Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 87529 dokumen yang sesuai dengan query
cover
Rony Febryarto
"ABSTRAK
Pola sidik jari yang merupakan salah satu chi khas dari masing-masing individu yang tidak akan berubah dan berkaitm dengan genetika dan memiliki pola berbeda, maka dalarn penelitian ini mencitrakan bahwa terdapat perbedaan pola sidik jari anak penyandang autis terhadap anak yang normal. Pada anak penyandang autis kebanyakan memiliki pola whorl serta pola pada jari kanan dan jari kiri tidak simetris, sedangkan pada anak normal kebanyakan pola jari lrenan dan jari kiri memiliki kesimetrisan. Dalam penelitiaan ini menghasilkan recognition rate dala training dengan Laju pembeLajaran a.U,2 dan epoc = 1000 tanpa PCA sebesar 98,51"A. dengan PCA sebesar 100% dan menghasilkan recognition rote data testing dengan laju pembelajaran a = 0,2 dan epoch=1000 tmpa PCA sebesar 78,33% dengan PCA sebesar 68,34%. Dengan demikian metoda jaringan saraf tiruan dapat digunakan untuk identifikasi anak autis dengan keakuratan 78.33%

ABSTRACT
The pattern of fingerprint is the which one of characteristic of a each individual that wm not be change and related with the genetics and also has a different pattern. so in this research differences finger print patterns from children with autism to normal kids. In most children with autism have a whorl pattern and the pattern of the finger right and left finger is not symmetrical pattern, where as in normal children most of the pattern off finger left and right finger has a symmetry. In this thesis result the recognition data rate training without the PCA 'Whith learning rate "
2011
T33714
UI - Tesis Open  Universitas Indonesia Library
cover
Abdulloh
"Tujuan: Tujuan dari penelitian ini adalah mendapatkan model jaringan saraf tiruan dengan algoritma pembelajaran backpropagation berdasarkan data masukan dari pola sidik jari penderita obesitas. Diharapkan model JST yang diperoleh dapat menjadi alat bantu diagnosis bagi para klinisi dalam mengidentifikasi kasus obesitas berdasarkan keturunan.
Metode: Data dari pola sidik jari penderita obesitas dan data penunjang lainnya diuraikan menjadi variabel masakan Variabel keluaran ditentuknn berdasarkan kasus obesitas yang diderita oleh pasien. Kemudian data sampel dibagi dua yaitu data untuk training dan data untuk testing. Dengan menggunakan data training maka Metode Jaringan syaraf tiruan mempelajari pola sidik jari pendarita obesitas yang kemudian digunakan untuk memprediksi data testing. Akurasi identifikssi atau pengenalan pola sidik jari penderita obesitas akan sangat ditentukan oleh hasil prediksi algoritma jaringan syaraf tiruan terhadap data testing.
Hasil: Dalam proses pemhelajaran dengan metode jaringan berbasil melakukan pengenal terhadap data training dengan error sebesar O,QI berhasil dicapai. Untuk prediksi polo sidik jari melalui data testing rata-rata keberhasilan adalah 71,82%. Angka prosentasi keberbasilan ini cukup baik dan depat dijadikan alat bantu bagi para praktisi medis di bidang obesitas dalam menentukan faktor keturunan dari penyakit obesitas.
Kesimpulan: Percobaan ini menghasilkan model JST yang dapat diaplikasikan pada pengelan pola sidik jari pendarita obesitas. Rata-rata keberhasilan prediksi sebesar 71,82% dapat ditingkat dengan menambah data training bagi Metode Jaringan Saraf Tiruan.

Objective: The objective of this research is to obtain an artificial neural network model with backpropagation learning algorithm based on input data from the fingerprint pattern of the obese patients. It is expected that ANN models can be obtained as diagnostic tool for clinicians in identifying cases of obesity based on descent.
Methods: Data from the fingerprint pattern of obesity and other supporting data is decomposed into input variables. Output variable is determined on a case-obesity suffered by the patient Then the sampled data is divided into two data. One for training and other for testing. By using training data. the method of artificial neural networks learn the patterns of the obese fingerprint which is then used to predict the testing data. Accuracy of fingerprint pattern recognition of obesity will be detemined by the results of neural network algorithm prediction against testing data.
Results: In the learning process stage, Artificial Neural Network succceded in identifying a network of training with error 0.01 was achieved. For the prediction of fingerprint patterns through data testing success rate was 80%. The rate for the percentage of success is quite good and can be used as a tool for medical practitioners in the field of obesity in determining obesity cases base of genetic factor.
Conclusion: This experiment resulted ANN model that can be applied to the fingerprint pattern recognition of obese patients. The average prediction success of 71,82% would be increase if we can add more data for 1raining process for Neural Network Method.
"
Depok: Program Pascasarjana Universitas Indonesia, 2011
T33677
UI - Tesis Open  Universitas Indonesia Library
cover
Tjong Djuyanta
"Dalam bidang kriminal, pengenalan sidik jari membutuhkan banyak waktu dan tenaga, karena itu Lerbagai cara otomatisasi dilakukan untuk mempermudah serta mempercepat proses pengenalan sidik jari tersebut. Salah satu teknik otomatisasi untuk pengenalan sidik jari ini adalah dengan menggunakan komputer dan pemanfaatan aplikasi dad jaringan saraf buatan.
Dalam skripsi ini digunakan proses otomatisasi dengan menggunakan gabungan dari proses-proses pengolahan citra dan jaringan saraf buatan. Citra sidik jari hasil scanning diolah dan diproses sehingga didapatkan ciri-ciri sidik jari bersangkutan, berupa kode arah rata-rata dan jumlah bifurkasi. Ciri-ciri ini kcmudian dimasukkan ke dalam suatu sistem jaringan saraf buatan untuk- proses pelatihan sehingga jaringan saraf tersebut dapat digunakan sebagai standar pembanding untuk proses identifikasi.
Jaringan saraf yang dirancang dan diterapkan dalam skripsi ini adalah salah satu dari topologi jaringan saraf mulliiayer dengan algoritma pelatihan propagasi balik, karena dari hasil yang diperoleh telah menunjukkan proses pengenalan yang cukup akurat dan memakan waktu yang singkat."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S38726
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pudji Setyani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28482
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ignatia Chintya Defisaptari
"Dalam beberapa tahun ini, telah banyak penelitian mengenai pengenalan pola yang dilakukan dengan jarigan syaraf tiruan. Skripsi ini membahas sistem pengenalan pola berbasis Jaringan Saraf Tunggal (JST). Penelitian ini membahas metode pembelajaran Levenberg Marquardt dalam melakukan pengenalan pola. Terdapat 9 dataset pola, 8 dataset dari "UCI Repository of Machine Learning Database" dan satu set dari data uranium dioxide pellet. Prosedur kerja sistem terdiri dari tahap pra-pemrosesan, pelatihan, dan pengujian.
Hasil pengujian yang ditinjau dari computational cost dan recognition rate menunjukkan JSE berbasis metode Levenberg Marquardt memberikan performa yang lebih baik dibandingkan JST berbasis metode Levenberg Marquardt atau Backpropagation.

In recent years, many people have been working on pattern recognition using artificial neural network. This bachelor pra-thesis discuss about pattern recognition system based on Single Neural Network (SNN). This research discuss about Levenberg Marquardt learning algorithm in pattern recognition.There are 9 datasheets used in this experiment, which 8 of them are obtained from "UCI Repository of Machine Learning Database" and and one dataset of uranium dioxide pellet. The working procedures of the systems consists of pre-processing, training, and testing stages.
The testing result, which is measured from computational computational cost and recognition rate, shows that ENN based on Levenberg Marquardt learning algorithm has a better performance than SNN based on Levenberg Marquardt or Backpropagation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46396
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Ganjar Giwangkoro
"Estimasi biaya proyek jalan layang dengan akurasi yang tinggi pada fase konseptual pengembangan proyek sangat penting untuk perencanaan dan studi kelayakan. Namun, sejumlah kesulitan muncul ketika melakukan estimasi biaya selama tahap konseptual. Mayor masalah yang dihadapi adalah kurangnya informasi awal, kurangnya database jalan layang, kurangnya metode estimasi biaya yang sesuai, dan faktor ketidakpastian. Untuk mencapai optimasi model, perlu digunakan variabel yang tepat dan baik sebagai input sehingga keakurasian output yang dihasilkan dapat dipertanggungjawabkan. Variabel yang mempengaruhi biaya proyek jalan layang yang digunakan pada penelitian ini adalah panjang, lebar, lokasi, tipe pondasi, tahun pembuatan. Variabel tersebut kemudian dimasukkan dalam arsitektur jaringan yang paling cocok dan terbaik sehingga akurasi mencapai 28% sesuai standar AACE.

Project cost estimating of flyover with high accuracy in the conceptual phase of project development is essential for planning and feasibility studies. However, a number of difficulties arise when performing cost estimates during the conceptual stage. The major problems encountered is the lack of initial information, the lack of database, the lack of appropriate methods of cost estimation, and uncertainty factors. To reach model optimization, correct and good variables are needed as inputs to gain output which is accurate and accountable. The variables which affect the project cost and use in this research are length, width, type of pondation, location and year. The variables then run in the most suitable network architecture and the best, so that the accuracy reached 28% according to the standard AACE."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44697
UI - Skripsi Membership  Universitas Indonesia Library
cover
Evi Lutfiati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S28481
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raymond Hasudungan Martin
"ABSTRAK
Kota Depok yang mempunyai luas wilayah sekitar 20.029 ha, tidak terlepas dari fenomena dinamika perubahan lahan akibat pertambahan penduduk terus menerus. Apabila proses ini dibiarkan maka akan terjadi pergeseran penggunaan lahan yang semakin tidak terkendali. Prediksi penggunaan lahan menjadi salah satu alternatif sebagai antisipasi pengendalian penggunaan lahan yang berlebihan dimasa yang akan datang . Penelitian ini bertujuan untuk melakukan pemodelan untuk memprediksi perubahan penggunaan lahan di Kota Depok tahun 2030 menggunakan aplikasi Cellular Automata-Markov dengan metode Jaringan Syaraf Tiruan, lalu membandingkannya dengan Rencana Tata Ruang Wilayah RTRW kota Depok sebagai salah satu instrumen perencanaan. Hasil penelitian menunjukan perubahan penggunaan lahan dari tahun 1998 ndash; 2013. Penambahan luas penggunaan lahan terjadi pada permukiman sebesar 7254 ha Kecamatan Limo dan Sukmajaya , pertanian/tegalan/ladang sebesar 3327, semak/tanah terbuka dan badan air masing ndash; masing 395 ha dan 451 ha Penurunan secara besar terjadi pada kebun/vegetasi dan sawah yaitu sebesar 9707 ha dan 1350 ha. Prediksi penggunaan lahan menunjukan penambahan luas penggunaan lahan terjadi pada kebun Kecamatan Tapos sebesar 1813 ha, permukiman sebesar 391 ha Kecamatan Beji, Pancoran Mas, Sukmajaya , dan sawah sebesar 864 ha. Penurunan secara besar terjadi pada pertanian yaitu sebesar 1971 ha dan semak/tanah terbuka sebesar 1079 ha. Prediksi perubahan penggunaan lahan di Kota Depok untuk tahun 2030 pada memiliki nilai Kappa sebesar 0.68 akurasi 68 . Setelah dibandingkan dengan RTRW setidaknya terdapat kemiripan sebesar 13.700 ha atau 68 luas total Kota Depok. Setidaknya sekitar 12516 ha permukiman kepadatan tinggi, 1549 ha untuk Ruang Terbuka Hijau, dan 80 ha untuk Daerah Resapan Air.

ABSTRACT
Depok city which has an area of about 20,029 ha, is inseparable from the phenomenon of the dynamics of land use change due to the continuous population growth. If the process is allowed then there will be a huge shift and uncontrolled in land use . Land use prediction is one of the alternatives in anticipation of excessive land use control in the future. This study aims to model the prediction of land use change in Depok City by 2030 using Cellular Automata Markov application with Artificial Neural Network method and compare it with Spatial Planning RTRW of Depok as one of the planning instruments. The results of the study show the land use change from 1998 to 2013. The increase of land use occurred in settlements of 7254 ha Limo and Sukmajaya SubDistrct , agriculture of 3327ha, shrubs open land and water bodies of 395 ha and 451 ha. The large decrease occurred in the garden vegetation and rice fields that amounted to 9707 ha and 1350 ha. Land use prediction shows the increase of land use occurred in the vegetation Tapos Sub District of 1813 ha, settlements of 391 ha Beji, Pancoran Mas, Sukmajaya Sub District , and rice field of 864 ha. A large decrease occurred in agriculture that amounted to 1971 ha and shrub open land of 1079 ha. The prediction of land use change in Depok for 2030 has a Kappa value of 0.68 68 accuracy . After comparison with RTRW, there is at least 13,700 ha or 68 of total Depok City. At least around 12516 ha of high density settlements, 1549 ha for the Green Open Space, and 80 ha for the Water Catchment Area."
2017
S68450
UI - Skripsi Membership  Universitas Indonesia Library
cover
A. Dipri A.
"Penyakit pada jantung merupakan salah satu penyebab kematian pada manusia di seluruh dunia. Salah satunya merupakan serangan jantung yang disebabkan adanya kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini merancang sistem pengenalan penyakit jantung dengan menggunakan metode Jaringan Syaraf Tiruan. Jaringan Syaraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Bentuk dan sifat JST yang sangat flexible memungkinkan JST digunakan untuk memodelkan, merancang dan menganalisis pengenalan penyakit jantung. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisis yang dilakukan adalah training data dengan fungsi gradient (traingd) serta menggunakan fungsi aktivasi purelin. Hasil dari pengujian kelainan jantung yang diperoleh akurasi rata-ratanya sebesar 82,22 %.

Heart disease is one of dead effect of human being in the world. One of them is heart attack which is cause by valve heart disease which can be detected by murmur sound of heartbeat patients. This Final Project is design of heart disease recognition system using Neural Network method. Neural Network is a computing method for modeling the system. Neural Network configuration and characteristic is very flexible enable which used for modeling, design dan analysing heart disease recognition. The methods which used is backpropagation which consist of input layer, hidden layer and output layer. In this research the analysis that has been done is file training with gradient function (traingd) and using purelin activation function. The result from testing heart disease is obtained average accuracy about 82,22 %."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51421
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>