Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173227 dokumen yang sesuai dengan query
cover
Mas Ayu Elita Hafizah
"Lantanum manganat LaMnO3 (LMO) adalah material yang sedang menjadi perhatian banyak peneliti sampai saat ini karena memiliki potensi untuk diterapkan pada berbagai aplikasi terutama pada bidang magnetik-elektrik. Modifikasi struktur kristal senyawa LMO melalui subsitusi parsial ion La dan Mn dapat menginduksi sifat elektrik-magnetik seperti giant magneto resistance (GMR) atau colossal magneto resistance (CMR). Berdasarkan telusuran literatur, diketahui bahwa substitusi parsial ion La oleh ion Sr dan ion Mn oleh ion Fe dapat menimbulkan sifat baru, selain GMR atau CMR, juga memiliki kemampuan menyerap gelombang elektromagnetik, khususnya dalam rentang frekwensi ultra-tinggi (GHz). Dengan demikian senyawa LMO termodifikasi adalah merupakan salah satu radar absorbing materials (RAM) yaitu suatu material berkemampuan menyerap gelombang radar.
Pada penelitian ini, dipelajari rekayasa struktur senyawa LMO dengan komposisi (La1-xSrx) (Mn0,25Fe0,5Ti0,25)O3 dimana x =0,25; 0,5; 0,75 dan 1,0. Pada tahapan sintesis material diperkenalkan teknik penggabungan antara pemaduan mekanik (mechanical alloying) dan destruksi sonikasi daya tinggi untuk menghasilkan ukuran rata-rata partikel skala nanometer. Karakterisasi material mencakup observasi struktur mikro, identifikasi fasa, sifat magnetik dan sifat absorbsi.
Hasil penelitian menunjukkan bahwa material hasil pemaduan mekanik memiliki distribusi ukuran rata-rata partikel bimodal dengan waktu penghalusan relatif panjang (puluhan sampai ratusan jam) untuk memperoleh ukuran partikel rata-rata terendah. Bila sintesis melibatkan destruksi ultrasonik, distribusi ukuran partikel bersifat monomodal dengan ukuran partikel rata-rata mencapai <100 nm dalam waktu kurang dari 10 jam. Pola difraksi sinar X material memperlihatkan bahwa keseluruhan komposisi memiliki fasa tunggal dikarenakan jari-jari ion La dan Sr setara, demikian juga ion Fe dan Mn.
Hasil evaluasi karakteristik serapan gelombang mikro material berdasarkan pengujian Vector Network Analyzer (VNA) memastikan bahwa keseluruhan material bersifat penyerap gelombang mikro dalam jangkau frekwensi 8 - 15 GHz. Serapan tertinggi terjadi pada frekwensi 14,8 GHz dengan nilai Reflection Loss ~ 1 dB atau 10 % gelombang yang datang diserap oleh material. Efek ukuran partikel dengan nilai rata-rata 90 nm meningkatkan kemampuan penyerapan hingga mencapai lebih dari 60 %. Penggabungan material ini dengan senyawa magnetik hexaferrite pada jaringan komposit memperlihatkan dua serapan setara pada dua frekwensi yang berbeda (10 dan 14,8 Ghz). Pengaruh komposisi pada sistem komposit memberikan efek pelebaran terhadap kedua puncak serapan hingga terbentuk sebuah serapan dengan jangkau frekwensi yang lebar (8-15 GHz).
Kesimpulan pada penelitian ini adalah sintesis material penyerap gelombang mikro senyawa (La1-xSrx) (Mn0,25Fe0,5Ti0,25)O3 dengan ukuran rata-rata kristal berskala nanometer diperoleh secara efektif melalui penggabungan teknik pemaduan mekanik dan destruksi ultrasonik. Efek ukuran partikel adalah meningkatkan daya serap material. Penggabungan material ini dengan material magnetik hexaferrite dalam sistem komposit menghasilkan suatu material penyerap gelombang mikro dalam rentang frekwensi serapan yang lebar.

Lanthanum manganites, LMO especially those doped LaMnO3, have attracted attentions of many researchers, due to their significant potential for applications in the field of magnetic electronic functional materials. Structural modification either through doping of La with Ca, Sr, and Ba or Mn with Fe, Cu, and Ti has been reported to induce electromagnetic properties such as giant magneto resistance (GMR) or colossal magneto resistance (CMR). A partial substitution of La with Sr or Mn with Fe gives rise to new properties, in addition to the GMR or CMR, in which the substituted LMO has the ability to absorb electromagnetic waves, especially in the ultra-high frequency range (GHz). Thus, doped LaMnO3 can be considered as one of radar-absorbing materials (RAM).
In this study, structural modification of LMO with designated compositions (La1-xSrx) (Mn0.25Fe0.50Ti0.25)O3 where as x = 0.25; 0.50; 0.75 and 1.0 is reported. The materials were prepared by mechanical alloying assisted with high-power sonication to produce particles with mean size in a nanometer scale. Material characterization includes the observation of microstructures, identification oh phase materials, magnetic properties and microwave absorption characteristics.
It was found that mechanically alloyed of doped LMO have a bimodal particle size distribution and required a relatively long milling time (tens to hundreds of hours) to obtain the lowest average particle size. It was also found that when sintered mechanically alloyed powders were further treated under the application of a high power sonicator, a monomodal particle size distribution with mean particle size of less than 100 nm was obtained within less than 10 hrs. X-ray diffraction traces indicated that synthesized materials are single phase due to ionic radii of La and Sr ions are almost similar. This is also applicable to Fe and Mn ions.
Results of microwave absorption characteristics as evaluated by Vector Network Analyzer ensure that the entire materials have capability to absorb the microwaves in the frequency range 8-15 GHz. The highest absorption was occurred at 14.8 GHz with a Reflection Loss ~ 1 dB. It means that only 10% of the incident wave energy was absorbed by the material. However, materials with the average particle size ~ 90 nm increased the absorption up to 60%. Incorporation the doped LMO with hexaferrite particles in a composite structure has resulted two similar absorption peaks at two different frequencies (10 and 14.8 GHz). Furthermore, variation in composition of composite system was widening the absorption peak into a single peak with a wide range frequency (8-15 GHz).
It is concluded that mechanical alloying coupled with ultra sonication can be an alternative route for the preparation of fine and homogeneous powder materials leading to nanoparticle-based materials. Effect of fine particles in the materials is to increase the microwave absorbing properties. Where as the composite structure is to affect the frequency absorption width.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
D1389
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mas Ayu Elita Hafizah
"Lantanum manganat LaMnO3 (LMO) adalah material yang sedang menjadi perhatian banyak peneliti sampai saat ini karena memiliki potensi untuk diterapkan pada berbagai aplikasi terutama pada bidang magnetik-elektrik. Modifikasi struktur kristal senyawa LMO melalui subsitusi parsial ion La dan Mn dapat menginduksi sifat elektrik-magnetik seperti giant magneto resistance (GMR) atau colossal magneto resistance (CMR). Berdasarkan telusuran literatur, diketahui bahwa substitusi parsial ion La oleh ion Sr dan ion Mn oleh ion Fe dapat menimbulkan sifat baru, selain GMR atau CMR, juga memiliki kemampuan menyerap gelombang elektromagnetik, khususnya dalam rentang frekwensi ultra-tinggi (GHz). Dengan demikian senyawa LMO termodifikasi adalah merupakan salah satu radar absorbing materials (RAM) yaitu suatu material berkemampuan menyerap gelombang radar.
Pada penelitian ini, dipelajari rekayasa struktur senyawa LMO dengan komposisi (La1-xSrx) (Mn0,25Fe0,5Ti0,25)O3 dimana x =0,25; 0,5; 0,75 dan 1,0. Pada tahapan sintesis material diperkenalkan teknik penggabungan antara pemaduan mekanik (mechanical alloying) dan destruksi sonikasi daya tinggi untuk menghasilkan ukuran rata-rata partikel skala nanometer. Karakterisasi material mencakup observasi struktur mikro, identifikasi fasa, sifat magnetik dan sifat absorbsi. Hasil penelitian menunjukkan bahwa material hasil pemaduan mekanik memiliki distribusi ukuran rata-rata partikel bimodal dengan waktu penghalusan relatif panjang (puluhan sampai ratusan jam) untuk memperoleh ukuran partikel rata-rata terendah. Bila sintesis melibatkan destruksi ultrasonik, distribusi ukuran partikel bersifat monomodal dengan ukuran partikel rata-rata mencapai <100 nm dalam waktu kurang dari 10 jam. Pola difraksi sinar X material memperlihatkan bahwa keseluruhan komposisi memiliki fasa tunggal dikarenakan jari-jari ion La dan Sr setara, demikian juga ion Fe dan Mn.
Hasil evaluasi karakteristik serapan gelombang mikro material berdasarkan pengujian Vector Network Analyzer (VNA) memastikan bahwa keseluruhan material bersifat penyerap gelombang mikro dalam jangkau frekwensi 8 ? 15 GHz. Serapan tertinggi terjadi pada frekwensi 14,8 GHz dengan nilai Reflection Loss ~ 1 dB atau 10 % gelombang yang datang diserap oleh material. Efek ukuran partikel dengan nilai rata-rata 90 nm meningkatkan kemampuan penyerapan hingga mencapai lebih dari 60 %. Penggabungan material ini dengan senyawa magnetik hexaferrite pada jaringan komposit memperlihatkan dua serapan setara pada dua frekwensi yang berbeda (10 dan 14,8 Ghz). Pengaruh komposisi pada sistem komposit memberikan efek pelebaran terhadap kedua puncak serapan hingga terbentuk sebuah serapan dengan jangkau frekwensi yang lebar (8-15 GHz).
Kesimpulan pada penelitian ini adalah sintesis material penyerap gelombang mikro senyawa (La1-xSrx) (Mn0,25Fe0,5Ti0,25)O3 dengan ukuran rata-rata kristal berskala nanometer diperoleh secara efektif melalui penggabungan teknik pemaduan mekanik dan destruksi ultrasonik. Efek ukuran partikel adalah meningkatkan daya serap material. Penggabungan material ini dengan material magnetik hexaferrite dalam sistem komposit menghasilkan suatu material penyerap gelombang mikro dalam rentang frekwensi serapan yang lebar.

Lanthanum manganites, LMO especially those doped LaMnO3, have attracted attentions of many researchers, due to their significant potential for applications in the field of magnetic electronic functional materials. Structural modification either through doping of La with Ca, Sr, and Ba or Mn with Fe, Cu, and Ti has been reported to induce electromagnetic properties such as giant magneto resistance (GMR) or colossal magneto resistance (CMR). A partial substitution of La with Sr or Mn with Fe gives rise to new properties, in addition to the GMR or CMR, in which the substituted LMO has the ability to absorb electromagnetic waves, especially in the ultra-high frequency range (GHz). Thus, doped LaMnO3 can be considered as one of radar-absorbing materials (RAM).
In this study, structural modification of LMO with designated compositions (La1-xSrx) (Mn0.25Fe0.50Ti0.25)O3 where as x = 0.25; 0.50; 0.75 and 1.0 is reported. The materials were prepared by mechanical alloying assisted with high-power sonication to produce particles with mean size in a nanometer scale. Material characterization includes the observation of microstructures, identification oh phase materials, magnetic properties and microwave absorption characteristics. It was found that mechanically alloyed of doped LMO have a bimodal particle size distribution and required a relatively long milling time (tens to hundreds of hours) to obtain the lowest average particle size. It was also found that when sintered mechanically alloyed powders were further treated under the application of a high power sonicator, a monomodal particle size distribution with mean particle size of less than 100 nm was obtained within less than 10 hrs. X-ray diffraction traces indicated that synthesized materials are single phase due to ionic radii of La and Sr ions are almost similar. This is also applicable to Fe and Mn ions.
Results of microwave absorption characteristics as evaluated by Vector Network Analyzer ensure that the entire materials have capability to absorb the microwaves in the frequency range 8-15 GHz. The highest absorption was occurred at 14.8 GHz with a Reflection Loss ~ 1 dB. It means that only 10% of the incident wave energy was absorbed by the material. However, materials with the average particle size ~ 90 nm increased the absorption up to 60%. Incorporation the doped LMO with hexaferrite particles in a composite structure has resulted two similar absorption peaks at two different frequencies (10 and 14.8 GHz). Furthermore, variation in composition of composite system was widening the absorption peak into a single peak with a wide range frequency (8-15 GHz).
It is concluded that mechanical alloying coupled with ultra sonication can be an alternative route for the preparation of fine and homogeneous powder materials leading to nanoparticle-based materials. Effect of fine particles in the materials is to increase the microwave absorbing properties. Where as the composite structure is to affect the frequency absorption width.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dede Djuhana
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
PGB-pdf
UI - Pidato  Universitas Indonesia Library
cover
Ismail
"
Pengamatan struktur domain dilakukan dengan menggunakan simulasi micromagnetic berdasarkan persamaan Landau-Lifshitz-Gilbert (LLG). Hasil penelitian ini terbagi tiga bagian yaitu pertama, pengamatan struktur domain dan analisis energi tanpa medan magnet luar (ground state), kedua, pengamatan struktur domain, medan pembalikan, medan koersivitas, waktu pembalikan, dan frekuensi presesi pada kondisi diberikan medan magnet statis, dan ketiga, mengamati dinamika spektrum suseptibilitas dan menganalisis puncak frekuensi pada kondisi diberikan medan magnet fungsi waktu.
Hasil penelitian pertama menunjukkan tipe single domain ditunjukkan dengan energi demagnetisasi yang dominan dibandingkan energi exchange. Sedangkan domain tipe vortex ditandai dengan energi exchange lebih dominan dibandingkan energi demagnetisasi. Py dan Ni memperlihatkan struktur tipe single domain, Co dan Fe dengan tipe struktur vortex pada panjang diagonal yang kecil. Selanjutnya proses magnetisasi diberikan medan magnet statis adalah arah +x dengan konfigurasi spin dalam elemen diamond-shaped arah ?x.
Hasil memperlihatkan material Py, Co, dan Fe (20 mT ? 70 mT) membutuhkan medan pembalikan lebih besar dibandingkan dengan material Ni (10 mT). Hasil ini sangat jelas bahwa anisotropi berpengaruh pada proses magnetisasi. Hal yang sama juga diperlihatkan pada medan koersivitas yaitu Py, Co, dan Fe memperlihatkan medan koersivitas lebih tinggi dari Ni. Waktu pembalikan meningkat dengan bertambahnya ketebalan. Karateristik yang sama juga diperlihatkan pada frekuensi magnetisasi dari proses medan pembalikan yaitu menurun dengan bertambahnya ketebalan diamond-shaped. Hasil penelitian ketiga pada kondisi diberikan medan magnet fungsi waktu, spektrum suseptibilitas elemen diamond-shaped menunjukkan daerah rentang GHz. Puncak spektrum frekuensi berkurang dengan meningkatnya ketebalan pada panjang diagonal yang sama. Puncak frekuensi spektrum suseptibilitas terjadi karena adanya kontribusi interaksi dipolar dan interaksi gelombang spin.

ABSTRACT
Observation of the domain structure was carried out using micromagnetic simulation based on the Landau-Lifshitz equation-Gilbert (LLG). The results of this study are divided into three parts: first, observation and analysis of the domain structure without external magnetic field energy (ground state), the second, the domain structure observations, field reversal, coercivity field, time reversal, and the precession frequency given static magnetic field, and the third, observe and analyze the dynamic susceptibility spectrum peak frequency of the magnetic field given function of time.
The results of the first study showed a single type domains are indicated by the dominant demagnetization energy than energy exchange. While the vortex type domain characterized by energy exchange is more dominant than the demagnetization energy. Py and Ni shows the structure of a single type of domain, Co and Fe with the type of vortex structures on the length of the small diagonal. Furthermore, the magnetization is given a static magnetic field is the + x direction with the spin configuration in the diamond-shaped element-x direction.
Results showed material Py, Co, and Fe (20 mT - 70 mT) field reversal requires more than the material Ni (10 mT). These results are very clear that the anisotropy effect on the magnetization process. The same is shown in the coercivity field Py, Co, and Fe showed higher coercivity field of Ni. Time reversal increases with increasing thickness. The same characteristics are also shown on the frequency of the magnetization reversal field decreases with increasing thickness of the diamond-shaped. The results of a third study on the condition of the magnetic field given function of time, the spectrum of susceptibility diamond-shaped element indicates the GHz range. Spectrum peak frequency decreases with increasing thickness on the same diagonal length. The highlight of the frequency spectrum of susceptibility is due to the dipolar interaction contribution and interaction of spin waves.
"
Depok: Universitas Indonesia, 2013
T32536
UI - Tesis Membership  Universitas Indonesia Library
cover
Jefferson Adrian Wibowo
"Upaya kodoping ZnO dengan dua jenis unsur logam transisi yang berbeda diyakini mampu meningkatkan kualitas sifat room temperature ferromagnetic (RTFM) dari diluted magnetic semiconductor (DMS) ZnO yang didoping menggunakan satu jenis logam transisi saja. Oleh sebab itu pada penelitian ini, dilakukan studi mengenai efek penambahan unsur Mangan (Mn), Kobalt (Co), Nikel (Ni) dan Tembaga (Cu) pada nanopartikel Fe - doped ZnO terhadap perubahan struktur, sifat optik dan sifat magnetiknya.
Pembuatan sampel dilakukan dengan metode ko-presipitasi pada temperatur ruangan. Analisis struktur sampel dilakukan menggunakan pengukuran Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), dan Fourier Transform Infrared (FT-IR), sedangkan studi mengenai sifat optiknya dilakukan berdasarkan hasil spektroskopi Uv-vis. Adapun sifat magnetik dari sampel dipelajari melalui pengukuran Electron Spin Resonance (ESR) dan Vibrating Sample Magnetometer (VSM).
Pola difraksi XRD menunjukkan bahwa keempat sampel masih memiliki struktur hexagonal wurtzite ZnO dalam batas sensitivitas alat ukur. Hasil pengukuran Uv-vis menunjukkan adanya penurunan nilai celah energi akibat pembentukan mid-gap. Sementara itu, hasil pengukuran ESR menunjukkan adanya pengaruh ion-ion dopan sekunder (Mn, Co, Ni, dan Cu) dalam menentukan sifat magnetik sampel. Dan hasil pengukuran VSM menunjukkan adanya penguatan sifat RTFM yang signifikan.

The attempt of codoping ZnO with two different kinds of transition metal elements is believed to be the key to enhance the room temperature ferromagnetism (RTFM) of single transition metal - doped ZnO diluted magnetic semiconductor (DMS). Therefore, within the scope of this research, the effects of adding Manganese (Mn), Cobalt (Co), Nickel (Ni), and Cooper (Cu) regarding to the structural, optical, and magnetic properties change of Fe - doped ZnO nanoparticles have been studied.
The synthesis of the samples was done by co-precipitation method at room temperature. The structural analysis had been performed by Energy Dispersive X- ray (EDX), X-ray Diffraction (XRD), and Fourier Transform Infrared (FT-IR) measurements, meanwhile the optical properties were studied based on the result of Uv-vis spectroscopy. The magnetic properties were studied through Electron Spin Resonance (ESR) and Vibrating Sample Magnetometer (VSM) measurements.
The diffraction pattern of XRD shows that all of the samples still possess hexagonal wurtzite ZnO structure within the sensitivity limit of the spectrometer. The Uv-vis measurement results indicate the decrease in band gap due to the forming of mid-gaps. Meanwhile, ESR measurement results reveal the influence of secondary dopant ions (Mn, Co, Ni, and Cu) that affects the magnetic behavior. Moreover, the VSM measurement result shows a significant enhancement of RTFM.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S44613
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Doni Widodo
"Barium hexaferrite (BaFe12O19) dan strontium titanate (SrTiO3) telah luas dikenal masing masing sebagai material magnet permanen dan piezoelektrik. Kedua jenis material tersebut sangat potensial untuk diaplikasikan pada pembuatan komponen produk magnet dan elektronik. Sifat ekstrinsik kedua jenis material tergantung kepada mikrostrukturnya yang sangat ditentukan pula oleh metode sintesis material yang diterapkan. Kajian literatur menunjukkan bahwa telah banyak dikembangkan berbagai macam metode sintesis senyawa magnetik BaFe12O19 dan dielektrik SrTiO3 dalam bentuk partikel halus dengan ukuran berskala nanometer. Kegiatan penelitian ini lebih difokuskan kepada sintesis dan karakterisasi material sistem nanokomposit BaFe12O19/SrTiO3, dimana senyawa BaFe12O19 (kode BHF) memiliki fasa feromagnetik dan senyawa SrTiO3 (kode STO) memiliki fasa feroelektrik dipersiapkan melalui metode pemaduan mekanik (mechanical alloying). Sedangkan pembuatan nanopartikel kedua senyawa diperoleh melalui penghalusan mekanik dan destruksi ultrasonik daya tinggi.
Material BHF dipersiapkan dari campuran prekursornya berupa serbuk BaCO3 dan Fe2O3. Sedangkan material STO menggunakan prekursor SrCO3 dan TiO2. Aparatus yang digunakan adalah planetary ball mill dengan perbandingan berat antara material dan ball mill adalah 1 : 10. Ukuran rata-rata partikel dievaluasi menggunakan particle-size analyzer (PSA) dan ukuran rata-rata kristalit dihitung menggunakan metode Williamson Hall Plot dengan software High Score Plus dari data pola difaksi x-ray masing-masing senyawa. Adapun sampel berupa material kristalin diperoleh setelah kompaksi serbuk hasil pemaduan mekanik dan pemanasan pada temperatur 1100°C selama 3 jam dimana kemudian sampel material kristalin tersebut dihaluskan kembali menggunakan ball mill selama 20 jam. Serbuk halus BHF dan STO tersebut masing-masing menjalani destruksi lanjut secara ultrasonik daya tinggi untuk menghasilkan nanopartikel.
Hasil evaluasi dengan PSA dan Williamson Hall Plot data XRD terhadap material BHF memperlihatkan nanopartikel dicapai setelah destruksi ultrasonik selama 14 jam. Dalam hal ini hasil PSA menunjukkan ukuran partikel rata-rata BHF adalah 28 nm sedangkan hasil evaluasi ukuran rata-rata kristalit adalah 26 nm. Untuk STO diperoleh hasil evaluasi ukuran rata-rata partikel sebesar 144 nm dan ukuran rata-rata kristalit adalah 30 nm. Kedua jenis material dalam bentuk nanopartikel ini digunakan sebagai komponen nanokomposit sistem BHF-STO.
Berdasarkan hasil karakterisasi material komposit baik melalui pengujian XRD maupun permagraph bahwa sampel komposit tersusun dari dua fasa yaitu BaO.6(Fe2O3) dan SrTiO3 yang dipastikan dari pola difraksi dan sifat kemagnetannya. Dari kajian efek destruksi ultrasonik terhadap partikel STO dapat disimpulkan bahwa ukuran partikel rata rata dapat direduksi 8 kalinya yaitu dari ukuran 797 nm menjadi 144 nm setelah durasi watuk destruksi 14 jam. Sedangkan untuk partikel BHF tereduksi 100 kalinya yaitu dari 2931 nm menjadi 26 nm pasca durasi waktu destruksi yang sama.
Penelitian ini juga mempelajari perilaku kinetika pertumbuhan ukuran kristalit fasa-fasa material penyusun material komposit dalam sistem komposit yang mengikuti persamaan Avrami. Berdasarkan kajian kinetika dapat diketahui energi aktivasi pertumbuhan kristalit fasa material STO dan BHF masing masing adalah 16 kJ.mol-1 dan 4 kJ.mol-1.
Dapat disimpulkan bahwa kombinasi antara teknik penghalusan mekanik dan destruksi sonikasi daya tinggi terhadap partikel kristalin BHF dan STO dapat dijadikan metode alternatif yang efektif untuk menghasilkan nanopartikel.

Barium hexaferrite (BaFe12O19) and strontium titanate (SrTiO3) are well established permanent magnet and piezoelectric materials which are technologically and scientifically attractive due to their potential for various applications in the field of magnetic electronics functional materials. The extrinsic properties of these materials depend largely on the microstructure, which in turn depends on the method of synthesis. Different methods have been developed for the preparation of ultrafine BaFe12O19 and SrTiO3 particles in nanometer scale. In this work, research activivities were focused on synthesis and characterization of BaFe12O19/SrTiO3 nanocomposites in which feromagnetic materials of BaFe12O19 phase (coded BHF) and a ferroelectric materials of SrTiO3 phase (coded STO) were prepared by a mechanical alloying technique. In addition, nanoparticles of BHF and STO were obtained by physical destruction through a combined method between mechanical milling and high power ultrasonication.
BHF materials were made of their precursors which consisted of the mixture between BaCO3 and Fe2O3. Whereas for STO materials the precursors were SrCO3 and TiO2. The process of mixing and alloying was caried out under the used of a planetary ball mill apparatus with a weight ratio between mixture and ball mill was 1:10. The mean particle size of milled powders was further characterized by Particle Size Analyzer (PSA). Whereas the mean crystallite size was derived from Williamson Hall Plots using the High Score Plus software to evaluate data of x-ray diffraction patterns for each materials. The crystalline materials were obtained after sintering step at 1100°C for 3 hours to the green compact samples which further followed by remilling the sintered samples for 20 hours. Further refining the powders for BHF and STO was carried out under the use of a high power sonicator for 14 hours to produce nanoparticles.
Results of evaluation indicated that the mean particle size of BHF and STO was respectively 28 nm and 144 nm which refer to results of particles characterization by PSA whereas for their mean crystallite size were respectively 26 nm and 30 nm. Those nanoparticles of BHF and STO were then used as component materials in BHF-STO nanocomposite system. According to results of characterization for composite materials by XRD and permagraph, it was found that the composites consisted of two phases which were identified as BaO.6(Fe2O3) and SrTiO3 based on their diffraction pattern and magnetic properties.
Further to the characterization results, it was also found that the mean particle size of STO was reduced 8 times in which the mean size of 797 nm was brought down to 144 after ultrasonically destruction for 14 hours. However, much larger reduction in particle sizes were obtained in BHF in which the initial mean particle size of 2931 nm was reduced 100 times downed to 26 nm after the same duration periode of ultrasonic destruction.
Crystallite growth kinetics behavior of BHF and STO phases in the composite system was also studied in which data of mean crystallite sizes at different sintering temperatures and time were fitted into the Avrami equation. It was found that the activation energy for crystallite growth kinetics of BHF and STO is 16 kJ.mol-1 and 4 kJ.mol-1 respectively.
We conclude that mechanical alloying coupled with ultrasonication can be used as an effective alternative tools for the preparation of fine and homogeneous powder materials leading to nanoparticle-based materials.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
D1999
UI - Disertasi Membership  Universitas Indonesia Library
cover
Miyazaki, Terunobu
"This book covers both basic physics of ferromagnetism, such as magnetic moment, exchange coupling, magnetic anisotropy, and recent progress in advanced ferromagnetic materials. Special focus is placed on NdFeB permanent magnets and the materials studied in the field of spintronics (explaining the development of tunnel magnetoresistance effect through the so-called giant magnetoresistance effect)."
Berlin: Springer, 2012
e20410866
eBooks  Universitas Indonesia Library
cover
Arianti
"Dalam karya tulis ini disampaikan hasil kegiatan penelitian tentang sintesis material penyerap gelombang mikro yang terdiri dari campuran partikel senyawa BaO.6(Fe1,7Mn0,15Ti0,15O3) dan La0,8Ba0,2MnO3 berukuran nanometer hasil sintesis melaui teknik pemaduan mekanik dan destruksi ultrasonik. Kedua jenis material hasil sintesis adalah material berfasa tunggal dipastikan dari hasil identifikasi pola difraksi sinar X. Hasil evaluasi pengukuran distribusi ukuran partikel dengan Particle Size Analyzer (PSA) menunjukkan bahwa ukuran rata-rata partikel senyawa La0.8Ba0.2MnO3 dan BaO.6(Fe1.7Mn0.15Ti0.15O3) pasca tahapan sintesis melalui teknik pemaduan mekanik masing-masing adalah 733 nm dan 714 nm. Keduanya memiliki distribusi normal dengan jangkau ukuran relatif lebar ~ 600 nm. Jangkau ukuran partikel pada fungsi distribusi ukuran bagi kedua jenis material sama-sama menyempit disertai dengan mengecilnya ukuran rata-rata partikel yaitu masing-masing menjadi 354 nm, 168 nm dan 70 nm pasca destruksi ultrasonik 1, 3 dan 5 jam bagi senyawa La0.8Ba0.2MnO3. Sedangkan bagi senyawa BaO.6(Fe1.7Mn0.15Ti0.15O3), berturut-turut adalah 312 nm, 173 nm dan 90 nm. Kecenderungan yang sama juga terjadi pada evaluasi distribusi ukuran kristalit yang diperoleh melalui teknik WPPM. Ukuran rata-rata kristalit partikel senyawa La0.8Ba0.2MnO3 dan BaO.6(Fe1.7Mn0.15Ti0.15O3) pasca tahapan sintesis melalui teknik pemaduan mekanik masing-masing adalah 112 nm dan 202 nm. Jangkau lebar distribusi ukuran kristalit menyempit disertai dengan pengecilan ukuran rata-rata kristalit untuk kedua jenis partikel yaitu masing-masing 60 nm dan 77 nm pasca destruksi secara ultrasonik dalam durasi 5 jam. Dengan demikian, melalui destruksi lanjut secara ultrasonik telah diperoleh ukuran rata-rata partikel yang sama dengan ukuran rata-rata kristalitnya. Material hasil pencampuran partikel kedua jenis material memperlihatkan serapan gelombang mikro dalam rentang frekuensi 8 – 12 GHz dengan nilai reflection loss antara -17,75 dB dan -24,5 dB diperoleh pada komposisi dengan fraksi massa senyawa BaO.6(Fe1.7Mn0.15Ti0.15O3) sebesar 70 %. Pada rentang frekuensi ini, nilai reflection loss lebih ditentukan oleh senyawa magentik BaO.6(Fe1.7Mn0.15Ti0.15O3).

In this paper, we presented results of research activities on the synthesis of microwave absorbing materials made of a mixture between BaO.6(Fe1.7Mn0.15Ti0.15O3) and La0.8Ba0.2MnO3 particles. The particles are nanometer in size which was synthesized through mechanical alloying process followed by the ultrasonic destruction. Both types of material are single phase as confirmed by their respective X-ray diffraction pattern. Results of particle size distribution measurements by Particle Size Analyzer (PSA) showed that sintered mechanically alloyed La0.8Ba0.2MnO3 and BaO.6(Fe1.7Mn0.15Ti0.15O3) materials have the mean particle size of respectively 733 nm and 714 nm. Both have a normal distribution with a relatively wide range size ~ 600 nm. The particle size distribution width for both types of material are progressively narrowed accompanied by successive reduction in mean sizes to 354 nm, 168 nm and 70 nm for La0.8Ba0.2MnO3 after ultrasonic destruction for 1, 3 and 5 hours respectively. For BaO.6(Fe1.7Mn0.15Ti0.15O3) the mean sizes were respectively 312 nm, 173 nm and 90 nm. The same trend was also applied for the crystallite size distribution obtained through the WPPM technique. The mean crystallite size for La0.8Ba0.2MnO3 and BaO.6(Fe1.7Mn0.15Ti0.15O3) materials respectively 112 nm and 202 nm. The crystallite size distribution width for both types of materials were also narrowed as the destruction time was extended to 5 hrs with the mean crystallite size was respectively 60 nm and 77 nm. Thus, further destruction of the particles by means of ultrasonic has led to almost an equal value between mean particle and crystallite sizes. Materials which made of mixing the two types of material particles exhibited absorption of microwaves in the frequency range 8-12 GHz with reflection loss values ranging between -17.75 dB and - 24.5 dB. These values were obtained in a mixed material in which the mass fraction of BaO.6(Fe1.7Mn0.15Ti0.15O3) was 70%. In this frequency range, the reflection loss value is governed by the magnetic BaO.6(Fe1.7Mn0.15Ti0.15O3) component."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S55550
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maykel T.E. Manawan
"Pada penelitian ini dipelajari efek substitusi pasangan ion Ti2+-Mn4+ terhadap sifat magnetik dan sifat absorpsi gelombang mikro pada senyawa barium hexaferrite (BHF) dengan komposisi BaFe12-2xTixMnxO19 dimana x = 0.0, 0.2, 0.4, 0.6 dan 0.8. Nano partikel senyawa BHF yang telah disubstitusi pasangan ion Ti2+-Mn4+ diproses dengan teknik pemaduan mekanik (mechanical alloying) dan destruksi ultrasonik daya tinggi dari prekursor-prekursor TiO, MnO2, BaCO3 dan Fe2O3. Karakterisasi menggunakan X-ray diffraction (XRD) menunjukan bahwa sampel yang dihasilkan merupakan fasa tunggal senyawa BHF dengan volume sel dan ukuran kristalit yang meningkat dengan peningkatan substitusi. Analisis XRD menunjukan ukuran kristalit < 70 nm untuk semua sampel, sedangkan morfologi yang teramati pada Scanning Electron Microscope (SEM) memperlihatkan ukuran grain diantara 200 ? 400 nm. Hal ini menunjukan bahwa tiap grain terdiri dari beberapa kristalit atau polycrystalline.
Karakterisasi ukuran partikel proses ultrasonik menggunakan Particle Size Analyzer (PSA) menunjukan ukuran partikel 49.21 nm. Analisa data XRD dengan metode Whole Powder Pattern Modeling (WPPM) menunjukan distribusi ukuran kristalit 49.14 nm dan hasil SEM menunjukan distribusi ukuran 60.01 nm. Hal ini menunjukan bahwa partikel yang dihasilkan terdiri dari kristal tunggal. Karakterisasi magnetik menggunakan magnetometer dan analisis dengan metode Law of Approach Saturation (LAS) menunjukan kenaikan nilai saturasi sampai pada x = 0.4 dan kemudian menurun pada peningkatan nilai substitusi lebih lanjut. Nilai koersivitas memperlihatkan tren menurun untuk peningkatan nilai substitusi. Hal ini menunjukan terjadinya pemilihan posisi substitusi kristalografi (site preferential occupation).
Karakteristik absorpsi gelombang mikro pada frekuensi 8 - 12.4 GHZ (X-band) menggunakan Vector Network Analyzer (VNA) menunjukan terjadinya peningkatan serapan sampai pada x = 0.6 (-24.9 dB, 11.3 GHz) kemudian kembali menurun pada x = 0.8 (-15.7 dB, 10.5 GHz) akibat penurunan sifat magnet yang signifikan. Selain itu terjadi pergeseran frekuensi serapan ke arah frekuensi yang lebih rendah akibat nilai koersifitas yang menurun dengan peningkatan nilai substitusi.
Efek pengecilan ukuran partikel dari ~200 nm ke ~50 nm menunjukan peningkatan nilai serapan oleh karena peningkatan hamburan ke segala arah dan polarisasi destruksi akibat rasio permukaan terhadap volume yang meningkat. Pergeseran frekuensi serapan ke arah frekuensi yang lebih rendah merupakan konsekuensi penurunan nilai koersivitas akibat pengecilan ukuran partikel. Nano komposit BHF dengan material dielektrik BaTiO3 dan C serta Fe menunjukan peningkatan nilai serapan dan pelebaran frekuensi serapan dengan nilai serapan tertinggi dihasilkan oleh kombinasi BHF-Fe (32.48 dB, 10.0 GHz) yang meningkat 30.5% dari BHF pada x = 0.6.

The effect of Ti2+-Mn4+ substitution on magnetic and microwave absorption properties has been studied for BaFe12-2xTixMnxO19 ferrite, where x varies from 0.0, 0.2, 0.4, 0.6 and 0.8. Nano particles of BHF substituted Ti2+-Mn4+ ions were obtained from mechanical alloyed and sonication from TiO, MnO2, BaCO3 dan Fe2O3 precursors. X-ray diffraction (XRD) patterns for sintered samples confirmed that the materials are consisted with single phase BHF structure with unit cell volume and crystallite size was found increase with increasing x. XRD analysis shows that the crystallite size is below 70 nm for all samples, but the grain morphology from SEM shows that the grains is in range of 200 - 400 nm, which concluded that each grain are polycrystalline.
Samples from sonication is characterized by Particle Size Analyzer (PSA) shows the distribution of 49.21 nm, Whole Powder Pattern Modeling (WPPM) that employeed to analyze XRD data shows the crystallite size distribution is 49.14 nm and SEM morphology shows the size distribution of 60.01 nm. This concluded that particles from sonication consist of single crystal. Magnetic properties that charaterized using magnetometer and analyzed using Law of Approach Saturation (LAS) shows the saturation magnetization is increases up to x = 0.4 and decrease for further substitution. The coercivity remains decreases monotonically with increasing substitution. These results were interpreted in terms of the site preferential occupation.
Microwave absorption properties that characterisized by Vector Network Analyzer shows increasing absorption until x = 0.6 (-24.9 dB, 11.3 GHz) and then decrease for x = 0.8 (-15.7 dB, 10.5 GHz) because of significant decrease the magnetic properties. The absorbtion peak also shifted to lower frequency because the coercivity was decrease as the substitution increase.
As the particle size decrease from 200 ? 50 nm, the absorbtion slightly increase because of the multiple scattering and destruction polarization effect with the increasing of surface to volume ratio. The absorbtion peak shift to the lower frequency as consequence of decreasing coercivity because of decreasing particle size. Nano composite of BHF with dielectric material such as BaTiO3 and C, also Fe, shows increasing absorbtion peak and widening absorbtion frequency. The highest value generated by a combination of BHF-Fe (32.48 dB, 10.0 GHz) nano composite which increased 30.5% from the BHF at x = 0.6.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
D1487
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sangster, Alan J.
"This book describes and provides design guidelines for antennas that achieve compactness by using the slot radiator as the fundamental building block within a periodic array, rather than a phased array. It provides the basic electromagnetic tools required to design and analyse these novel antennas, with sample calculations where relevant. The book presents a focused introduction and valuable insights into the relevant antenna technology, together with an overview of the main directions in the evolving technology of compact planar arrays.
While the book discusses the historical evolution of compact array antennas, its main focus is on summarising the extensive body of literature on compact antennas. With regard to the now ubiquitous slot radiator, it seeks to demonstrate how, despite significant antenna size reductions that at times even seem to defy the laws of physics, desirable radiation pattern properties can be preserved. This is supported by an examination of recent advances in frequency selective surfaces and in metamaterials, which can, if handled correctly, be used to facilitate physics-defying designs. "
Switzerland: Springer Nature, 2019
e20509677
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>