Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17063 dokumen yang sesuai dengan query
cover
Ega Prihastari
"Model regresi Generalized Poisson I merupakan suatu model regresi yang digunakan untuk menganalisis hubungan antara sebuah variabel random dependen yang berupa data count ( berjenis diskrit ) dengan satu atau lebih variabel independen. Model ini dapat digunakan baik dalam keadaan ekuidispersi, overdispersi ataupun underdispersi. Penaksiran parameter dari model regresi Generalized Poisson I dapat diperoleh dengan
menggunakan metode maksimum likelihood melalui pendekatan Newton- Raphson. Beberapa ukuran perbandingan dapat digunakan untuk membandingkan model regresi Generalized Poisson I dengan model regresi Poisson."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gina Nuryani Putri
"Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald.

Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership  Universitas Indonesia Library
cover
Basith Abi Ya'la
"Untuk memodelkan data cacah atau count data, model regresi yang biasa digunakan adalah model regresi Poisson. Model regresi Poisson mengasumsikan mean pada variabel respon sama dengan variansinya atau dikenal dengan istilah equidispersion. Apabila regresi Poisson digunakan untuk kondisi selain equidispersion, yaitu overdispersion dan underdispersion, maka nilai standard error dari estimasi parameter model menjadi tidak konsisten. Salah satu alternatif model regresi untuk mengatasi overdispersion maupun underdispersion adalah model regresi double Poisson. Model regresi double Poisson mengasumsikan variabel respon berdistribusi double Poisson. Distribusi double Poisson diperoleh menggunakan definisi dari keluarga distribusi double eksponensial. Parameter pada model regresi double Poisson diestimasi menggunakan metode maksimum likelihood dan solusi dari persamaan log-likelihoodnya diselesaikan menggunakan metode numerik Newton-Raphson. Penerapan model regresi double Poisson pada data kepiting tapal kuda menunjukan bahwa hanya variabel weight yang berpengaruh signifikan terhadap banyak kepiting satelit yang berkerumun ke sarang kepiting tapal kuda betina. Selain itu, interpretasi dari model regresi double Poisson juga serupa dengan model regresi Poisson sebab keduanya menggunakan fungsi penghubung log.

To model count data, the most commonly used regression model is the Poisson regression model. The Poisson regression model assumes that the mean of the response variable is equal to the variance, also known as equidispersion. If Poisson regression is used for conditions other than equidispersion, namely overdispersion and underdispersion, then the standard error value of the estimated model parameters becomes inconsistent. One of the alternative regression models to overcome overdispersion and underdispersion is the double Poisson regression model. The double Poisson regression model assumes that the response variable has a double Poisson distribution. The double Poisson distribution is obtained using the definition of the double exponential distribution family. The parameters in the double Poisson regression model were estimated using the maximum likelihood method and the solutions of the log-likelihood equation were solved using the Newton-Raphson numerical method. The application of the double Poisson regression model to the horseshoe crab data shows that only the variable weight has a significant effect on the number of satellite crabs swarming to the nests of female horseshoe crabs. In addition, the interpretation of the double Poisson regression model is also similar to the Poisson regression model because both use a log link function."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rida Martiza
"Regresi Poisson merupakan generalized linear models (GLM) yang umum digunakan untuk memodelkan hubungan antara variabel respon berbentuk count data dengan satu atau lebih kovariat. Hanya saja, kerap dijumpai count data yang tidak memenuhi asumsi equidispersion sehingga tidak dapat dimodelkan dengan regresi Poisson. Salah satu penyebabnya adalah fenomena overdispersion yang teridentifikasi dengan banyaknya observasi yang bernilai nol (excess zeros) pada count data. Model regresi Zero-Inflated Poisson (ZIP) dapat digunakan untuk memodelkan count data yang mengalami overdispersion akibat excess zeros. Namun, pada beberapa kasus, count data dapat mengandung excess zeros dan excess ones dalam suatu periode waktu tertentu. Oleh karena itu, diperkenalkan solusi atas permasalahan tersebut menggunakan sebuah distribusi baru, yaitu distribusi Zero-and-One-Inflated Poisson (ZOIP), yang dibangun berdasarkan distribusi Bernoulli dan Poisson. Pada skripsi ini, dikonstruksi model regresi ZOIP untuk memodelkan count data yang mengandung excess zeros dan excess ones dalam suatu periode waktu tertentu. Parameter model regresi ZOIP tersebut diestimasi menggunakan metode maksimum likelihood dan algoritma Expectation Maximization (EM). Selanjutnya, diaplikasikan model regresi ZOIP dengan satu kovariat dan tanpa kovariat ke data klaim asuransi mobil. Berdasarkan nilai Akaike Information Criteria (AIC), didapatkan bahwa model regresi tanpa kovariat lebih cocok untuk memodelkan data klaim asuransi mobil yang dipakai.

Poisson regression is a generalized linear model (GLM) that is commonly used to model the relationship between response variables in the form of count data with one or more covariates. However, it is often found that count data does not meet the equidispersion assumption, so it cannot be modeled using Poisson regression. One of the causes is the phenomenon of overdispersion which is identified by the number of observations that are zero (excess zeros) in the count data. The Zero-Inflated Poisson (ZIP) regression model can be used to model count data that experiences overdispersion due to excess zeros. However, in some cases, count data may contain excess zeros and excess ones in a certain period of time. Therefore, a solution to this problem was introduced using a new distribution, namely the Zero-and-One-Inflated Poisson (ZOIP) distribution, which was built based on the Bernoulli and Poisson distribution. In this thesis, a ZOIP regression model is constructed to model count data containing excess zeros and excess ones in a certain period of time. The parameters of the ZOIP regression model are estimated using the maximum likelihood method and the Expectation Maximization (EM) algorithm. Furthermore, the ZOIP regression model with a covariate and without covariates were applied to the car insurance claim data. Based on the Akaike Information Criteria (AIC) value, it was found that the regression model without covariates is more suitable for modeling the car insurance claim data used."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rieska Indah Astuti
"Model regresi Poisson tampak tak berhubungan (seemingly unrelated Poisson regression model, SUPREME) merupakan suatu model yang terdiri dari beberapa persamaan dimana variabel-variabel dependen dalam tiap persamaan menyatakan data terhitung (count data) dengan distribusi dari variabel dependen diberikan nilai variabel independen adalah Poisson. Diantara persamaan-persamaan tersebut terdapat keterkaitan satu sama lain yang ditunjukkan dengan adanya korelasi antar error dari setiap persamaan yang diindikasikan dengan terdapatnya paling sedikit satu variabel independen yang sama dalam setiap persamaan. Penaksiran parameter dari model regresi Poisson tampak tak berhubungan dilakukan dengan menggunakan metode maksimum likelihood dengan pendekatan Newton-Raphson. Model regresi Poisson tampak tak berhubungan akan memberikan taksiran parameter yang lebih efisien dibandingkan dengan model regresi Poisson apabila terdapat korelasi antar error dari setiap persamaan."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27760
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afida Nurul Hilma
"ABSTRAK
Count data tidak selalu bersifat ekuidispersi. Sehingga, distribusi Poisson tidak dapat digunakan untuk memodelkan count data tersebut. Beberapa distribusi alternatif dari distribusi Poisson telah dikenalkan untuk memodelkan data overdispersi. Namun, distribusi tersebut memiliki kompleksitas yang lebih tinggi dalam jumlah parameter distribusi. Perlu dilakukan modifikasi pada distribusi Poisson agar distribusi yang terbentuk bisa merepresentasikan data overdispersi. Salah satu caranya yaitu dengan melakukan pencampuran distribusi antara distribusi Poisson dengan distribusi Lindley. Distribusi yang terbentuk yaitu distribusi Poisson-Lindley. Namun, distribusi Poisson-Lindley belum dapat mengatasi data underdispersi. Selain itu terdapat data asli yang tidak memiliki observasi bernilai nol. Dengan demikian, untuk mendapatkan distribusi yang lebih fleksibel agar lebih cocok dengan count data tersebut, perlu dilakukan modifikasi pada distribusi Poisson-Lindley dengan menerapkan metode zero-truncated. Distribusi baru yang terbentuk yaitu distribusi Zero-truncated Poisson-Lindley. Distribusi baru tersebut dapat mengatasi data yang tidak memiliki observasi bernilai nol dalam kondisi overdispersi maupun underdispersi. Dalam skripsi ini, didapat karakteristik dari distribusi Zero truncated Poisson-Lindley dan penaksiran parameter distribusi menggunakan metode maximum likelihood.

ABSTRACT
Not every count data has equal-dispersion. As a result, Poisson distribution is no longer appropriate to be used for count data modelling. Several distributions have been introduced to be used as an alternative to Poisson distribution on handling the over-dispersion in data. In general, the alternative distributions have higher complexity in the number of parameters. Modification needs to be done in Poisson distribution so that the distribution can represent the condition of the over-dispersion in data. By doing mixing Poisson and Lindley distribution, a new distribution called Poisson-Lindley is developed. However, Poisson-Lindley distribution cannot handle data that exhibits under-dispersion. On the other hand, there is real data that has no zero-count. Therefore, in order to obtain a more flexible distribution to fit count data that has no zero count, a modification needs to be done in Poisson Lindley distribution by applying a zero truncated method in Poisson-Lindley distribution. The newly formed distribution is named Zero-truncated Poisson Lindley distribution. It can handle the condition when the data has no zero-count both in over-dispersion and under-dispersion. In this paper, characteristics of Zero truncated Poisson Lindley distribution are obtained and estimate distribution parameters using the maximum likelihood method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nishfu Laili Barokah
"Over-dispersi dan under-dispersi adalah beberapa masalah umum ketika pemodelan dihitung data. Karena kondisi seperti itu, distribusi Poisson tidak lagi cocok untuk data cacah pemodelan, karena melanggar asumsi kesetaraan (mean equal variance). Di studi sebelumnya, beberapa distribusi telah diperkenalkan sebagai alternatif untuk Distribusi poisson, untuk menangani kondisi dispersi. Namun, distribusinya bisa hanya menangani overdispersion atau underdispersion. Oleh karena itu, distribusi baru adalah dikembangkan untuk menangani data dengan dispersi kurang dan penyebaran berlebihan. Distribusi ini adalah disebut distribusi Conway Maxwell Poisson (COM-Poisson). COM-Poisson distribusi pertama kali diperkenalkan oleh Conway dan Maxwell pada tahun 1962, sebagai solusi untuk sistem antrian dengan tarif layanan yang tergantung pada negara. Modifikasi Poisson ini distribusi memiliki dua parameter, λ dan parameter tambahan v, yang disebut dispersi parameter. Karena parameter tambahan, distribusi ini dapat digunakan di dispersi berlebihan (jika v <1), equidispersion (jika v = 1), dan dispersi kurang (jika v> 1). Melalui contoh data nyata, tesis ini akan menggunakan distribusi COM-Poisson untuk pemodelan data dengan kondisi penyebaran berlebihan dan kurang penyebaran.

Over-dispersion and under-dispersion are some common problems compiling calculated data modeling. Because of such conditions, the Poisson distribution is no longer suitable for modeling data, because of the testing of the equality equation (mean equal variance). In previous studios, several distributions have been introduced as alternatives to Poisson distribution, to support the terms of dispersion. However, its distribution can only overcome overdispersion or underdispersion. Therefore, new distributions have been developed to support data with less dispersion and excessive distribution. This distribution is called the Conway Maxwell Poisson (COM-Poisson) distribution. COM-Poisson distribution was first introduced by Conway and Maxwell in 1962, as a solution for queuing systems with service rates that depend on the country. This Poisson modification distribution has two parameters, λ and an additional parameter v, which is called parameter dispersion. Because of the additional parameters, this distribution can be used in excessive dispersion (if v <1), equation (if v = 1), and less dispersion (if v> 1). Through real data examples, this thesis will use the COM-Poisson distribution for data modeling with the use of redundant and less-spread distributions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Analisis regresi adalah sebuah metode statistika yang digunakan untuk menganalisis hubungan antara sebuah variabel dependen dengan satu atau lebih variabel independen. Pada umumnya variabel dependen dalam analisis regresi adalah variabel random kontinu dan distribusi dari variabel dependen diberikan nilai variabel independen adalah Normal.
Dalam skripsi ini akan dijelaskan mengenai analisis regresi yang variabel dependen diberikan nilai variabel independennya diasumsikan berdistribusi Poisson. Analisis regresi tersebut dinamakan analisis regresi Poisson. Analisis regresi Poisson digunakan untuk menganalisis hubungan antara sebuah variabel dependen yang menyatakan data terhitung atau data count berdistribusi Poisson dengan satu atau lebih variabel independen. Data count yang dimaksud misalnya adalah banyaknya kejadian dalam interval waktu, ruang, atau volume tertentu. Dalam analisis regresi Poisson, variabel independen yang digunakan dapat berjenis kontinu atau kategorik. Hubungan antara variabel dependen dan variabel independen tersebut dijelaskan oleh model regresi Poisson. Penaksiran parameter model dilakukan menggunakan metode maksimum likelihood dengan pendekatan Newton-Raphson. Pengujian signifikansi parameter model menggunakan uji Rasio Likelihood dan uji Wald.
"
Universitas Indonesia, 2006
S27645
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirun Nisa
"ABSTRAK
Salah satu alternatif ukuran kekuatan prediksi yang dapat diterapkan pada model GLM dimana variabel responnya berdistribusi tidak hanya normal yaitu dengan menggunakan koefisien korelasi regresi regression correlation coefficient ndash; RCC . Koefisien korelasi regresi dibangun berdasarkan definisi koefisien korelasi dengan menggunakan model GLM. Sehingga RCC dapat didefinisikan sebagai nilai yang menyatakan kekuatan hubungan antara variabel respon dan ekspektasi bersyarat dari variabel respon. Koefisien korelasi regresi merupakan salah satu alternatif ukuran kekuatan prediksi yang dapat memenuhi sifat applicability, interpretability, consistency, dan affinity. Pada umumnya bentuk eksplisit dari RCC pada GLM sulit ditemukan. Namun, ketika RCC diterapkan pada model regresi Poisson dan variabel prediktor diasumsikan berdistribusi multivariat normal, maka akan ditemukan bentuk eksplisit. Bentuk eksplisit ini masih memuat parameter ndash; parameter dari model regresi Poisson yang tidak diketahui. Oleh karena itu, perlu dicari estimasi dari parameter - parameter tersebut sehingga diperoleh estimator dari RCC. Metode yang digunakan untuk mengestimasi parameter pada model regresi Poisson adalah metode maximum likelihood.
"
"
"ABSTRACT
"
The regression correlation coefficient RCC is one alternative measure of predictive power that can be applied to the GLM model in which the distribution of response variable is not only normal. The regression correlation coefficient is constructed based on the definition of correlation coefficient by using generalized linear model GLM . So, the RCC can be defined as a value that states the strength of the relationship between the response variable and the conditional expectation of the response variable. The regression correlation coefficient is one of predictable strength measure that can satiesfies the property like applicability, interpretability, consistency, and affinity. In general, the explicit form of RCC on GLM is difficult to find. However, when RCC is applied to the Poisson regression model and the predictor variable is assumed to be a normal multivariate distribution, an explicit form is found. This explicit form still contains the unknown parameters of the Poisson regression model. Therefore, we need to find an estimate of these parameters to obtain an estimator from the RCC. The method used to estimate the parameters in Poisson regression model is maximum likelihood method."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>