Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157004 dokumen yang sesuai dengan query
cover
Dhita Puspitasari
"Misalkan G adalah graf dengan himpunan simpul V dan himpunan busur E, dimana |V(G)| dan |E(G)| menyatakan banyaknya simpul dan busur pada G. Suatu pemetaan f : V  {0, 1 , …, |E|} disebut pelabelan graceful jika f merupakan fungsi injektif yang menginduksi fungsi bijektif g, g(uv) = |f(u) – f(v)|, dimana uv merupakan sebuah busur yang mempunyai titik ujung simpul u dan v, g : E  {1, 2 , …, |E|}. Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan graceful yang tidak isomorfik pada graf lintasan Pn, graf matahari 𝐶𝑛⊙ 𝐾 1 dan graf ular k-C4 yang mungkin. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan graceful mungkin sampai nilai n atau k tertentu."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27876
UI - Skripsi Open  Universitas Indonesia Library
cover
Milla Rachmawati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27839
UI - Skripsi Open  Universitas Indonesia Library
cover
Widiyani Suciati
"Misalkan G adalah graf dengan himpunan simpul tak-kosong V dan himpunan busur E, dimana [V(G)] dan [E(G)] masing-masing menyatakan banyak simpul dan busur pada G. Pelabelan harmonis dari graf adalah suatu pemetaan dengan menginduksi pelabelan pada himpunan busur didefinisikan sebagai pemetaan , untuk setiap busur . Jika adalah graf pohon maka tepat satu label simpul berulang atau label simpul dapat dilabelkan dengan menggunakan . Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan harmonis yang tidak isomorfik pada graf lintasan Pn, graf lingkaran Cn dan graf lobster teratur Ln,r,1 untuk nilai n dan r (untuk graf lobster teratur) yang diberikan. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan harmonis yang mungkin dan tidak isomorfik sampai nilai n tertentu."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27846
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Elvi Khairunnisa
"Sebuah graf adalah pasangan himpunan dengan adalah himpunan tidak kosong dan adalah himpunan mungkin kosong pasangan tidak berurutan dari elemen-elemen . disebut dengan simpul dan disebut dengan busur. Pelabelan graceful didefinisikan sebagai pemberian label pada simpul suatu graf G yang memenuhi fungsi injektif dari himpunan simpul ke himpunan bilangan bulat tak negatif sedemikian sehingga setiap busur xy di G mendapat label , maka label setiap busur akan berbeda. Graf bunga aster merupakan graf yang dibentuk dari graf lingkaran dengan menghubungkan graf lintasan pada dua simpul yang bertetangga. Graf korona bunga aster merupakan graf yang dibentuk dari graf bunga aster dengan menambahkan r simpul daun pada setiap simpulnya. Pada tesis ini dibahas graf yang mempunyai pelabelan graceful atau tidak mempunyai pelabelan graceful pada graf bunga aster untuk dan graf korona bunga aster untuk dan.

A graph is a sets where is the non empty set and is the set of possibly empty of non sequential elements . is called as vertices and is called as edges. Graceful labeling is defined as labeling the vertices of graph that satisfies the injective function from the set of vertices to the set of non negative integers such that each of the xy edges in G gets label , then the label of each vertices will be distinct. An aster flower graph is a graph which generated from the cycle graph by connecting the path graph to the two adjacent vertices. A corona product of aster flower graph is a graph which generated from an aster flower graph by adding r leaf vertices on each vertex. This thesis discusses graphs that have graceful labeling or doesn rsquo t have graceful labeling on aster flower graph for and corona product of aster flower graph for and.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50683
UI - Tesis Membership  Universitas Indonesia Library
cover
Kevin Kamal
"Pengklasteran clustering yang dilakukan dengan menggunakan metode graf disebut dengan pengklasteran graf graph clustering . Pengklasteran graf dengan memperhatikan bobot dapat diselesaikan dengan menggunakan pohon rentangan minimum. Salah satu algoritma yang dapat digunakan untuk menyelesaikan pengklasteran graf berbobot berdasarkan pohon rentangan minimum adalah algoritma maximum standard deviation reduction MSDR . Pada algoritma MSDR tidak perlu ditentukan banyaknya klaster yang terbentuk, karena terdapat perhitungan untuk menentukan banyak klaster secara otomatis. Namun dalam penelitian lanjutan algoritma MSDR cukup sulit dikerjakan karena sulitnya dalam menentukan nilai kandidat klaster terbaik, sehingga dilakukan modifikasi untuk menentukan nilai -nya. Modifikasi ini disebut dengan modifikasi MSDR MMSDR. Penelitian ini merupakan implementasi dari algoritma MMSDR pada masalah rute penerbangan di Indonesia yang disebut maskapai X, dengan menggunakan input matriks komplemen. Dengan menggunakan input matriks dari komplemen graf didapatkan pengklasteran berdasarkan jarak antar bandara. Penelitian ini juga menganalisis perubahan nilai epsilon dan perubahan matriks input. Hasil analisis menunjukkan bahwa perubahan nilai epsilon tidak mempengaruhi banyaknya klaster dan anggota klaster, sedangkan perubahan matriks input dapat mempengaruhi perbedaan anggota klaster.

Clustering is done by using graph method called graph clustering. Graph clustering with weights can be solved by using a minimum spanning tree. One of the algorithms that can be used to complete a weighted graph clustering based on a minimum spanning tree is the maximum standard deviation reduction MSDR algorithm. In the MSDR algorithm there is no need to determine the number of clusters that are formed, because there are calculaions to determine many clusters automically. However, in advanced research MSDR algorithm is quite difficult to do because of the difficulty in determining the value of best cluster candidates, so modifications are made to determine the value of. This modification is called the modification MSDR MMSDR. This research is an implementation of MMSDR algorithm on flight route problem in Indonesia called airline X, by using input complement matrix. Using the matrix input from the complement graph obtained clustering based on the distance between airports. This research also analyzed changes in epsilon value and changes in input matrix. The results of the analysis show that the change in epsilon value does not affect the number of clusters and clusters members, whereas the change in input matrix may affect the cluster members.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69594
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 2010
S27789
UI - Skripsi Open  Universitas Indonesia Library
cover
Laninca Swarintha Christine
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27856
UI - Skripsi Open  Universitas Indonesia Library
cover
Alfa Isti Ananda
"Misalkan G adalah graf dengan himpunan simpul V = V(G) dan himpunan busur E = E(G), dimana |V(G)| dan |E(G)| menyatakan banyaknya simpul dan busur pada G. Suatu pemetaan dari V E ke himpunan bilangan bulat 1, 2, ..., |V|+|E| disebut pelabelan total simpul ajaib pada G jika merupakan pemetaan bijektif dengan sifat bahwa untuk setiap simpul v V, (v) + u N(v) (uv) = k dimana N(v) adalah himpunan semua simpul yang bertetangga dengan v. Nilai k disebut konstanta ajaib dari . Algoritma pelabelan sembarang graf secara umum bersifat NP-complete. Baker dan Sawada telah memberikan algoritma pelabelan total simpul ajaib pada graf lingkaran C n dan graf roda W n . Pada skripsi ini, algoritma lingkaran tersebut akan dibahas. Selain itu, akan dibangun algoritma pelabelan dan graf kecebong T m,n . total simpul ajaib pada graf matahari C n ⊙ Menggunakan algoritma-algoritma tersebut dapat dihasilkan semua pelabelan total simpul ajaib pada graf yang terkait. Algoritma-algoritma ini akan diimplementasikan menggunakan program. Sebagai hasil implementasi dilakukan simulasi yang memberikan banyaknya pelabelan total simpul ajaib yang berbeda dari graf lingkaran C n dengan 3 ≤ n ≤ 10, graf matahari C n ⊙ dengan 3 ≤ n ≤ 7, dan graf kecebong T m,n dengan 3 ≤ m ≤ 7, 1 ≤ n ≤ 5 untuk setiap nilai k yang mungkin.

Let graph G has vertex set V = V(G) and edge set E = E(G), and let |V(G)| and |E(G)| is the number of vertices and edges on G. A one-to-one map from V E onto {1, 2, ..., |V|+|E|} is a vertex magic total labeling if there is a constant k so that for every vertex v V, (v) + u N(v) (uv) = k where N(v) denoted the set of vertices adjacent to v. The constant k is called the magic constant of . In general, the labeling algorithms on any graphs is NP-complete. In their paper, Baker and Sawada give the vertex magic total labeling algorithms on cycle graph C n and wheel graph W n . This skripsi explains the vertex magic total labeling algorithm on cycle from Baker and Sawada and vertex magic total labeling algorithms on sun graph C n ⊙ and tadpole graph T m,n . Using these algorithms, all non-isomorphic vertex magic total labelings on those classes of graphs can obtained. These algorithms are implemented as computer programs. From simulations, we get the number of non-isomorphic vertex magic total labelings on cycles C n (3 ≤ n ≤ 10), suns C n ⊙ (3 ≤ n ≤ 7), and tadpoles T m,n (3 ≤ m ≤ 7, 1 ≤ n ≤ 5) for every possible value of k."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27836
UI - Skripsi Open  Universitas Indonesia Library
cover
Syafira Maharaniputri Vyandra
"

Graf 𝐺 terdiri dari sepasang himpunan simpul dan himpunan busur. Graf yang tersusun dari sebanyak 𝑛 graf bintang yang terhubung oleh satu simpul tambahan disebut sebagai graf pohon pisang. Orde ganjil pada graf pohon pisang dapat dicapai dengan ukuran dan banyaknya graf bintang yang membentuk dirinya. Pelabelan super busur graceful merupakan pemetaan bijektif himpunan busur ke himpunan {0, ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } apabila jumlah busur ganjil dan ke himpunan { ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } apabila jumlah busur genap, sedemikian sehingga tidak terdapat label busur yang sama dan tiap simpul 𝑥 dari busur 𝑥𝑦 memiliki bobot ∑𝑥∈𝑉(𝐺) 𝑓(𝑥𝑦), tidak memiliki bobot simpul yang sama. Lee membuat sebuah konjektur bahwa semua graf pohon berorde ganjil berlabel super busur graceful. Sesuai dengan konjektur tersebut, penelitian ini akan membahas pelabelan super busur graceful untuk graf pohon pisang dengan orde ganjil.


Graph 𝐺 consisted of a pair of a set of vertices and a set of edges. A graph made out of as many as 𝑛 star graph, connected by an additional vertex, is called a banana tree graph. A banana tree graph with an odd order can be achieved by a certain size of star graph it is made of. Super edge graceful labeling is a bijective mapping of a set of edges a set of {0, ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } if there are odd amount of edges and to a set of { ±1, ±2, … , ± |𝐸(𝐺)|−1 2 } if there are even amount of edges thus that there are no edges sharing the same label and for each 𝑥 vertex from an 𝑥𝑦 edge labeled ∑𝑥∈𝑉(𝐺) 𝑓(𝑥𝑦), there is no vertex sharing the same label. Lee created a conjecture stating that all odd ordered tree graphs are super edge graceful. Based on that conjecture, this research will discuss super edge graceful labeling on odd ordered banana tree graph.

"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>