Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 184064 dokumen yang sesuai dengan query
cover
Ilmiyati Sari
"Penularan penyakit dari satu individu ke individu lainnya dapat terjadi secara horizontal maupun vertikal. Tesis ini membahas model epidemik SIR untuk penyakit yang menular secara horizontal dan vertikal. Dinamika dari model ini digambarkan dari kelakuan titik kesetimbangannya, yaitu titik kesetimbangan epidemik dan titik kesetimbangan bebas-infeksi. Basic reproduction number digunakan untuk menentukan kriteria kestabilan titik kesetimbangan. Dalam upaya pencegahan penyakit yang menular secara horizontal dan vertikal dilakukan strategi pemberian vaksin. Strategi vaksinasi dibedakan menjadi dua, yaitu strategi vaksinasi konstan dan strategi vaksinasi denyut. Efek vaksinasi terhadap penyakit ini dapat dilihat dari dinamika model epidemik SIR dengan pengaruh vaksinasi konstan dan vaksinasi denyut. Secara teori, analisa dinamik model SIR dengan vaksinasi konstan sama dengan analisa dinamik model SIR tanpa vaksinasi. Analisa dinamik untuk model SIR dengan vaksinasi denyut menghasilkan solusi periodik bebas-infeksi yang stabil. Selain itu, solusi periodik model SIR dengan vaksinasi denyut lebih cepat stabil dari pada model SIR dengan vaksinasi konstan dan tanpa vaksinasi jika periode pemberian vaksin untuk strategi vaksinasi denyut T kurang dari Tc. Untuk mendukung pembahasan teori di dalam penelitian ini, dilakukan simulasi dengan menggunakan software Matlab.

Some disease may be passed from one individual to another via horizontal or vertical transmission. In this thesis, it is discussed the SIR epidemic model of disease that are both horizontally and vertically transmitted. The dynamics of this disease model is described from the behavior equilibrium point, that is epidemic equilibrium point and infection-free equilibrium point. Basic reproduction number of criteria is used to determine the stability of equilibrium point. In efforts to prevent outbreaks of diseases that are both horizontally and vertically transmitted is performed vaccination strategies. There are two vaccination strategies, namely constant vaccination and pulse vaccination. The effect of vaccination against this disease can be seen from the dynamics of SIR epidemic models with constant and pulse vaccination. Theoretical result shows that under constant vaccination, the dynamic behavior is similar to no vaccination. Under pulse vaccination, infection-free periodic solution is stable. In addition, this infection-free periodic solution is stable faster than SIR epidemic models with constant vaccination and no vaccination if vaccine delivery period for the pulse vaccination strategy T less than Tc. To support the discussion of the theory in this study, we perform some simulations using the software Matlab."
Depok: Universitas Indonesia, 2012
T32255
UI - Tesis Open  Universitas Indonesia Library
cover
Siti Laelatul Chasanah
"Penelitian ini menyajikan model matematika penyebaran Tuberculosis TB dengan mempertimbangkan vaksinasi untuk mensimulasikan dinamika TB dan mengevaluasi dampak pada TB aktif dari beberapa strategi vaksinasi. Populasi dibedakan menjadi tujuh yaitu populasi individu susceptible yang dapat divaksin , tidak dapat diberikan vaksin , tervaksin V , exposed lambat L , exposed cepat E , infectious I dan recovery R . Analisis model matematika dilakukan dengan menentukan titik keseimbangan dari model yang dibentuk, menentukan Basic Reproduction Number R0 dan menganalisa kestabilan dari titik keseimbangannya. Selanjutnya, interpretasi numerik diperoleh dari analisis sensitivitas parameter u1, u2 dan ? terhadap R0 dan simulasi model autonomous. Simulasi numerik dari model yang dibentuk menunjukkan bahwa untuk mencapai keadaan bebas penyakit tidak cukup hanya dengan memaksimalkan salah satu dari parameter u1, u2 atau ? . Selain itu, vaksin lebih efektif diberikan kepada individu yang berumur di bawah 30 tahun dibandingkan dengan individu yang baru lahir.

This study presents a mathematical model of Tuberculosis TB transmission considering vaccination to simulate the TB dynamic and evaluate the impact on active TB of several vaccination strategies. The population was divided into seven populations, i.e., susceptible individuals population that can be vaccinated, can't be vaccinated, vaccinated V, slow L and fast E exposed, infectious I and recovery R. The mathematical model analysis was done by determining the equilibrium point of the model, determining the Basic Reproduction Number Basic Reproduction Number R0, and analyzing the stability of the equilibrium point. Then, some numeric interpretations were given by sensitivity analysis of parameters u1, u2 and to R0 and autonomous model simulations. Numerical simulations of the model show that to reach a disease free equilibrium point is not enough by maximizing one of the parameters u1, u2 or Moreover, the vaccine is also more effective given to individuals under 30 years than the newborn.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50963
UI - Tesis Membership  Universitas Indonesia Library
cover
Bunga Oktaviani Dewi
"Yellow fever adalah penyakit endemik di wilayah Afrika yang disebabkan oleh virus yang tergolong dalam genus Flavivirus dan ditularkan melalui gigitan nyamuk Aedes aegypti. Belum ditemukan pengobatan spesifik untuk penyakit ini. Berbagai upaya telah dilakukan pemerintah dalam menanggulangi penyakit ini, salah satunya melalui kampanye massal mengenai vaksin-17D yang secara praktiknya dipercaya dapat mengurangi penyebaran penyakit yellow fever. Dalam skripsi ini, dibentuk model matematika untuk membahas bagaimana penanggulangan penyakit yellow fever dengan mempertimbangkan beberapa intervensi, yaitu vaksinasi, perawatan intensif di rumah sakit, dan fumigasi. Model dikonstruksi menggunakan pendekatan sistem persamaan diferensial non-linier berdimensi sepuluh. Kajian analitik dan numerik terhadap model yang telah dikonstruksi dilakukan untuk menentukan eksistensi dan menganalisis titik keseimbangan bebas penyakit, titik keseimbangan endemik, basic reproduction number (ℛ0), dan fenomena bifurkasi yang terjadi dari model yang telah dikonstruksi. Dari hasil kajian analitik dan numerik, disimpulkan bahwa fumigasi merupakan intervensi yang paling menjanjikan dalam pengendalian penyakit yellow fever, kemudian disusul oleh intervensi vaksinasi dan perawatan intensif di rumah sakit.

Yellow fever is an endemic disease in Africa caused by a virus belonging to the genus Flavivirus and transmitted through the bite of the Aedes aegypti. There is no specific treatment that has been found for this disease. The government has made various efforts to prevent this disease. One of them is through a mass campaign of the 17D vaccine, which is practically believed to reduce the spread of yellow fever. In this study, a mathematical model is proposed to discuss how to control yellow fever by considering several interventions, such as vaccination, intensive care in hospitals, and fumigation. The model was constructed using a ten-dimensional nonlinear differential equation. Analytical and numerical studies based on this model were carried out to determine and analyze the disease-free equilibrium point, endemic equilibrium point, basic reproductive number (ℛ0), and the bifurcation phenomena of the proposed model. From the results of analytical and numerical studies, we can conclude that fumigation is the most promising intervention to control yellow fever, followed by vaccination and hospital intensive care interventions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nugraha Putra Yuri
"Terlepas vaksinasi campak telah dilakukan secara global saat ini, infeksi penyakit campak masih menjadi endemik pada sebagian besar negara di dunia. Infeksi tersebut tidak hanya terjadi pada negara-negara dengan cakupan vaksinasi yang rendah. Pada negara dengan cakupan vaksinasi yang tinggi seperti Amerika Serikat pun, saat ini wabah campak tetap terjadi pada negara tersebut. Hal ini dikarenakan penyakit campak merupakan penyakit yang sangat menular, dimana tingkat keterjangkitan penyakit pada individu yang tidak memiliki kekebalan adalah sebesar 90%. Pengendalian penyebaran penyakit campak dilakukan dengan pemberian vaksin campak sebanyak dua dosis. Selain melindungi individu yang divaksin campak, pemberian vaksin campak juga dapat mencegah transmisi penyakit campak ketika cakupan vaksinasi tinggi atau sebagian individu pada populasi kebal terhadap penyakit (efek herd immunity). Infektivitas penyakit campak sangat tinggi, sehingga penyakit campak memiliki ambang batas perlidungan kelompok yang tertinggi dari semua penyakit yang dapat dicegah dengan pemberian vaksin. Oleh karena itu, diperlukan kekebalan populasi yang tinggi untuk mengganggu transmisi virus. Pada penelitian ini, dikontruksi model matematika SVEIR pengendalian penyebaran penyakit campak dengan intervensi vaksinasi serta mempertimbangkan faktor herd immunity. Selanjutnya dilakukan analisis pada titik-titik keseimbangan yang diperoleh dari model. Selain itu dilakukan juga analisis sensitivitas basic reproduction number (R0) terhadap parameter vaksinasi pada model. Diperoleh bahwa, dalam upaya pengendalian penyakit campak, pemberian vaksin dosis pertama sangat penting dalam menurunkan level endemik. Serta dilakukan juga simulasi autonomous untuk melihat bagaimana pengaruh intervensi vaksinasi terhadap penyebaran penyakit campak dengan beberapa kasus variansi nilai parameter.

Despite measles vaccination has already been done globally, measles remains endemic in many parts of the world. The infection does not only occur in countries with low vaccinaction coverage. But also in countries with high vaccination coverage such as United States, the measles outbreak is still occurs in those countries. This is because measles is a highly infectious disease in which the infection rate of individuals without immunity  is 90%. Measles transmission control is done by giving two-doses measles vaccine. Besides protecting the individuals who get the vaccination, measles vaccination could also prevent the transmission of measles when the vaccination rate is high or many individuals are immune to the disease (herd immunity effect). The infectivity of measles is very high, so that the herd protection threshold for measles is the highest of all vaccine-preventable diseases. Therefore, a high level population immunity is required to interrupt transmission of measles due to its high infectivity. In this research, a mathematical model SVEIR was constructed for controlling measles with vaccination intervention along with considering the herd immunity effect. Afterwards, we analyze the equilibrium points from the model. Moreover, we analyze the sensitivity of basic reproduction number (R0) towards the vaccination parameter of the model. We found that, by giving one-dose measles vaccine is very influential to reduce the endemic level. Finally, we also do the autonomous simulation to see the effects of the vaccine intervention towards measles infection with some variation in parameter values."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Amelia
"Campak dan campak Jerman merupakan dua penyakit menular yang disebabkan oleh virus. Kedua penyakit ini dapat dicegah dengan cara melakukan vaksinasi. Dalampenelitian ini, dibahas model matematika penyebaran penyaki campak dan campakJerman dengan vaksinasi. Populasi dibagi menjadi sembilan kelas. Dari kajian analitik,diperoleh empat titik keseimbangan, yaitu titik keseimbangan bebas penyakit, titikkeseimbangan bebas campak, titik keseimbangan bebas campak jerman, dan titik keseimbanganendemik penyakit. Terdapat dua basic reproduction number yang diperoleh,masing-masing untuk campak dan campak Jerman. Simulasi numerik dilakukan untukmelihat dinamika perubahan total populasi.

Measles and rubella are two contagious diseases which are caused by viruses. Measlesand rubella can be prevented by vaccination. In this undergraduate thesis, a mathematicalmodel of the spread of measles and rubella with vaccination is discussed. Populationis divided into 9 classes. According to analytical analysis, it is obtained four equilibriumpoints, these are disease free equilibrium, measles free equilibrium, rubella freeequilibrium, and endemic equilibrium. There are two basic reproduction numbers,corresponding to measles and rubella. Numerical simulation is done to see the dynamicsof population.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sakhiyah Karomah Salam
"Model deterministik penyebaran penyakit Middle East Respiratory Syndrome MERS pada skripsi ini melibatkan interaksi antara populasi manusia dan populasi unta di daerah peternakan. Model matematika pada penyebaran penyakit MERS disajikan dengan intervensi rawat inap pada populasi manusia dan vaksinasi pada populasi unta. Proporsi konstan akan diberikan kepada kelompok manusia yang memiliki pekerjaan di area rumah sakit, kawasan peternakan dan tidak di kedua tempat tersebut. Ada lima titik kesetimbangan yang diperoleh pada model, yaitu titik kesetimbangan bebas penyakit pada kedua populasi, titik keseimbangan bebas penyakit pada populasi manusia saja, titik keseimbangan bebas penyakit pada populasi unta saja, titik keseimbangan endemik tanpa dan dengan intervensi. Eksistensi titik-titik kesetimbangan dan kriteria kestabilitan lokal diberikan de- ngan pendekatan analitik dan numerik. Basic reproduction number R0 sebagai ambang batas endemik diberikan secara analitik dengan pendekatan next-generation matrix. Dari analisis sensitivitas R0 dan simulasi numerik terhadap parameter intervensi, ditemukan bahwa intervensi rawat inap dapat menekan penyebaran penyakit MERS pada populasi terinfeksi manusia dan intervensi vaksinasi pada unta dapat membuat penyakit MERS dapat punah dari populasi unta pada suatu waktu.

A deterministic model of Middle East Respiratory Syndrome MERS spread involving mass interaction between human and camel in a ranch area will be introduced in this thesis. This mathematical model for the spread of MERS with Intervention of medical treatment to human population and vaccination in camel population included in to the model. Constant proportions will be given to separate group of human who has a daily activity in a hospital area, ranch area and not in these both place. There are four equilibrium points respect to the introduced model, i.e. completely disease free equilibrium, disease free equilibrium in human population only, disease free equilibrium in camel population only, and endemic equilibrium. Existence and local stability criteria of equilibrium points are given from analytic and numerical approach. Basic reproduction number as an endemic threshold given analytically with next generation matrix approach. From sensitivity analysis of basic reproduction number and numerical simulation to the parameters of the intervention we find that inpatient intervention could suppress the spread of MERS disease in human infected populations and vaccination intervention in camels could make MERS disease extinct from camel populations at some time.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simorangkir, Gracia Monalisa
"

Pada tesis ini, dikonstruksi sebuah model matematika penyebaran TB yang melibatkan relapse, reinfeksi dan kegagalan treatment dan memperkenalkan pula efek dari vaksin jenis terbaru M72/AS01E untuk pencegahan terjadinya relapse. Model yang dibentuk menggunakan persamaan diferensial biasa orde satu. Proses nondimensi dilakukan terhadap model untuk menyederhanakan masalah tanpa kehilangan esensi utama dari tujuan tesis ini. Model yang telah dibentuk dilakukan kajian analitik. Analisa yang dilakukan antara lain adalah eksistensi dan kestabilan titik keseimbangan dan basic reproduction number. Adapun analisis kestabilan dari titik keseimbangan dilakukan menggunakan pendekatan Van den Driessche and Watmough untuk titik keseimbangan bebas penyakit serta Teori Center Manifold oleh Castilo Song disekitar R0=1 untuk titik keseimbangan endemik penyakit. Analisa kestabilan dengan Teorema Center Manifold juga menghasilkan bahwa model yang telah terbentuk mampu menghasilkan bifurkasi mundur, bifurkasi maju dan bifurkasi maju+hysteresis. Kajian yang dilakukan menghasilkan bahwa koefisien saturasi sangat berperan penting dalam terjadinya fenomena bifurkasi dalam model. Lebih jauh, fenomena relapse, reinfeksi dan kegagalan treatment memegang peran penting terhadap peningkatan nilai R0. Namun, hal ini dapat diminimalisir dengan keberadaan vaksin M72/AS01E.

 


In this thesis, a mathematical model of TB spread was constructed involving relapse, reinfection, and failure of treatment. It also introduces the effect of the latest vaccine type M72/AS01E to prevent the occurrence of relapse. The model was formed using firstorder ordinary differential equations. The non-dimensionalization process is carried out on the model to simplify the problem without losing the main essence of the purpose of this thesis. The model that has been formed is an analytical study. The analysis carried out includes the existence and stability of the balance point and the basic reproduction number. The stability analysis of the equilibrium point was carried out using the Van den Driessche and Watmough approach for the disease-free equilibrium point and Castilo Song’s Theory Center around R0=1 for the endemic balance point of the disease. Stability analysis with the Center Manifold Theorem also shows that the established model can produce backward bifurcation, forward bifurcation, and forward + hysteresis bifurcation. The study conducted resulted that the saturation coefficient plays an essential role in the occurrence of the bifurcation phenomenon in the model. Furthermore, the phenomenon of relapse, reinfection, and failure of treatment plays an essential role in increasing the value of R0. However, this can be minimized by the existence of this M72/AS01E vaccine.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Shintia Damayanti
"

Tuberkulosis (TB) merupakan penyakit menular yang disebabkan oleh bakteri Mycrobacterium Tuberculosis. Pada umumnya, penyakit TB menyerang paru-paru manusia. Penyakit ini bisa juga menyerang bagian tubuh lain dari manusia melalui darah. Indonesia merupakan negara ke-3 dengan kasus TB terbesar di dunia. Upaya pencegahan penyebaran TB adalah dengan vaksinasi dan pengobatan yang memadai. Pada penelitian ini, dibentuk model matematika penyebaran TB dengan vaksinasi dan laju pengobatan yang bersaturasi. Pada kasus ini, laju pengobatan menggunakan fungsi saturasi yang menggambarkan efek jenuh akibat dari penundaan pengobatan pasien penderita TB saat sumber daya rumah sakit terbatas. Analisis model terkait eksistensi titik kesetimbangan, kestabilan titik keseimbangan, dan basic reproduction number (Ro) dilakukan secara analitik. Dari analisis titik keseimbangan didapatkan fenomena bifurkasi maju dan juga bifurkasi mundur pada Ro = 1. Bifurkasi mundur didapatkan karena efek dari laju pengobatan yang bersaturasi saat Ro. Oleh karena itu dengan membuat Ro belum cukup untuk mereduksi penyebaran TB. Dengan simulasi numerik dapat menggambarkan fenomena dilapangan, sehingga didapatkan bahwa melakukan vaksinasi, dan memperbesar laju pengobatan maka penyebaran TB dapat dikontrol sehingga lebih efektif untuk mereduksi penyebaran TB.


Tuberculosis (TB) is an infectious disease caused by the bacterium Mycrobacterium Tuberculosis. Generally, this disease attacks the lungs but can attack other parts of the body through the blood. Indonesia is the 3rd country with the most signi�cant TB cases in the world. Efforts to prevent the spread of TB are with vaccination and treatment. In this study, formed a mathematical model of the diseases of tuberculosis with vaccination and saturated treatment rate. In this case, the treatment rate uses the saturation function, which illustrates the saturation effect resulting from treatment delay when there are a large number of TB sufferers with limited hospital resources. Analysis of the model related to the existence of equilibrium points, the stability of equilibrium points, and the analytically basic reproduction number (Ro). The equilibrium point analysis obtained the phenomenon of forward and backward bifurcation at Ro = 1. Backward bifurcation occurs because of the effect of the saturated treatment rate at Ro < 1. It was therefore making Ro < 1 not enough to reduce the spread of TB. With numerical simulations that can illustrate the phenomenon in the reality, so vaccinated, and improving the rate of treatment, the spread of TB can be controlled to reduce the spread of TB.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Mutiara Islamy
"Coronavirus disease 2019 (COVID-19) adalah penyakit menular yang disebabkan oleh virus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-19 dapat menular baik melalui kontak langsung dengan individu terinfeksi maupun kontak dengan permukaan benda yang mengandung virus SARS-CoV-2. Berbagai upaya telah dilakukan untuk menekan penyebaran COVID-19, salah satunya dengan melakukan vaksinasi secara massal. Pada skripsi ini dikonstruksi suatu model matematika yang merupakan pengembangan dari model SIR untuk mengetahui seberapa besar efek dari vaksinasi terhadap penyebaran COVID-19. Model yang dikonstruksi mempertimbangkan kasus tidak terdeteksi dan efek vaksinasi. Pada model ini, populasi manusia dibagi berdasarkan status kesehatannya. Model dibentuk dengan pendekatan sistem persamaaan diferensial biasa nonlinier berdimensi delapan. Dari model matematika tersebut, pada skripsi dilakukan analisis, baik secara analitik ataupun numerik, dan pemberian interpretasi. Kajian analitik yang dilakukan meliputi analisis eksistensi titik keseimbangan, pembentukkan basic reproduction number (R0), dan analisis kestabilan titik keseimbangan. Sedangkan kajian numerik yang dilakukan pada skripsi ini meliputi penaksiran parameter, analisis elastisitas dan sensitivitas R0, serta simulasi autonomous. Data yang digunakan dalam skripsi ini mengacu pada data kasus COVID-19 di DKI Jakarta sejak 13 November 2020 hingga 16 Mei 2021.

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). COVID-19 can be transmitted either through direct contact with infected individuals or not with the surface of objects that contain the SARS-CoV-2 virus. Various attempts have been made to suppress the spread of COVID-19, one of which is by mass vaccination. In this thesis, a mathematical model is constructed, which is the development of the SIR model to find out how big the effect of vaccination is against the spread of COVID-19. The constructed model considers undetected cases and the effects of vaccination. This model divides the human population based on their health status. The model is formed using an eight-dimensional nonlinear ordinary differential equation system approach. From the mathematical model, the thesis is analyzed, either analytically or numerically, and provides interpretation. The analytical studies carried out include an analysis of the existence of equilibrium point, the formation of a basic reproduction number (R0), and an analysis of the stability of the equilibrium point. While the numerical studies carried out in this thesis include parameter estimation, elasticity and sensitivity analysis of 0, and autonomous simulation. The data used in this thesis refers to data on COVID-19 cases in DKI Jakarta from November 13, 2020, to May 16, 2021."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dinda Asrianti
"Campak adalah penyakit yang sangat menular yang disebabkan oleh virus campak. Sebuah model matematika penyebaran penyakit campak dengan intervensi isolasi dan dua tahap vaksinasi telah dikonstruksi pada penelitian ini. Model tersebut dikonstruksi menjadi model SVIQR dengan sistem persamaan diferensial biasa berdimensi enam. Analisis matematika terhadap titik-titik keseimbangan beserta stabilitas lokalnya dilakukan secara analitik dan numerik. Bilangan reproduksi dasar juga ditunjukkan sebagai nilai eigen terbesar dari Next-Generation Matrix. Simulasi numerik pada model dilakukan menggunakan berbagai kasus untuk menyediakan pemahaman yang lebih baik mengenai model. Dari simulasi numerik dapat disimpulkan bahwa laju vaksinasi tahap pertama, laju vaksinasi tahap kedua, dan laju diisolasinya individu yang terinfeksi dapat mengurangi penyebaran penyakit campak pada populasi.

Measles is a highly contagious diseases caused by a virus. A mathematical model of measles with isolation and two stages of vaccination intervention constructed in this article. The model is constructed as an SVIQR system of sixdimensional ordinary differential equation. Mathematical analysis of the equilibrium points and its local stability is performed, both analytically and numerically. We also show the form of the basic reproduction number as the spectral radius of the Next-Generation matrix. Numerical simulations of the model are done for various scenarios to provide a better understanding of the model. From the numerical simulation, we can conclude that the first step and the second step of vaccination and the isolation can reduce the spread of the disease.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>