Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 99594 dokumen yang sesuai dengan query
cover
[Universitas Kristen Petra Surabaya, Universitas Indonesia], 2001
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Sigit Prasetyo
"Pada skripsi ini dibahas perancangan dan pembuatan suatu model mobil yang dapat bergerok tonpa pengontrolan manusia mengikuti jalan yang ada dihadapannya. Alat ini diberi nama Parikesit. Alat yang dibuat Ini merupakan salah satu dari penerapan salah satu jenis kecerdasan buatan, yaitu jaringan saraf tiruan dengan algoritma propagasi batik.
Jaringan saraf tiruan pada skripsi ini berfungsi untuk mengenali bentuk jalan yang ditangkap oleh kamera. Kemudian hash dari pengenalan tersebut dlkirimkan ke mlkrokontroler 8032. Mikrokontroler inilah yang kemudian menggerakkan coda dari model mobil yang digunakan.
Bentuk jalan yang dapat dkenali oleh jaringan saraf flan yang digunakan hanya jalan lurus dan tikungan 90 derajat. Demikian juga dengan manufer-manufer gerak yang diprogramkan untuk mikrokontroller 8032 hanya sebatas jalan lurus dan tikungan 90 derajat.
Dari hasil uji coba yang dilakukan menunjukkan bahwa jaringan saraf tiruan cukup hondal untuk digunakan pods oplikasi sepetti yang dibuat pada skripsi ini. Hanya saja intensitas cahaya sangat berpengaruh pada keberhasilan dalam menetukan kelas, karena perangkai lunak yang dibuat belum dapat melakukan adaptasi terhadap Intensitas cahaya yang berbeda-beda.
"
Depok: Fakultas Teknik Universitas Indonesia, 1997
S39429
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edi Gunawan
"Skripsi ini membahas tentang Sistem Pengenalan Kendaraan dengan menggunakan Jaringan Saraf Tiruan (JST). Sistem yang digunakan bersifat off-line, dalam arti bahwa sistem tidak bekeda langsung pads saat kendaraan memasuki suatu tempat lalu sekaligus diambil citranya akan tetapi bekerja dengan pola citra statis kendaraan itu sendiri. Sistem jugs bersifat khusus dan terbatas hanya untuk mengenali 4 jenis kendaraan : sedan, jip, wagon dan mini. Sistem tidak dikembangkan untuk mengenali kendaraan dengan ukuran besar seperti trek dan bus. Jaringan yang dipakai pada skripsi ini disusun dengan topologi kaskade yang menggabungkan antara topologi JST Kohonen SOM dengan topologi JST Backpropagation. Kohonen SOM belajar dalam mode tak disupervisi, yang mampu melakukan proses pemisahan setup data masukan yang berlainan. Masing-masing data masukan dipetakan dengan data keluaran kemudian diajarkan kepada jaringan Backpropagation - bekerja dalam mode disupervisi -, yang kemudian mengingat pola pemetaan data masukan menjadi data keluaran tanpa melalui pendefirusian fungsi pemetaan. Dengan menggabungkan Kohonen SOM dan Backpropagation, diharapkan akaa aiperoleh hasil yang lebih balk daripada bila kedua topologi tersebut bekeda sendiri-sendiri."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38822
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hartati
"Skripsi ini membuat suatu perangkat lunak sistem pengklasifikasi jalan yang berbasis jaringan saraf tiruan. Ratio perbandingan Lalu lintas Harian Rata-rata Bulanan (LHRB) / Monthly Average Daily Traffic (MADT) dengan Lalu-lintas Harian Rata-rata Tahunan (LHR'I) / Annual Average Daily Traffic (AADT) digunakan sebagai komponen untuk tiap bulan dalam pola lalu lintas (traffic pattern) bulanan. Data ini kemudian dimasukkan ke sistem saraf tiruan untuk dikenah pola lalu lintas tiap bulannya selama sate tahun penuh (12 bulan). Sistem ini dapat mengenali pola lalu lintas yang lengkap maupun tidak lengkap dan mengelompokkan jalan-jalan yang memiliki pola lalu lintas yang mirip. Dengan pengklasifikasian ini maka dapat diperoleh informasi mengenai suatu kelas jalan yang memudahkan untuk konstruksi, perbaikan maupun pemeliharaan dari jalan tersebut. Jaringan saraf druan yang digunakan dalam tugas akhir ini memakai topologi jaringan propagasi balik (Backpropagation)."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S38730
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manik, Edgar Jonathan
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38761
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dalam tulisan ini, dipaparkan hasil pengembangan system klasifikasi bentuk lengkung gigi berbasis algoritma propagasi balik jaringan saraf tiruan. Sejumlah fitur bentuk lengkung gigi dipilih sebagai input jaringan saraf tiruan berdasarkan hasil pengujian secara statistik terhadap variabel bentuk lengkung gigi. Piranti lunak dikembangkan terdiri dari sejumlah fitur yang digunakan untuk pengujian dan pelatihan JST, serta pengenalan bentuk lengkung berdasarkan parameter input yang diberikan oleh peng-guna. Eksperimen dilakukan terhadap data numerik hasil ekstraksi citra digital model cetakan lengkung gigi rahang atas sejumlah 190 orang pasien yang diambil secara acak. Citra lengkung gigi diperoleh dengan melakukan pemindaian terhadap model cetakan lengkung gigi tiga dimensi (3D) pasien ortodonti disejumlah klinik di Jakarta. Hasil uji coba menunjukkan bahwa 76,3158% berhasil diklasifikasikan dengan benar oleh sistem berbasis JST tersebut. Ke depannya sistem akan dikembangkan lebih optimal sehingga dapat digunakan untuk mendukung perawatan ortodonti.

Abstract
In this paper, dental arch form classification system using back propagation algorithm is
proposed. Some features of dental arch are selected for neural network input based on statistical analysis to dependent variables of dental arch. The system contains some features for training and testing the neural network, and for recognizing the arch form based on input parameters. The experiment uses randomly selected data set contains 190 numerical data of upper dental arch that are extracted from dental model
images. The images were obtained by scanning the original 3D dental models of Indonesian patient that were collected from some orthodontic clinics in Jakarta. This experimental result shows that 76,3158% of correctness in classifying the arch form can be reached by neural network system. The system can be applied for supporting the orthodontic treatment."
Universitas Kristen Petra Surabaya, 2008
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Andryanto Candra Wijaya
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38760
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ashadi
"Pada skripsi ini, akan dilalcukan pemodelan sistem kardiovaskular manusia dengan menggunakan prinsip-prinsip dasar fisika. Model matematis yang diperoleh selanjutnya akan disimulasikan dengan menggunakan program Matlab 6.5.
Kemudian, juga dimodelkan dan disimulasikan proses regulasi tekanan darah yang terjadi pada sistem kardiovaskulan Simulasi akau dilakukan dengau mcnggunakan gabungan model sistem kardiovaskular dan model sistem regulasi tekanan darah.
Selanjumya, dirancang dan disimulasikan suatu pacu jantung rare-adaptif berbasis Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan berfnmgsi untuk menenlukan besamya periode impuls yang dikeluarkan pacu jantung. Jaringan Syaraf Tiruan yang digunakan terdiri dari tiga layer. Perancangan dilakukan dalam dua tahapan, yaitu proses pelatihan dan proses pengujian. Pada pelatihan, digunakan data basil simulasi sistem kardiovaskular yang telah dilengkapi dengan sistem regulasi sebagai data pelatihan, dan digunakan algoritma backpropagation sebagai algoritma pelatihan. Pada pengujian, akan dilihat kinerja pacu jantung berbasis Jaringan Syaraf Tiruan ketika digunakan pada sistem kardiovaskular.
Hasil perancangan menunjukkan perfonna pacu jannmg yang mendekati fungsi denyut jantung tubuh sebenarnya."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40103
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Tujuan utama dari penelitian yang dilakukan adalah melakukan pengenalan pola isyarat tangan statis dalam bahasa Indonesia. Pengenalan pola isyarat tangan statis dalam bentuk citra secara garis besar dilakukan dalam 3 tahapan yang meliputi: 1) Segmentasi bagian citra yang akan dikenali berupa tangan dan wajah, 2) ekstraksi ciri, dan 3) klasifikasi pola. Data citra yang diterapkan ada 15 kelas kata isyarat statis. Segmentasi dilakukan dengan menggunakan filter HSV
dengan ambang berdasarkan warna kulit. Ekstraksi ciri dilakukan dengan dekomposisi wavelet Haar filter sampai level 2. Klasifikasi dilakukan dengan menerapkan sistem jaringan syaraf tiruan perambatan balik dengan arsitektur 4096 neuron pada lapisan input, 75 neuron pada lapisan tersembunyi dan 15 neuron pada lapisan output. Sistem diuji dengan menggunakan 225 data validasi dan akurasi yang dicapai adalah 69%.

Abstract
The main objective of this research is to perform pattern recognition of static hand gesture in Indonesian sign language. Basically, pattern recognition of static hand gesture in the form of image had three phases include: 1) segmentation of the image that will be recognizable form of the hands and face, 2) feature extraction and 3) pattern
classification. In this research, we used images data of 15 classes of words static. Segmentation is performed using HSV with a threshold filter based on skin color. Feature extraction performed with
the Haar wavelet decomposition filter to level 2. Classification is done by applying the back propagation system of neural network architecture with 4096 neurons in input layer, 75 neurons in hidden layer and 15 neurons in output layer. The system was tested by using 225 data validation and accuracy achieved was 69%."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Universitas Jenderal Soedirman. Fakultas Sains dan Teknik], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
M. Ilham Fauzi
"ABSTRAK
Tesis ini membahas identifikasi sistem kiln semen dengan Jaringan Syaraf Tiruan (JST), yang meliputi penentuan parameter yang dibutuhkan untuk pemodelan sistem tersebut, dan perancangan JST yang digunakan untuk identifikasi tersebut. Dalam tesis ini digunakan struktur Multi-Layer Feedforward Network yang terdiri dari lapisan masukan, lapisan keluaran dan 2 buah lapisan tersembunyi. Data diperoleh dari kiln semen yang sebenarnya yaitu dari Pabrik Tuban-II PT. Semen Gresik (Persero) tbk., kemudian data tersebut digunakan untuk melatih JST. Untuk melakukan identifikasi menggunakan model masukan-keluaran dengan struktur serial-paralel dan pelatihan JST tersebut menggunakan algoritma Error Back Propagation. Hasil identifikasi selanjutnya disimulasikan dan dibandingkan dengan plant yang sebenarnya.

ABSTRACT
This thesis discuss about system identification of cement kiln using Artificial Neural Network (ANN). The process of system identification using ANN requires to define of the input and output parameters, and to decide ANN's structure. In this thesis, the Feedforward Multi-Layer Network is used which contain input layer, output layer and two hidden layers. The data are collected from the real cement kiln at Pabrik Tuban-II PT. Semen Gresik (Persero) tbk, then good data are selected for training the ANN. In this thesis is using Serial-Parallel Structure and training algorithm is using Error Back Propagation method. The result of the identification is then simulated and compared to the real plant.
"
Fakultas Teknik Universitas Indonesia, 2001
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>