Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 89287 dokumen yang sesuai dengan query
cover
Nurhayati Indah Ciptasari
"ABSTRAK
Bijih nikel laterit banyak tersedia di Indonesia bagian timur, seperti Pulau
Sulawesi dan kepulauan Maluku termasuk pulau-pulau kecil di sekitarnya.
Faktanya, sejauh ini bijih nikel kadar rendah tipe limonit belum diproses karena
kandungan nikelnya sangat rendah. Dalam tesis ini kami membahas hasil terbaru
pada efek scale-up dari pengolahan bijih nikel kadar rendah melalui pendekatan
hidrometalurgi. Proses ini dipilih karena kandungan magnesium yang rendah
dalam bijih dan konsumsi energi yang minimal selama pemprosesan. Proses yang
dipilih yaitu pelindian atmosferik. Variabel-variabel proses yang dipelajari adalah
persen pelarut, temperatur proses, waktu pelindian, ukuran mesh dan efek scaleup.
Karakterisasi residu dipelajari dengan menggunakan SEM, XRD dan XRF.
Sementara hasil proses pelindian dalam bentuk larutan dianalisis menggunakan
AAS untuk menentukan fraksi elemen terlarut. Hasil penelitian saat ini
menunjukkan bahwa pelindian bijih nikel kadar rendah jalur hidrometalurgi
menggunakan 37% asam klorida pekat telah mengekstraksi Ni dan Fe dari bijih
dengan hasil 76,7% dan 75,8%. Hal ini dicapai pada kondisi proses berikut:
temperatur optimum 90oC, 200 mesh dan kecepatan pengadukan 300 rpm.
Selanjutnya, pada saat bahan baku tersebut ditingkatkan hingga 100 gram limonit,
hasil tersebut menurun menjadi 55% dan 65 %. Selanjutnya, terjadi penurunan
hingga sekitar 45% ketika bahan baku ditingkatkan dua kali lipat menjadi 200
gram limonit.

Abstract
The laterite nickel ores are abundantly available in the eastern part of Indonesia
island like Sulawesi and Maluku islands including many small islands around
them. The fact that nickel ores called limonite have not been processed so far due
to the nickel content is very low. In this thesis, we discussed our recent works on
the effects of scaling up of processing for low grade nickel ores through a
hydrometallurgical approach. This was selected due to the low magnesium
content in the ores and minimum energy consumption during processing. The
selected process is the atmospheric leaching. Processing variables which were
studied including the optimum percentage of solvent, processing temperatures,
leaching time, mesh sizing and the scale-up effects. Characterization of the
residue was studied using SEM, XRD and XRF. While the materials which
deposited in the leaching filtrate were analyzed using AAS to determine the
fraction of dissolved elements. Results of current recearch work showed that
leaching of low grade nickel ore using a hydrometallurgical route using 37%
concentrated hydrochloric acids have resulted extracted materials of Ni and Fe
with extraction yields 76.7% and 75.8% respectivelly. This was obtained at the
following processing conditions: optimum temperature 90°C; 200 mesh and the
stirring speed of 300 rpm. Further to this, when the feedstock was scaled up to
100 grams limonite, the yields were decreased to 55 % and 65 % for Ni and Fe
respectively. A further decreased to about 45 % occurred when the feedstock was
doubled to 200 grams limonite."
2012
T31559
UI - Tesis Open  Universitas Indonesia Library
cover
Suprayogi
"Deposit laterite merupakan salah satu jenis bijih nikel yang paling berlimpah di alam. Di Indonesia khususnya di Kabupaten Pomala, Sulawesi Tenggara memiliki deposit laterite yang tergolong tinggi. Salah satu mineral yang ada di dalam lapisan laterite yaitu bijih nikel saprolit yang memiliki kadar unsur nikel yang lebih tinggi dibandingkan lapisan lainnya seperti limonit.
Untuk mendapatkan recovery nikel yang efektif dan efisien, diperlukan suatu pengembangan penelitian proses ekstraksi. Pada penelitian ini akan dilakukan beberapa proses seperti separasi dengan fluida air, pirometalurgi (roasting reduction) dan hidrometalurgi (pelindian). Penelitian ini akan membahas pengaruh penambahan reduktor yang berasal dari batubara dengan kadar yang berbeda-beda yaitu 8%, 16%, 24% dan 32%. Untuk mengetahui komposisi kimia dari bijih saprolit yang murni dan yang telah dilakukan proses separasi, akan dilakukan pengujian EDX (Energy Dispersive X-Ray) terlebih dahulu.
Sebelum ketahap hidrometalurgi, sampel dengan masing-masing penambahan batubara tersebut dilakukan proses roasting reduction pada temperatur 1250oC di dalam furnace carbolyte. Selanjutnya akan dilakukan pengujian STA dan XRD dengan tujuan untuk melihat senyawa-senyawa yang terdapat pada bijih nikel saprolit tersebut. Setelah tahap ini selesai dilakukan, sampel dilindi dengan menggunakan larutan Asam Sulfat 1 Molar dalam waktu 90 menit.
Dari hasil yang diperoleh, pada proses pelindian asam sulfat dengan konsentrasi 1 Molar, persentase recovery nikel yang tertinggi berada pada bijih saprolit yang ditambahkan dengan batubara sebanyak 16% dengan perolehan Nikel nya yaitu sebesar 59.85% (persentase optimum).

Laterite deposit is one of the most abundant ore in nature. In Indonesia, especially in Pomala regency, Southeast Sulawesi, has a high laterite deposit. One of the minerals in the laterite layer is saprolite nickel ore which has a higher nickel content than the other layers, such as limonite.
To get recovery of nickel with effective and efficient, a study about development of extraction process is needed. This research will conduct several processes such as float and sink process, pyrometallurgy (roasting reduction) and hydrometallurgical (leaching). This research also will disscus the effect of addition of coal as reductor, with varied levels of coal: 8%, 16%, 24% and 32%. To determine the chemical composition of saprolite ore that have been treated by float and sink process, EDX (Energy dispersive X-Ray) test is performed.
Before hydrometallurgy process is conducted, the samples that have been added by varied levels of coal was reduction roasted at temperature 1250oC in Carbolyte furnace. Further testing will be conducted by the STA and XRD with purpose to determine the compounds presence in the saprolite nickel ore. After that stage, the sample is leached in Sulfuric Acid at 1 Molar for 90 minutes.
From the obtained results, the process of leaching with sulfuric acid at 1 Molar, the recovery percentage of nickel from 16% of coal addition is the highest with obtained value 59.85% (optimum percentage).
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43343
UI - Skripsi Open  Universitas Indonesia Library
cover
Dwiki Prasetya Ernanto
"Penelitian ini merupakan rangkaian penelitian lanjutan dari studi iron removal pada sampel pregnant leach solution (PLS) hasil pelindian bijih nikel laterit. Penelitian ini berfokus pada pengendapan unsur nikel dan kobalt yang terkandung di dalam sampel dengan proses hidrometalrugi menjadi produk mixed hydroxide precipitate (MHP). Sebelumnya, sampel PLS sudah dilakukan penghilangan kadar besi dengan penambahan kalsium karbonat sebanyak 2 kali dengan kandungan 25% w/w dan 12,5% w/w yang dilakukan selama 2 jam dan 1 jam pada temperature 90oC. Hasil pengurangan besi yang dilakukan menunjukkan pengurangan kandungan besi dari sampel bijih PLS sebesar 75% dari kandungan semula yang sudah diuji dengan ICP. Selanjutnya penelitian dilanjutkan untuk memproduksi MHP dengan penambahan larutan NaOH sebesar 4M kedalam larutan PLS yang sudah dikurangi kandungan besinya dengan presipitasi sebelumnya. Presipitasi dengan NaOH dilakukan hingga mencapai pH 7 lalu dipanaskan hingga suhu 60oC selama 1 jam. Hasil penelitian yang dilakukan hingga pH 7 menunjukkan hasil yang belum optimal dengan kandungan nikel yang hanya sebesar 5% dari total kandungan setelah dilakukan proses pengurangan kadar besi yang kedua kali. Penelitian ini menemukan beberapa faktor yang mungkin menyebabkan tidak bertambahnya kadar nikel dalam produk MHP setelah dilakukan presipitasi dengan larutan NaOH. Tingkat viskositas yang terlalu tinggi selama titrasi, masih tingginya kadar pengotor yang terkandung dalam larutan pasca pengurangan besi, serta endapan yang tidak kristalin menjadi faktor yang membuat larutan lewat jenuh dan kurang optimalnya hasil pasca penelitian. Waktu penyimpanan larutan pasca titrasi juga menjadi faktor yang membuat kandungan nikel dan kobalt tereduksi dan pengotor tidak terikat sempurna.

This research is a follow-up research series from the study of iron removal on pregnant leach solution (PLS) samples from the leaching of laterite nickel ore. This research focuses on the deposition of Nickel and Cobalt elements contained in the sample by a hydrometallurgical process to become a mixed hydroxide precipitate (MHP) product. Previously, the PLS sample had iron content removed with the addition of calcium carbonate 2 times with a content of 25% w/w and 12.5% ​​w/w for 2 hours and 1 hour at a temperature of 90oC. The results of the iron reduction carried out showed a reduction in the iron content of the PLS ore samples by 75% of the original content that had been tested with ICP. Furthermore, the research continued to produce MHP with the addition of 4M NaOH solution into the PLS solution which had been reduced in iron content by previous precipitation. Precipitation with NaOH was carried out until it reached pH 7 and then heated to a temperature of 60oC for 1 hour. The results of the research carried out up to pH 7 showed that the results were not optimal with the nickel content only 5% from all the contents after the second process of reducing the iron content was carried out. This study found several factors that might cause the nickel content to not increase in MHP products after precipitation with NaOH solution. Viscosity levels that are too high during titration, high levels of impurities contained in the solution after iron reduction, and non-crystalline precipitates are factors that make the solution supersaturated and post-test results are less than optimal. The storage time of the post-titration solution is also a factor that makes the reduced nickel and cobalt content and impurities not completely bound."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rian Saputra
"Sources nickel laterite deposit of the world are mostly found in the tropic such as Indonesia. The initial composition of nickel saprolite ore is characterized by XRF. Saprolte ore was reduced use coal 15% wt at 1000°C for 60 minutes. The result of reduction is characterized by XRD. Effect of roasting reduction to recovery nickel also affect the result leaching use solvent sulphuric acid (H2SO4) for 240 minutes at 100°C with varying concentrations of 0.5 M, 1 M, and 2 M. The content of nickel dissolved in pregnant leach solution calculated using Atomic Absorbance Spectroscopy (AAS).
Result of XRD characterization shows phase transformation into Fe3O4, NiO, and FeNi after reduction roasting. Sulphuric Acid at concentration 1 Molar has the highest nickel recovery with 52.75% in reduced saprolite ore."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63620
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Shofi
"Proses reduksi selektif dan pemisahan magnetik bijih nikel kadar rendah dengan kandungan Ni, Fe, Mg, dan Si masing-masing sebesar 1,4 , 50,5 , 1,81 , dan 16,5 telah dilakukan melalui mekanisme dua tahap peningkatan panas dengan penambahan aditif Na2SO4 dan NaCl. Na2SO4 dan NaCl diketahui mampu membebaskan nikel dan besi dari fasa olivin dan juga menekan metalisasi besi dengan proses sulfidasi, kloridasi, dan segregasi. NaCl yang ditambahkan bertujuan untuk menggantikan sebagian Na2SO4 untuk mengurangi kandungan sulfur sisa pada konsentrat yang dihasilkan. Penahanan pada temperatur awal pre-heating dilakukan untuk memaksimalkan reaksi reduksi nikel dalam fasa goethit sekaligus menekan reduksi besi oksida, sedangkan penahanan pada temperatur lanjut reduksi bertujuan untuk proses pembebasan nikel pada fasa lizardit dan mendukung pertumbuhan partikel feronikel dengan mekanisme aglomerasi partikel pada fasa leleh sistem Fe-FeS eutektik yang terbentuk. Oleh karena itu, kedua perlakuan pemanasan tersebut dapat meningkatkan kadar, perolehan dan derajat metalisasi dari nikel. Hasil optimal didapatkan pada bijih hasil reduksi dengan penambahan 11 satu stoikiometri arang cangkang sawit, 10 Na2SO4, dan 10 NaCl pada temperatur pemanasan awal 500 C selama 90 menit, diikuti dengan pemanasan lanjut selama 90 menit pada temperatur 1150 C, yang menghasilkan konsentrat feronikel dengan kadar dan perolehan nikel masing-masing sebesar 5,53 dan 85,89 , serta derajat metalisasi nikel sebesar 93,69 . Ukuran partikel feronikel yang dihasilkan pada sampel tersebut berukuran 61,75 m, jauh lebih besar dibandingkan ukuran butir sampel tanpa penambahan aditif atau temperatur reduksi yang lebih rendah 1050 C yaitu berturut-turut sebesar 5 m dan 28,5 m. Fasa-fasa yang terbentuk dengan penambahan aditif Na2SO4 dan NaCl yaitu kamasit FeNi , wustit FeS , fayalit, dan nepheline, yang merupakan indikasi berjalannya proses optimasi reduksi selektif dengan memaksimalkan pembebasan nikel dari fasa olivin dan menekan pembentukan logam besi sehingga perolehan, kadar, dan derajat metalisasi nikel meningkat.

Selective reduction and magnetic separation process of low grade nickel ore with Ni, Fe, Mg and Si contents of 1.4 , 50.5 , 1.81 and 16.5 has been conducted with two stage thermal upgrading mechanism with addition of Na2SO4 and NaCl. These two additives is known to be capable of liberating nickel and iron from olivine phase, as well as suppressing iron metallization with sulphidation, chloridization and segregation process. The addition of NaCl was aimed to substitute some part of Na2SO4 to reduce residual sulphur content of the produced ferronickel concentrate. The retention of roasting at initial temperature pre heating was done to maximize reductive reaction of nickel within goethite phase and to suppress the reduction of iron oxide, while the retention of roasting at final temperature reduction was done to focus the nickel liberation from lizardite phase and to promote ferronickel particle growth using agglomeration mechanism within the formed molten phase of Fe FeS eutectic system. Therefore, these two thermal treatment could improve the grade, recovery and metallization of nickel. The optimal result obtained was the reduced ore with 11 palm kernel shell reductor, 10 Na2SO4, and 10 NaCl at initial roasting temperature of 500 C for 90 minutes, followed by final roasting temperature of 1150 C for 90 minutes which resulted ferronickel concentrat with 5.53 grade, 85.9 recovery and 93.86 metallization. The resulting particle size of the aformentioned sample is 61.75 m, far bigger compared to sample without additives or lower reducing temperature 1050 C which is 5 m and 28.5 m, respectively. The formed phase of the reduced ore with the addition of Na2SO4 and NaCl was kamacite FeNi , wustite FeS , fayalite and nepheline, which indicates the optimization process of selective reduction through maximalizing nickel liberation from olivine and suppresing the formation of metallic iron resulting in improved nickel grade, recovery and metallization."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49604
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Royani
"ABSTRAK
Pelindian mangan dari bijih mangan kadar rendah telah berhasil dilakukan menggunakan larutan sulfat. Pada percobaan ini, bijih mangan dipanggang dengan arang kayu sebagi reduktor pada 700 oC selama 120 menit. Kemudian kalsin hasil pemanggangan dilindi menggunakan larutan asam sulfat. Parameter proses pelindian yang diamati meliputi pengaruh kecepatan pengadukan, konsentrasi asam, temperatur, waktu dan persen padatan terhadap mangan terekstrak. Hasil optimum didapat pada proses pelindian dengan konsentrasi 12% H2SO4, kecepatan pengadukan 400 rpm, rasio padatan 1:10, dan temperatur 75 oC selama 3 jam dengan mangan terekstrak sebesar 84,61%. Kinetika reaksi pelindian mangan dalam asam sulfat dikendalikan oleh proses difusi dengan nilai energi aktivasi sebesar 4,88 KJ/mol.

ABSTRACT
The leaching of manganese from low-grade manganese ores in aqueous sulfuric acid solution was investigated. In this study, manganese ores were prepared by reduction roasting using charcoal as a reductant at 700 oC for 120 min. The roasted samples were then leached with aqueous sulfuric acid solution. The effects of agitation rate, sulfuric acid concentration, solid/liquid mass ratio, leaching temperature and leaching time on the leaching efficiency of manganese were studied. The optimal leaching conditions are achieved at 12% H2SO4, agitation rate of 400 rpm, solid/liquid mass ratio of 1:10, and the leaching temperature of 75 oC for 180 min. Under the optimal condition, the leaching efficiency of manganese can reach 84.61%. The kinetical reaction of manganese dissolution in aqueous sulfuric acid solution was found to be controlled by diffusion process with activation energy is 4.88 KJ/mol.
"
Depok: Universitas Indonesia, 2016
T45188
UI - Tesis Membership  Universitas Indonesia Library
cover
Satrio Amarela
"ABSTRAK
Sekitar 90% bijih mangan di dunia digunakan untuk pembuatan ferromangan dan
ferrosilicomangan sebagai material paduan dalam proses steel making. Penambahan
unsur mangan dalam wujud paduan ferromangan pada proses steel making mampu
meningkatkan kekerasan dan ketangguhan baja. Ferromangan diperoleh dari
pengolahan bijih mangan metallurgical grade dengan proses peleburan. Bijih mangan
kadar rendah, melalui penelitian sebelumnya oleh Hendri (2015) dan Noegroho (2016),
tidak ekonomis untuk dilebur menjadi ferromangan 􀁇􀁈􀁑􀁊􀁄􀁑􀀃􀀰􀁑􀀃􀂕􀀙􀀓􀀈􀀃􀁖􀁈􀁋􀁌􀁑􀁊􀁊􀁄􀀃􀁅􀁌􀁍􀁌􀁋􀀃
mangan kadar rendah harus dibenefisiasi terlebih dahulu untuk meningkatkan kadar
mangan dan rasio Mn/Fe dalam bijih.
Bijih mangan kadar rendah pada penelitian ini merupakan bijih mangan lokal asal
Lampung dan Jawa Timur. Benefisiasi dilakukan menggunakan teknik gravity
separation dan reduction roasting selama 30 menit menggunakan 20% batu bara
dilanjutkan magnetic separation pada medan magnet ±500 gauss. Bijih mangan
dihaluskan ke dalam ukuran -20+40, -40+60, dan -60+80 mesh dan temperatur
reduction roasting divariasikan pada 500oC, 700oC, dan 900oC. Pengujian XRD dan
XRF dilakukan dalam mengarakterisasi sampel awal dan hasil.
Rasio Mn/Fe dan kadar mangan pada bijih asal Lampung masing-masing
sebesar 0,90 dan 7,83% sementara pada bijih asal Jawa Timur masing-masing sebesar
1,356 dan 18,52%. Setelah dibenefisiasi, hasil terbaik dari proses gravity separation
pada bijih Lampung tercapai pada rasio Mn/Fe 0,95 dengan kadar Mn 9,4% pada
89,75% recovery berat sementara pada bijih Jawa Timur diperoleh pada rasio Mn/Fe
3,32 dengan kadar mangan 40,48% pada 2,09% recovery berat. Selanjutnya, hasil
terbaik dari reduction roasting dilanjutkan magnetic separation pada bijih Lampung
diperoleh pada rasio Mn/Fe 1,96 dan kadar mangan 6,81% pada 36 wt% recovery,
sementara pada bijih Jawa Timur, tercapai pada rasio Mn/Fe 3,99 dan kadar mangan
34,31% pada 44 wt% recovery.

ABSTRACT
About 90% of manganese ore is utilized for ferromanganese and
ferrosilicomanganese production as alloying metal in the steel making process. The
addition of manganese in the form of ferromanganese to the steel making process is
able to increase hardness and toughness of steel. Ferromanganese is obtained from the
metallurgical grade manganese ore processing through the smelting process. Low grade
manganese ore, according to the previous research from Hendri (2015) and Noegroho
(2016), was not economic for direct smelting to obtain ferromanganese with Mn 􀂕􀀙􀀓􀀈􀀑􀀃
Therefore, low grade manganese ore must be beneficiate first to enhance the
manganese grade and its ratio.
Low grade manganese ore in this research are a local ore from Lampung and
East Java. The steps on the beneficiation process are including gravity separation and
reduction roasting for 30 minutes using 20% of coal followed by magnetic separation
at the magnetic intensity of ±500 Gauss. The particle size was reduced into -20+40, -
40+60, and -60+80 mesh and the temperature of reduction roasting was varied at 500oC,
700oC, and 900oC. XRD and XRF testing was conducted for the characterization of ore
and the sample results.
Mn/Fe ratio and manganese content in Lampung ore is respectively 0.9 and
7.83%, while in East Java ore is respectively 1.356 and 18.52%. After beneficiation,
the best results from gravity separation of Lampung ore was obtained at 0.95 of Mn/Fe
ratio and 9.4% of manganese content at 89.75% of weight recovery, while in East Java
ore was obtained at 3.32 of Mn/Fe ratio and 40.48% of manganese content at 2.09% of
weight recovery. Then, the best results of reduction roasting followed by magnetic
separation of Lampung ore was obtained at 1.96 of Mn/Fe ratio and 6.81% of
manganese content at 36% of weight recovery, while in East Java ore was obtained at
3.99 of Mn/Fe ratio and 34.31% of manganese content at 44% weight recovery.
"
2016
S63231
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendri Saputra
"[ABSTRAK
Potensi cadangan bijih mangan di Indonesia cukup besar, namun terdapat
di berbagai lokasi yang tersebar di seluruh Indonesia. Komoditi ini menjadi bahan
baku yang tidak tergantikan di industri baja dunia. Ferromangan (FeMn)
merupakan logam paduan dengan komposisi 75% Mangan (Mn) dan 25% besi (Fe)
yang umumnya digunakan pada proses peleburan besi/baja guna memperbaiki
sifak-sifat mekanik dari produk yang dihasilkan.
Penelitian ini dilakukan untuk mempelajari pengaruh proses pencanpuran
bijih Mn kadar rendah (LG) yang berasal dari Kab. Tanggamus, Lampung (16,3
%Mn-19,2 %Fe-20,2 %Si) dengan bijih Mn kadar menengah (MG) yang berasal
dari Jember, Jawa Timur (27,7 %Mn-4,4 %Fe-14,7%Si) sebagai bahan baku untuk
pembuatan logam FeMn dengan kandungan minimal sebesar 50 %Mn. Penelitian
ini dilakukan sebanyak 5 kali percobaan dengan variasi pada campuran bijih Mn
yaitu [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG, [3] 75 %LG+25 %MG, [4]
100 %LG, dan [5] 100 %MG. Bijih mangan diproses menggunakan Submerged Arc
Furnace (SAF) dengan input berupa bijih Mn sebagai bahan baku utama, kokas
sebagai reduktor, dan kapur sebagai aditif. Ketiga bahan baku tersebut dilebur
hingga mencapai temperatur 1500 oC. Untuk mengetahui kualitas bahan baku dan
produk FeMn yang dihasilkan, dilakukan analisa seperti XRF (X-Ray
Fluoroscence), XRD (X-Ray Diffraction), AAS (Atomic Absorbtion Spectrometry),
dan Proksimat.
Dari hasil penelitian didapatkan bahwa untuk percobaan [1] diperoleh
logam FeMn sebanyak 5,2 Kg dengan kadar 54,05 %Mn, percobaan [2] diperoleh
logam FeMn sebanyak 4,75 Kg dengan kadar 50,03 %Mn, percobaan [3] diperoleh
logam FeMn sebanyak 4,6 Kg dengan kadar 36,44 %Mn, percobaan [4] diperoleh
logam FeMn sebanyak 4,3 Kg dengan kadar 31,13 %Mn, dan percobaan [5]
diperoleh logam FeMn sebanyak 12,8 Kg dengan kadar 75,19 %Mn. Pengaruh dari
proses pencampuran (Mn-blend) dalam pembuatan ferromangan ini adalah
semakin banyak komposisi bijih Mn kadar menengah (MG) yang digunakan,
menyebabkan (a) semakin banyaknya kokas dan semakin berkurangnya kapur yang
dibutuhkan, (b) meningkatnya yield, jumlah produk, serta kandungan persentase
Mn dari FeMn yang dihasilkan, dan (c) semakin rendahnya konsumsi energi yang
dibutuhkan.
ABSTRACT
The potential reserve of manganese ore in Indonesia is very large, but it
was located in different locations spread throughout Indonesia. Manganese ore is
one of raw material in producing ferromanganese that is not replaceable in the
world steel industry. Ferromanganese (FeMn) is an alloying metal that contained
of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process
of iron/steel making to improve its mechanical properties.
In this experiment, ferromanganese production was conducted by blending
two kinds of manganese ore, that was low grade Mn ore (LG) which derived from
Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore
(MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to
obtain ferromanganese with a minimum content of 50 %Mn. The composition of
Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG,
[3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese
ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone
was added into the furnace as reductant and flux agent, respectively. Those raw
materials are smelted until 1500 °C. To determine the composition of raw materials
and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay
Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be
done.
From each composition of Mn-blend above in this experiment, it was
obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03
%Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn,
and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this
ferromanganese production was by the increasing composition of the medium
grade manganese ore (MG) that will cause: (a) the increasing number of cokes and
the decreasing of limestone required, (b) the increasing of yield, the number of
products, and also the percentage of manganese content FeMn, and (c) the
decreasing of energy consumption required., The potential reserve of manganese ore in Indonesia is very large, but it
was located in different locations spread throughout Indonesia. Manganese ore is
one of raw material in producing ferromanganese that is not replaceable in the
world steel industry. Ferromanganese (FeMn) is an alloying metal that contained
of 75% Manganese (Mn) and 25% Iron (Fe) which is generally used in the process
of iron/steel making to improve its mechanical properties.
In this experiment, ferromanganese production was conducted by blending
two kinds of manganese ore, that was low grade Mn ore (LG) which derived from
Tanggamus, Lampung (16,3 %Mn-19,2 %Fe-20,2 %Si) and medium grade Mn ore
(MG) which derived from Jember, East Java (27,7 %Mn-4,4 %Fe-14,7 %Si), to
obtain ferromanganese with a minimum content of 50 %Mn. The composition of
Mn-blend in this experiment was [1] 25 %LG+75 %MG, [2] 50 %LG+50 %MG,
[3] 75 %LG+25 %MG, [4] 100 %LG, and [5] 100 %MG. This mixed manganese
ore was processed by using Submerged Arc Furnace (SAF). Cokes and limestone
was added into the furnace as reductant and flux agent, respectively. Those raw
materials are smelted until 1500 °C. To determine the composition of raw materials
and the product of FeMn, analysis such as XRF (X-Ray Fluorescence), XRD (XRay
Diffraction), AAS (Atomic Absorption Spectrometry), and proximate have to be
done.
From each composition of Mn-blend above in this experiment, it was
obtained that [1] 5,2 Kg of FeMn with 54,05 %Mn, [2] 4,75 Kg of FeMn with 50,03
%Mn, [3] 4,6 Kg of FeMn with 36,44 %Mn, [4] 4,3 Kg of FeMn with 31,13 %Mn,
and [5] 12,8 Kg of FeMn with 75,19 %Mn. The effect of Mn-blend in this
ferromanganese production was by the increasing composition of the medium
grade manganese ore (MG) that will cause: (a) the increasing number of cokes and
the decreasing of limestone required, (b) the increasing of yield, the number of
products, and also the percentage of manganese content FeMn, and (c) the
decreasing of energy consumption required.]"
Fakultas Teknik Universitas Indonesia, 2015
S62747
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizki Ramadhan Putra
"Inovasi terhadap memproses bijih besi sangat banyak. Dalam proses reduksi, banyak orang cenderung memilih bijih besi kadar tinggi. Di Indonesia, bijih besi yang ada memiliki kadar rendah. Dibutuhkan perhatian khusus agar dapat memproses bijih besi ini. Dengan memanfaatkan bijih besi asli Indonesia, kita dapat meningkatkan perekonomian Indonesia. Bijih besi asal Lampung di reduksi dengan memanfaatkan batu bara yang juga berasal dari Indonesia Kalimantan . Proses reduksi dilakukan dengan memvariasikan temperatur dan waktu. Sampel yang sudah dicampur batu bara, bentonite, dan CaCO3, dimasukkan kedalam furnace sampai temperatur yang diinginkan. Setelah sampai pada temperatur yang diinginkan, temperatur ditahan sesuai waktu yang telah ditentukan. Setelah proses reduksi selesai, produk diteliti dengan menggunakan SEM, XRD. Berdasarkan tes XRD, keempat produk sukses membuat metallic iron. Derajat reduksi akan meningkat dengan semakin naiknya temperature. Namun hal ini masih bergantung pada hasil yang didapatkan. Derajat metalisasi sudah sesuai dengan literatur. Semakin naik temperatur, derajat metalisasi semakin bertambah. Yield of metallic iron juga sesuai dengan literatur. Semakin naik temperatur, Yield of metallic semakin bertambah. Mikrostruktur menghasilkan hasil yang seragam, kecuali pada temperature 1400 C dan temperature 30 menit. Waktu dan temperature nampaknya tidak cukup untuk mereduksnya.

There are many innovations in processing the iron ore. In the reduction process, many people tend to choose high grade iron ore. In Indonesia, the existing iron ore has low grade. Special attention is required in order to process this iron ore. By utilizing the native Indonesian iron ore, we can improve the economy of Indonesia. We use iron ore from Lampung in the reduction by utilizing coal which is also from Indonesia Kalimantan . The reduction process is done by varying the temperature and time. Samples that were mixed with coal, bentonite, and CaCO3, is inserted into the furnace to the desired temperature. Having reached the desired temperature, we hold the temperature in accordance with the predetermined time. After the reduction process is complete, we examine the product using SEM, XRD. Based on XRD tests, four products successfully make metallic iron. The degree of reduction would be increased with the rise of temperature. However, it is still dependent on the results obtained. Metallization degrees are in accordance with the literature. With the increase of temperature, the degree of metallization also increase. The yield of metallic iron is also in accordance with the literature. With the increase of temperature, the increasing yield also increase. All product produce the same microstructure, except for temperatures of 1400 C and holding time 30 minutes. Time and temperature does not seem enough to do the reduction process."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66220
UI - Skripsi Membership  Universitas Indonesia Library
cover
Citra Noviasari
"Kendaraan listrik merupakan salah satu solusi dari pemanfaatan energi ramah lingkungan. Sebagian besar negara di dunia telah mewajibkan dan/atau menganjurkan masyarakatnya untuk mulai menggunakan kendaraan listrik. Baterai merupakan salah satu komponen penting dalam kendaraan listrik. Untuk memproduksi baterai tersebut, dapat menggunakan mixed hydro precipitate (MHP), yang merupakan produk antara dari bijih nikel laterit yang diproses dengan metode hidrometalurgi dengan kandungan nikel 30-40%. Saat ini, beberapa perusahaan yang mengolah sumber daya nikel di Indonesia menggunakan teknologi High Pressure Acid Leaching (HPAL). Akan tetapi, metode HPAL menghasilkan residu yang cukup banyak dan beracun sehingga harus diolah terlebih dahulu sebelum dialirkan ke lingkungan. Salah satu metode yang dikembangkan dan berpotensi untuk bersaing dengan teknologi HPAL di Indonesia, yaitu DNi ProcessTM yang menggunakan pelindian dengan asam nitrat. Teknologi DNi ProcessTM ini terdiri dari beberapa tahapan, yaitu leaching, iron hydrolysis, aluminum precipitation, dan Mixed Hydroxide Precipitate (MHP) precipitation. Untuk menguji kelayakan teknologi DNi ProcessTM, dilakukan perbandingan persentase ekstraksi antara kedua teknologi tersebut. Dari hasil penelitian, tahap leaching DNi ProcessTM memberikan persentase ekstraksi Ni 94,76% dan Co 96,36%. Persentase ekstraksi ini lebih tinggi dibandingkan dengan metode HPAL, yang memberikan persentase ekstraksi Ni 93% dan Co 91-95%.

The electric vehicle is a solution for the utilization of eco-friendly energy. Most countries have required and/or advocated for their citizens to use electric vehicles. The battery is one of the components in electric vehicles. In producing the battery, mixed hydro precipitate (MHP) can be used, an intermediate product from lateritic nickel ore that is processed with hydrometallurgy methods and contains 30-40% nickel. Several companies have processed nickel in Indonesia using High-Pressure Acid Leaching (HPAL) technology. However, this method generates a substantial amount of toxic waste, which must be processed before dumping it into the environment. One method that is being developed dan has the potential to compete with HPAL in Indonesia is DNi ProcessTM, which uses nitric acid for leaching. DNi ProcessTM consists of several stages: leaching, iron hydrolysis, aluminum precipitation, and MHP precipitation. In examining the feasibility of DNi ProcessTM technology, a comparison of extraction percentage between the two technologies was used. From the study, the leaching stage of DNi ProcessTM gave extraction percentage for Ni 94.76% and Co 96,36%. This extraction percentage is higher than HPAL, which gave extraction percentage for Ni 93% and Co 91-95%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>