architectures. Finally, in Part III, he expands the context to discuss theories of intelligence in philosophy and psychology, key applications of AI systems, and the likely future of artificial intelligence. A key feature of the author's approach is historical and biographical footnotes, stressing the multidisciplinary character of the field and its pioneers.
The book is appropriate for advanced undergraduate and graduate courses in computer science, engineering, and other applied sciences, and the appendices offer short formal, mathematical models and notes to support the reader."
Switzerland: Springer International Publishing, 2016
e20528399
eBooks  Universitas Indonesia Library
cover
Ariel Miki Abraham
"Pemanfaatan Artificial Intelligence (AI) terutama Machine Learning (ML) semakin banyak ditemui dalam berbagai hal termasuk pengambilan keputusan. Hal ini menimbulkan kebutuhan untuk memperoleh explanation dari prediksi model ML sebagai akuntabilitas dan kepercayaan terhadap sistem AI. Penelitian ini menggunakan abduction yang terdapat pada pendekatan logika untuk memperoleh minimal explanations yang valid secara formal dari suatu prediksi model Artificial Neural Network (ANN) berbasiskan Rectified Linear Unit (ReLU). Peneli-
tian ini melakukan implementasi terhadap algoritma subset-minimal dan algoritma cardinality-minimal yang telah ada sebelumnya. Selain itu, penelitian ini mengajukan algoritma randomized-subset-minimal sebagai bentuk pengembangan dari kedua algoritma. Eksperimen menunjukkan bahwa algoritma randomized-subset-
minimal dapat menghasilkan explanation dengan ukuran yang lebih kecil daripada algoritma subset-minimal, dengan waktu komputasi yang jauh lebih efisien daripada algoritma cardinality-minimal.
Abstrak Berbahasa Inggris:

Artificial Intelligence (AI), especially Machine Learning (ML) is prevalent today in many donations, including for decision making. It raises the need for explanations of predictions by ML models to guarantee the accountability and trust of the AI system. This research exploits abduction from logic for obtaining minimal explanations of predictions by Artificial Neural Network (ANN) with rectifier activation function. This research implements both subset-minimal and cardinality-minimal algorithms for finding those explanations. Furthermore, this research proposes randomized subset-minimal algorithm for improving the algorithms. The experiment shows that the proposed algorithm is able to give explanations with a smaller size than the subset-minimal algorithm with computation time that much efficient than the cardinality-minimal algorithm.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anandwi Ghurran Muhajjalin Arreto
"Artificial Intelligence (AI) telah berkembang sangat pesat sehingga sudah sering terlihat dan digunakan secara umum oleh masyarakat. Salah satu jenis AI yang sering digunakan adalah speech recognition terutama keyword spotting yang disebabkan karena pandemi COVID-19. Implementasi keyword spotting dapat diterapkan pada lift sebagai sistem navigasi agar para pengguna lift tidak perlu melakukan kontak pada tombol, melainkan dapat menggerakkan lift hanya dengan mengucapkan lantai yang dituju. Metode untuk melakukan implementasi keyword spotting pada sistem lift dapat dilakukan dengan banyak metode, namun pada skripsi ini, metode yang diujikan adalah CNN (Convolutional Neural Network) dan MHAtt RNN (Multihead Attention Recurrent Neural Network). Penelitian yang dilakukan memiliki batasan untuk setiap metode agar dapat melakukan klasifikasi enam keyword dan melihat performa kedua metode dalam berbagai skenario yang dapat terjadi dalam lift. Dalam pembentukan model dari MHAtt RNN, dapat diketahui bahwa model memiliki performa terbaik ketika dibentuk dengan jumlah head untuk attention sebesar 8 dan LSTM dengan jumlah unit sebanyak 32. Pelatihan pada model dilakukan menggunakan optimizer Adam dengan learning rate sebesar 0.001 dan decay 0.005 agar pelatihan dapat menghasilkan model yang paling baik. Setelah melakukan pengujian pada berbagai skenario yang dapat terjadi di dalam sebuah lift, didapatkan hasil bahwa secara keseluruhan model CNN memiliki performa yang lebih baik dibandingkan model MHAtt RNN karena memiliki nilai F1-score dan precision yang lebih tinggi.

Artificial Intelligence (AI) has grown so rapidly that it has often been seen and used in general by the public. One type of AI that is often used is speech recognition, especially keyword spotting caused by the COVID-19 pandemic. The implementation of keyword spotting can be applied to elevators as a navigation system so that elevator users do not need to make contact with buttons but can move the elevator just by saying the intended floor. There are many methods to implement keyword spotting in elevator systems, but in this thesis, the methods tested are CNN (Convolutional Neural Network) and MHAtt RNN (Multihead Attention Recurrent Neural Network). The research conducted has limitations for each method in order to be able to classify six keywords and see the performance of both methods in various scenarios that can occur in an elevator. In forming the model from MHAtt RNN, it can be seen that the model has the best performance when it is formed with the number of heads for attention of 8 and the LSTM with the number of units of 32. The training on the model is carried out using the Adam optimizer with a learning rate of 0.001 and a decay of 0.005 so that the training can produce the best models. After testing on various scenarios that can occur in an elevator, the results show that the CNN model overall has better performance than the MHAtt RNN model because it has a higher F1-score and precision."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dudi Heryadi
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38718
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>