Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81893 dokumen yang sesuai dengan query
cover
Hutabarat, Lestyant Dinasty
"ABSTRAK
Tar adalah kontaminan organik yang terbentuk selama proses gasifikasi berlangsung. Tar merupakan suatu campuran yang komplek dari hidrokarbon yang dapat berkondensasi. Pengotor atau kontaminan partikel dan organik, seperti tar merupakan suatu masalah yang harus dihadapi pada proses gasifikasi yang menggunakan batubara. Apabila gas produser digunakan langsung untuk pemanasan tidak akan menimbulkan masalah tetapi apabila gas produser digunakan seperti pada Biomass Updraft Gasifier maka akan mempengaruhi baik performa maupun kemungkinan terjadinya percepatan keausan dari komponen komponen Biomass Updraft Gasifier. Pengukuran kadar tar adalah langkah awal untuk mengetahui apakah kadar tar yang dihasilkan oleh Biomass Updraft Gasifier berada dalam batas normal atau tidak dan dalam hal meminimalisasi kerusakan pada mesin. Pengukuran tar ini juga menjelaskan alat yang digunakan, cara pengambilan gas sampling, proses penimbangan hingga diperoleh massa tar. Gas sampling dilakukan pada variasi flowrate pada primary air blower 56.04 lpm, 79.25 lpm, 97.06 lpm.Pengujian ini juga menganalisa karakteristik tar yang terbentuk berdasarkan temperatur pada zona pirolisis.

Abstract
Tar is the organic contaminants that are formed during the gasification process takes place. Tar is a complex mixture of hydrocarbons that can condense. Impurities or contaminants, and organic particles, such as tar is a problem that must be faced in the gasification process using coal. If the producer gas is used directly for heating will not cause problems but if the producer gas is used as the Biomass Updraft gasifier it will affect both the performance and the possibility of accelerating the wear of the components of Biomass Updraft gasifier. Measurement of tar is the first step to determine whether the amount of tar produced by the Biomass Updraft gasifier within normal limits or not, and in terms of minimizing damage to the machine. This also explains the tar measurement tools used, how to capture the gas sampling, the process of weighing up the mass of tar obtained. Gas sampling performed on the primary water flowrate variations blower 56.04 lpm, lpm 79.25, 97.06 lpm. The experiment also analyzed the characteristics of the tar which is formed on the basis of temperature on pyrolysis zone.
"
2012
S43494
UI - Skripsi Open  Universitas Indonesia Library
cover
"Gas hasil gasifikasi mengandung partikel-partikel dan senyawa organik dalam hal ini disebut tar. Gas yang mengandung tar berlebih pada motor pembakaran dalam dapat mengakibatkan kerusakan mesin. Pada gasifier tipe downdraft yang memiliki kandungan tar rata-rata <1 g/m3 akan sulit jika aplikasikan di motor pembakaran dalam dimana kandungan tar dalam gas produser harus 50-100 mg/m3. Pengukuran tar adalah langkah awal dalam meminimalisasi kerusakan pada mesin. Metode pengukuran tar menggunakan metode gas sampling dengan
tabung impinger dan solvent sebagai penangkap tar. Pengukuran tar ini juga menjelaskan alat yang digunakan, cara pengambilan gas sampling, proses penimbangan hingga diperoleh kandungan tar. Gas sampling dilakukan pada sebelum dan sesudah gas cleaning dengan yang digunakan selama pengujian adalah flowrate primary air 189.6 lpm, 131.4 lpm dan 89.6 lpm dan flowrate air pada venturi scrubber 10 lpm, 20 lpm, 30 lpm. Pengujian ini juga menganalisa karakteristik tar yang terbentuk berdasarkan temperatur pada zona pirolisis.

Abstract
Gas that produces from gasification contains particles and organic compound in this case called tar. Gases that contain high level tar in internal combustion engine would damage the engine. Downdraft type of gasifier who had average mass of tar <1 g/m3 will be difficult to apply it in internal combustion engine that the tar contain in gas producer must be 50-100 g/m3. Tar measurement is the first step to minimize damage in engine. Tar measurement method using gas sampling with impinger bottles and solvent as tar absorber. This measurement also explain, tool that use on experiment, how to collect gas sampling and how to scale it until gaining mass of tar. Gas sampling collected before and after gas cleaning system with variation on primary air flowrate 189.6 lpm, 131.4 lpm and 89.6 lpm and
also water flowrate on venturi scrubber 10 lpm, 20 lpm and 30 lpm. The experiment also analyze tar forming characteristic based on temperature on pyrolysis zone."
Fakultas Teknik Universitas Indonesia, 2012
S1698
UI - Skripsi Open  Universitas Indonesia Library
cover
Irvan Nurtanio
"Gasifikasi adalah suatu proses termokimia yang mengubah bahan bakar padat menjadi gas mampu bakar yang dikenal dengan istilah teknik Producer Gas atau Syntetic Gas (Syngas) dengan proses pembakaran menggunakan oksigen terbatas.Updraft Gasifier merupakan jenis gasifier yang dapat menghasilkan daya yang lebih besar dibandingkan downdraft gasifier tetapi menghasilkan tar yang lebih banyak. Adapun tujuan dari penelitian ini adalah mengetahui kandungan tar pada updraft gasifier dengan pengeluaran gas produk melalui daerah reduksi. Dengan penggunaan metode seperti ini diharapkan kandungan tar dapat berkurang dikarenakan gas produk bergerak kembali ke daerah temperatur tinggi dan tar yang terkandung di dalamnya mengalami cracking baik karena termal atau bereaksi dengan uap, H2O atau CO2 yang terkandung dalam gas produk sebelum meninggalkan gasifier. Pengujian dilakukan menggunakan bahan bakar kayu karet dengan primary air blower sebesar 108 lpm dan penarikan tar sebesar 2 lpm.

Gasification is a thermochemical process that converts solid fuel into a combustible gas known as "Producer Gas or Synthetic Gas (Syngas)"using a limited supply of air for combustion. Updraft gasifier is a type of gasifier that can generate more power than the downdraft gasifier but produces more tar. The purpose of this study was to determine the tar content in the updraft gasifier with syngas outlet through the reduction zone. With the use of such methods is expected to decrease due to the tar content of product gas to move back into areas of high temperature and tar contained in it have either cracking due to thermal or react with steam, H2O or CO2 contained in the product gas before leaving the gasifier. Tests carried out using rubber wood fuel with the primary air blower at 108 lpm and tar extracted at 2 lpm."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42264
UI - Skripsi Open  Universitas Indonesia Library
cover
Ardyan Humala Gumanti
"Gasifikasi adalah suatu proses termokimia yang mengubah bahan bakar padat menjadi gas mampu bakar yang dikenal dengan istilah teknik "Producer Gas atau Syntetic Gas (Syngas)" dengan proses pembakaran menggunakan oksigen terbatas. Updraft Gasifier merupakan jenis gasifier yang dapat menghasilkan daya yang lebih besar dibandingkan downdraft gasifier tetapi menghasilkan tar yang lebih banyak. Adapun tujuan dari penelitian ini adalah mengurangi kandungan tar pada updraft gasifier dengan cara mengeluarkan gas produk melalui dua outlet gas, yaitu outlet bawah pada daerah reduksi dan outlet atas pada daerah gasifikasi. Dengan penggunaan metode seperti ini diharapkan kandungan tar dapat berkurang dikarenakan gas yang melalui outlet bawah (reduksi) sudah tidak mengandung tar akibat temperatur yang tinggi, sehingga tar primer yang terkandung di dalamnya mengalami cracking baik karena termal atau bereaksi dengan H2, H2O atau CO2 yang terkandung dalam gas produk sebelum meninggalkan gasifier. Pengujian dilakukan menggunakan bahan bakar kayu karet dengan primary air blower sebesar 108 lpm dan penarikan tar sebesar 2 lpm.

Gasification is a thermo chemical process that converts solid fuel into a gas capable of burning a technique known as "Producer Gas or Synthetic Gas (Syngas)" by the combustion process using oxygen-limited. Updraft gasifier is a type of gasifier that can generate more power than the downdraft gasifier but produces more tar. The purpose of this study was to reduce the tar content in the updraft gasifier with gas issuing through double gas outlet that located in reduction and gasification zone. With the use of such method, it is expected to decrease tar content of product gas because the gas that is originated from the reduction zone will not produce primary tars anymore due to high temperature. The tars contained in it have either cracking due to thermal or react with H2, H2O or CO2 contained in the product gas before leaving the gasifier. Tests carried out using rubber wood fuel with the primary water at 108 lpm and blower tar withdrawal at 2 lpm."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43243
UI - Skripsi Open  Universitas Indonesia Library
cover
Fajri Vidian
"Proses gasifikasi pada updraft gasifier memiliki efisiensi yang tinggi, namun mempunyai masalah pada besarnya limbah tar yang dihasilkan. Untuk memecahkan permasalahan tersebut, maka diusulkan pengurangan tar pada updraft gasifier dengan metode resirkulasi eksternal gas pirolisis ke daerah pembakaran dan gas keluar dari side stream (daerah reduksi).
Penelitian ini dilaksanakan dengan metode percobaan dan simulasi, untuk kondisi aliran dingin dan aliran panas (gasifikasi). Percobaan dan simulasi aliran dingin dilakukan untuk mendapatkan dimensi ejektor dan posisi keluaran nosel ejektor yang paling baik pada jumlah aliran suction flow yang maksimal. Percobaan dan simulasi gasifikasi dilakukan pada empat konfigurasi updraft gasifier yaitu konfigurasi-1 (konvensional atau top gas), konfigurasi-2 (daerah reduksi atau side stream), konfigurasi-3 (top gas dan side stream) dan konfigurasi-4 (resirkulasi eksternal gas pirolisis ke daerah pembakaran) dengan kapasitas gasifier yang digunakan ± 6 kg/jam.
Dari percobaan dan simulasi computaional fluid dynamic aliran dingin dihasilkan dimensi ejektor yang dapat menarik suction fluid masksimum yaitu: diameter leher ejektor 0,75 cm, diameter ruang percampuran ejektor 5 cm dan panjang ruang percampuran 7,5 cm. Posisi keluaran nosel (NXP) -3 cm dibelakang posisi masuk ruang percampuran.
Dari percobaan gasifikasi diperoleh penurunan kandungan tar masing-masing konfigurasi dibandingkan kandungan tar konfigurasi-1 sebagai berikut konfigurasi-2: 27%, konfigurasi-3 (top gas): 8%, konfigurasi-3 (side stream): 50% dan konfigurasi-4: 85,9% (maksimum). Lower Heating Value gas produser maksimum sebesar 4,9 MJ/m3. Reaksi sekunder tar pada unggun bertemperatur tinggi memberikan kontribusi pada penurunan kandungan tar.
Peningkatan aliran resirkulasi gas pirolisis ke daerah pembakaran pada laju alir udara gasifikasi primer konstan cenderung meningkatkan konsentrasi gas H2, menurunkan konsentrasi gas CO dan kandungan tar. Sedangkan, peningkatan laju alir udara gasifikasi primer pada aliran resirkulasi gas pirolisis konstan, menyebabkan kondisi berlawanan yaitu cenderung menurunkan konsentrasi H2, meningkatkan konsentrasi CO dan tetapi juga menurunkan kandungan tar. Simulasi termodinamika gasifikasi memperkuat hasil percobaan yaitu peningkatan resirkulasi gas pirolisis ke daerah pembakaran, maka akan menyebabkan peningkatan komposisi H2 serta pengurangan komposisi CO dan kandungan tar.

Gasification process may be applied using an updraft or a downdraft approaches. Although the up-draft have higher efficiency than other, but it has problem with the amount of tar waste generated. To solve the problem, this research introduces the recirculation approach. This technique external recirculates the pyrolyse gas to combustion zone, and producer gas is taken at side stream or reduction zone outlet.
This study was conducted using experimental and simulations for cold and hot flow (gasification). The cold flow experimental and simulation computational fluid dynamic have done to get dimension of the nozel and nozel exit position (NXP) at condition maximum suction flow. The gasification experimental and simulation was conducted on four configuration of gasifier each: configuration-1 (top gas or conventional), configuration-2 (side stream or outlet at reduction zone), configuration-3 (combined top gas and side stream) and configuration-4 (external recirculation pyrolisis gas to combustion and gas outlet at side stream) at capacity gasifier was 6 kg/h.
The cold flow experimental and simulation results the ejector dimension that could drive suction flow maximum were the nozel throat diameter of 0,75 cm, the mixing chamber diameter of 5 cm and the length of mixing chamber of 7,5 cm. The nozel exit position (NXP) were gotten about -3 cm behind the position of entrance mixing chamber.
The gasification experimental result in the reduction content of tar of each configuration campared to configuration-1 as follow, configuration-2: 27%, configuration-3 (top gas): 8%, configuration-3 (side stream): 50,4% and configuration-3: 85,9% (maximum). The lower heating value of producer gas of 4,9 MJ/m3 at maximum. The result are due to secondary tar reaction over high temperature.
Increasing of recirculation pyrolisis gas to combustion zone tend to increase H2 concentration, decrease CO concentration and decrease tar content at primary air gasification constant. Increasing of primary air gasification at constant flow rate of pyrolisis gas tend to decrease of CO concentration, increase of H2 concentration and also decrease tar content.
The thermodynamic modeling confirm the result of experiment, where the increasing recirculation pyrolisis gas an increase of H2 composition, a decrease of CO composition and tar content.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1503
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rully Oki Rialto
"Proses gasifikasi adalah proses perubahan suatu senyawa hidrocarbon seperti biomass dari fasa padat menjadi fasa gas secara proses thermokimia. Unsur yang mempengaruhi proses ini adalah adanya proses reaksi oksigen dan hidrogen di dalam proses gasifikasi. Ada beberapa proses yang berkaitan dengan proses gasifikasi. Proses pengeringan bahan bakar di dalam rektor gas. Proses gasifikasi atau pirolisis proses terbentuknya tar dan arang. Proses pembakaran yang akan menghasilkan CO2 dan uap air. Proses reduksi dimana bahan Hidrocarbon mengalami perubahan bentuk dari padat menjadi gas yang mampu bakar. Jenis gasifikasi di bedakan berdasarkan keluaran gas, jika gas keluar di bawah reaktor maka disebut downdraft dan jika hasil gas keluar berada di area atas maka disebut updraft. Produk sisa dari gasifikasi adalah tar. Tar adalah sejenis senyawa yang kental, padat,lengket dandapat mengendap sehingga akan mengganggu proses gas keluar dari pipa. Untuk itu penelitian ini dilakukan untuk mengetahui seberapa besar jumlah tar pada updraft dan pengaruh masaa tar dengan perbedaan temperatur.
Metode penelitian ini menggunakan jurnal "Guideline for Sampling and Analysis Tar and Particles in Biomass Producer Gases" dengan penulis J.P.A. Neeft, H.A.M. Knoef, U. Zielke, K. Sjöström, P. Hasler, P.A. Simell, M.A. Dorrington, Thomas, N. Abatzoglou, S. Deutch, C.Greil, G.J. Buffinga, C. Brage, M. Suomalainen dan diterb.

The process of gasification is the process of change in a hydrocarbon compound such as biomass from solid phase into the gas phase in the process thermokimia. Elements that affect this process is the presence of oxygen and hydrogen reaction process in the gasification process. There are several processes related to the gasification process. The process of drying of fuel in the gas rector. The process of gasification or pyrolysis process of formation of tar and charcoal. Combustion process will produce CO2 and water vapor. Reduction process in which hydrocarbon material changes from solid to gaseous form that can burn. Differentiated by type of gasification gas output, if the gas out under the reactor, it is called gas downdraft and if the results come out on top then called the updraft area. Residual products of gasification is the tar. Tar is a kind of compound is thick, dense, sticky precipitate dandapat so would interfere with the gas out of the pipe. For that study was conducted to determine how large the amount of tar and influence on updraft tar Masaa with temperature difference.
Methods This study uses the journal Guideline for Sampling and Analysis Tar and Particles in Biomass Producer Gases". The creator is J.P.A. Neeft, H.A.M. Knoef, U. Zielke, K. Sjöström, P. Hasler, P.A. Simell, M.A. Dorrington, Thomas, N. Abatzoglou, S. Deutch, C.Greil, G.J. Buffinga, C. Brage, M. publication by Energy project ERK6-CT1999-20002 (Tar protocol)."
Fakultas Teknik Universitas Indonesia, 2012
S42815
UI - Skripsi Open  Universitas Indonesia Library
cover
Farel Abdia Harfy
"Gasifikasi biomassa adalah salah satu teknologi yang menjajikan dalam mengkonversi biomassa menjadi panas dan listrik. Di dalam prosesnya gasifikasi mengubah biomassa menjadi gas mampu bakar atau dikenal dengan nama syngas. Syngas tersebut dapat dimanfaatkan untuk membangkitkan listrik menggunakan motor pembakaran dalam. Akan tetapi syngas tersebut mengandung zat pengotor yaitu tar, sehingga agar dapat digunakan, kandungan tar pada syngas harus dikurangi. Salah satu cara untuk mengurangi tar ini adalah menggunakan kondensor. Tim riset gasifikasi biomassa Universitas Indonesia saat ini sudah membuat prototipe kedua gasifier biomassa.

Berbagai perubahan desain dilakukan pada prototipe II ini salah satunya yaitu pada kondensor. Tujuan penelitian ini adalah untuk mengetahui pengaruh perubahan desain terhadap kinerja kondensor, seperti efisiensi pengurangan tar dan pressure drop. Penelitian ini juga dilakukan untuk mengetahui pengaruh penggunaan pompa pada kinerja kondensor. Hasil dari penelitian ini menunjukkan bahwa penggunaan pompa pada kondensor tidak memberikan pengaruh yang besar pada kinerja kondensor. Efisiensi pengurangan tar dapat meningkat dengan ditambahkannya insulasi pada pipa sebelum kondensor dan dengan mengubah material pada pipa kondensor. Pressure drop pada pipa kondensor dapat dikurangi dengan mengubah tipe pipa menjadi vertikal dan dengan menambahkan condensate tank.

 


Biomass gasification is one of the promising technologies in converting biomass to heat and electricity. In the process, gasification converts biomass into combustible gas, known as syngas. The syngas can be used to generate electricity using an internal combustion engine. However, the syngas contains impurities namely tar, so that to be used, the tar content in syngas must be reduced. One of method to reduce this tar is to use a condenser. The University of Indonesia's biomass gasification research team has now made a second prototype of the biomass gasifier.

Several changes of design were made on this prototype II, one of which is the condenser. The purpose of this research is to determine the effect of design changes on condenser performance, such as the efficiency of tar reduction and pressure drop. This research was also conducted to determine the effect of the use of pumps on the performance of the condenser. The results of this research indicate that the use of pumps on the condenser does not have a major effect on the performance of the condenser. The efficiency of tar reduction can be increased by adding insulation to the pipe before the condenser and by changing the material in the condenser pipe. Pressure drop on the condenser pipe can be reduced by changing the pipe type to vertical and by adding a condensate tank.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariiq Naufal Muhammad
"Indonesia merupakan sebuah negara yang memiliki kekayan sumber daya alam yang melimpah. Dari sekian banyak sumber daya alam yang dimiliki oleh Indonesia ada suatu sumber energi terbaharukan yang dapat digunakan, yaitu biomassa. Biomassa di Indonesia merupakan bukti bahwa negara kita adalah negara agraris yang subur. Produksi Biomassa di Indonesia diperkirakan berjumlah 246.7 juta ton tiap tahunnya. Dengan angka sebesar ini, maka sudah semestinya Indonesia memfokuskan untuk mengembangkan teknologi terbaharukan untuk menghasilkan energi yang sustainable bagi negara Indonesia.
Syngas merupakan produk berupa gas pada proses gasifikasi diantara senyawa lain yang tidak diinginkan, seperti tar. Salah satu cara untuk memisahkan tar dari produk akhir adalah dengan menggunakan filter biomassa. Pada studi ini, efektivitas adsorpsi dari filter biomassa yang menggunakan sekam padi sebagai medium adsorpsi dalam menghilangkan tar dari produk akhir pada prototipe II gasifier dilampirkan. Penelitian dilakukan dengan memvariasikan laju aliran syngas dengan hasil 0.00179 /s, 0.002 /s, dan 0.00243 /s serta mengobservasi hasil dari pressure drop di antara inlet dan outlet filter dengan dengan hasil 0.262 kPa, 0.301 kPa, and 0.381 kPa. Hasil menunjukkan bahwa efisiensi pengurangan tar akan naik selaras dengan kedua laju aliran syngas dan juga pressure drop, dengan efisiensi pengurangan tar maksimum sebesar 69.33% ketika laju aliran syngas dan pressure drop berada pada angka 0.00243 and 0.381 kPa.
Hasil dari studi ini dapat diaplikasikan sebagai bahan evaluasi prototipe II dengan tujuan untuk mendesain prototipe III filter biomassa dan juga mengetahui konfigurasi terbaik untuk mengurangi tar dalam prototipe II filter biomassa.

Indonesia is a natural-resources rich country from various sources. One of the sources is biomass. The existence of biomass in Indonesia indicates that Indonesia has a fertile land for agricultural activities. Each year, Indonesia produces 246.7 millions tons of biomass waste. With the number of biomass being so high, Indonesia needs to focus on generating renewable and sustainable energy for its people.
Syngas is one of the gaseous products of gasification process, among other unwanted compounds, such as tar. One way to separate tar from the final products is by using biomass filter. Here, the effectiveness of an adsorption biomass filter, using rice husk as the adsorption medium, in removing tar from the final products of prototype II gasifier is reported. The efficiency of tar removal was investigated by varying syngas flow rate of 0.00179 /s, 0.002 /s, 0.00243 /s and observing the resulted pressure drop between the inlet and outlet of the filter of 0.262 kPa, 0.301 kPa, and 0.381 kPa. The result shows that tar removal efficiency increases with both flow rate and pressure drop, with maximum tar removal efficiency of 69.33% was observed at flow rate and pressure drop of 0.00243 and 0.381 kPa, respectively.
The result of this study can be used to evaluate prototype II biomass filter with the purpose to design the new prototype III biomass filter as well as to determine the optimum configuration to reduce tar from prototype II final gaseous products
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Hafizh Anshary
"Biomassa merupakan salah satu sumber energi alternatif yang melimpah di Indonesia. Unuk memanfaatkannya, diperlukan proses Gasifikasi dimana proses tersebut menghasilkan Syngas, yang dimasukkan kedalam engine untuk menggerakkan generator dan akhirnya dapat menjadi energi listirk. Akan tetapi, produk dari gasifikasi tidak sepenuhnya syngas, melainkan terdapat partikulat lain yang perlu dihilangkan, salah satunya adalah tar. Dengan adanya tar, maka proses gasifikasi akan terhambat karena pemampatan dan pengotoran pada komponen hilir, sehingga diperlukan perawatan serta pembersihan rumit. Salah satu metode yang digunakan dalam mengurangi tar dalam syngas adalah dengan metode kondensasi menggunakan kondensor. Data yang diambil berdasarkan variabel laju blower hisap yaitu 63,6 L/m, 64,96 L/m, 71,94 L/m, serta 79,06 L/m. Hasil dari penelitian ini menunjukkan efisiensi pengurangan tar semakin tinggi saat menurunnya laju blower hisap. Efisiensi pengurangan tar terbesar mencapai nilai 85,64 % pada laju aliran blower hisap 63,6 L/m. Pengurangan tar pada syngas juga dipengauhi dengan adanya pressure drop yang meningkat pada kondenser. Semakin besar pressure drop, semakin tidak efektif kerja kondensor. Terbukti dengan nilai pressure drop terbesar ada laju aliran blower hisap yang tertinggi yaitu 79,06 L/m dengan nilai pressure drop 0,407 kPa.

Biomass is one of the abundant alternative energy sources in Indonesia. In obtaining this energy, a gasification process is needed where the process produces Syngas. The syngas can be fed into an Internal Combustion engine to drive a generator which can eventually become electrical energy. However, the product of gasification is not completely syngas, but there are other particulates that need to be removed, one of which is tar. With the presence of tar, the gasification process will be hampered due to blockage and contamination of downstream components, in which extensive maintenance and cleaning will be required. One of the methods used to reduce tar in syngas is through condensation using a Condenser. The data taken is based on the variable rate of the suction blower, from 63.6 L/m, 64,.96 L/m, 71.94 L/m and 79,.06 L/m. The result of this study indicates that the efficiency of tar reduction is higher when the blower suction rate is 63.6 L/m with a tar reduction efficiency of 85.64%. Tar reduction in syngas is also effected by pressure drop increase in the condenser. It is proven by the largest pressure drop value (0.407 kPa) occured during the highest suction blower flow rate (79.06 L/m)."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcellino Lorenzo
"Gasifikasi biomassa adalah proses konversi biomassa menjadi bahan bakar gas yang mempan bakar (CO, CH4, dan H2). Bahan baku untuk proses gasifikasi dapat berupa limbah biomassa, yaitu sekam padi, tempurung kelapa, potongan kayu, maupun limbah pertanian lainnya. Pada proses konversi secara termokimia, pemanfaatan biomassa sebagai sumber energi akan dibakar. Dalam proses pembakaran biomassa sebagai bahan bakar, rantai hidrokarbon pada biomassa yang dipilih akan terurai. Produk yang dihasilkan dari proses gasifikasi adalah gas mempan bakar yang disebut syngas (gas sintesis). Gas mudah bakar (gas combustible) yang dapat dimanfaatkan hanyalah CO, H2, dan CH4. Selama proses gasifikasi akan terbentuk daerah proses yang dinamakan menurut distribusi suhu dalam reaktor gasifier. Daerah-daerah itu, yaitu: Drying, Pyrolysis, Reduksi, dan Combustion. Selama pirolisis, kelembaban menguap pertama kali (100°C), kemudian hemiselulosa terdekomposisi (200-260°C), lalu selulosa (240-340°C), dan diikuti oleh lignin (280-500°C). Produk cair hasil pirolisis yang menguap mengandung tar dan PAH (polyaromatic hydrocarbon). Produk pirolisis umumnya terdiri dari tiga jenis, yaitu gas ringan (H2, CO, CO2, H2O, dan CH4), tar, dan arang. Tar dapat didefinisikan sebagai campuran hidrokarbon terkondensasi. Konsentrasi tar dalam sistem harus dibatasi dan terdapat beberapa cara untuk pengurangan tar. Kondensasi tar dipilih menjadi salah satu cara termudah dan termurah untuk mengurangi sebagian besar kandungan tar pada syngas. Untuk ini dibutuhkan kondensor untuk mengkondensasi tar. Saat tar mencapai dew point maka tar akan berubah fase dari gas menjadi cair. Tar yang mencair akan terpisah dari aliran syngas. Terdapat kandungan tar pada syngas yang diizinkan untuk masuk kedalam motor bakar yaitu 0,01-0,1 g/Nm3. Pada penelitian Mobile Biomass Gasifier sebelumnya, digunakan kondensor berjenis shell and tube dan memiliki efisiensi 75%-85%. Purwarupa tahap 3 ini memilih kondensor berjenis double pipe heat exchanger untuk mengurangi ukuran dengan efisiensi yang lebih tinggi.

Biomass gasification is the process of converting biomass into combustible gas fuels (CO, CH4, and H2). The raw materials for the gasification process can be in the form of biomass waste, namely rice husks, coconut shells, wood chips, and other agricultural wastes. In the thermochemical conversion process, the use of biomass as an energy source will be burned. In the process of burning biomass as fuel, the chain of termination of the selected biomass will be unraveled. The product resulting from the gasification process is a combustible gas called syngas (synthesis gas). Combustible gas that can be used only CO, H2, and CH4. During the gasification process a process will be formed which starts according to the temperature distribution in the gasifier reactor. These areas are: Drying, Pyrolysis, Reduction, and Combustion. During pyrolysis, evaporate decomposed first (100°C), then hemicellulose is decomposed (200-260°C), then cellulose (240-340°C), and followed by lignin (280-500°C). The liquid product resulting from the evaporation of pyrolysis contains tar and PAHs (polyaromatic hydrocarbons). Pyrolysis products generally consist of three types, namely light gases (H2, CO, CO2, H2O, and CH4), tar, and charcoal. Tar can be defined as a condensed mixture. The concentration of tar in the system must be limited and there are several ways to reduce tar. Tar condensation was chosen to be one of the easiest and cheapest ways to reduce most of the tar content in syngas. This requires a condenser to condense the tar. When the tar reaches the dew point, the tar will change phase from gas to liquid. The melted tar will separate from the syngas flow. There is a tar content in the syngas that is allowed to enter the combustion engine, which is 0.01-0.1 g/Nm3. In the previous Mobile Biomass Gasifier research, a shell and tube type condenser was used and has an efficiency of 75%-85%. This stage 3 prototype chose a double pipe heat exchanger condenser to reduce size with higher efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>