Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 180483 dokumen yang sesuai dengan query
cover
Agus Tri Widodo
"ABSTRAK
Telah dilakukan pengamatan secara sistematis mengenai dinamika struktur domain pada material feromagnetik model nanosphere dengan menggunakan simulasi mikromagnetik, OOMMF yang berdasarkan persamaan Landau-Lifshitz- Gilbert (LLG). Material yang digunakan dalam simulasi mikromagnetik ini terdiri dari Permalloy (Py), Nikel (Ni), Besi (Fe) dan Kobalt (Co). Variasi diameter nanosphere mulai 20 nm hingga 100 nm dengan ukuran sel 3 2,5 2,5 2,5 x x nm , dan faktor redaman (damping constant) 0,1  serta kondisi temperatur sistem 0 K. Pengamatan mikromagnetik dan struktur domain kami bagi dalam dua bagian. Bagian pertama, pengamatan difokuskan pada struktur domain dan energi sistem pada kondisi tanpa diberi medan luar atau groundstate.
Dari hasil pengamatan, kami menemukan adanya transisi struktur domain dari single-domain (SD) ke vortex-state (VS) yang dibatasi oleh diameter kritis (critical diameter ). Di bawah diameter kritis, seluruh struktur domain teramati pada keadaan SD, sedangkan VS ditemukan di atas diameter kritis.
Hasil simulasi mikromagnetik menunjukkan bahwa diameter kritis yang diperoleh sesuai dengan prediksi hasil perhitungan teori. Selain itu, kami juga menganalisa energi sistem. Dimana keadaan struktur domain dapat dipertegas dengan memperhatikan perubahan yang terjadi pada energi demagnetisasi dan energi exchange. Di bawah diameter kritis, energi sistem didominasi oleh energi demagnetisasi, sedangkan energi exchange mendominasi di atas diameter kritis.
Pada bagian kedua, kami mengamati dinamika struktur domain ketika diberikan medan luar. Dalam hal ini kami memfokuskan untuk mendapatkan karakteristik sifat magnet seperti kurva histeresis, koersivitas, remanen, medan nukleasi (nucleation field) dan medan saturasi (saturation field) serta waktu pembalikan (switching time). Dari analisa kurva histeresis, kami mengamati bahwa nilai medan koersivitas meningkat seiring dengan berkurangnya ukuran diameter nanosphere.
Hasil ini sesuai dengan hasil pengamatan eksperimen. Yang lebih menarik yakni struktur domain dan profil energi sistem yang teramati pada keadaan remanen sama dengan pada keadaan groundstate. Akhirnya kami menyimpulkan bahwa karakteristik sifat magnet dari material feromagnetik model nanosphere patut dipertimbangkan dalam pembuatan perangkat perekam magnetik.

ABSTRACT
We have systematically investigated domain structures of ferromagnetic nanosphere model by means of public micromagnetic simulation, OOMMF based on Landau-Lifshitz-Gilbert equation. Materials used in the micromagnetic simulation consisted of Permalloy (Py), Cobalt (Co), Iron (Fe), and Nickel (Ni). Diameter of nanospheres were carried out from 20 nm to 100 nm with cellsize 3 2,5 2,5 2,5 x x nm and the damping constant was fixed . The temperature system was fixed absolute zero temperature. The micromagnetic investigation of domain structures, we separated in two part. First part, we have focused to domain structure and magnetization energy in zero external field condition or ground state.
From the observation, we found that the transition of domain structure from a single-domain (SD) to a vortex-state structure (VS) was related to critical diameter. Below the critical diameter, all the cases exhibited a SD structures while a VS structure was found above the critical diameter.
The micromagnetic simulation results showed that the critical diameter agrees with the theoretical prediction. Furthermore, we have analyzed the magnetization energy systems corresponded to the transition domain structure. Interestingly, the transition domain structure is shown by changing the demagnetization and exchange energy. Below the critical diameter, the magnetization energy was dominated by the demagnetization energy rather than exchange energy. Then, the exchange energy startly dominated above the critical diameter.
Second part, we investigated the dynamics domain structure with applied the external field. In this, we focused to find the magnetic properties; such as hysteresis loops, corcivity field, remanent field, nucleation field, saturation field and switching time. From analyzing the hysteresis loops, we found that the coecivity field increased as the diameter decreased.
This results is comparable with the the experiment result. Mostly interesting, the domain structures similarly exhibited to the ground state condition at the remanence state as well as the magnetization energy profiles. Concern to the switching field, the magnitude of applied field to switch from one saturation to another saturation. We concluded that behavior in ferrromagnetic nanospheres may allow us to consider in a practical design of magnetic recording devices."
Depok: Universitas Indonesia, 2013
T36123
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohsin
"ABSTRAK
Penelitian struktur domain ferromagnet berbentuk kubus telah dilakukan dengan
simulasi mikromagnetik OOMMF, berdasarkan persamaan Landau-Lifshitz-
Gilbert. Dalam penelitian ini telah dilakukan pengamatan dinamika struktur
domain pada material feromagnet Permalloy (Py), Nickel (Ni), Besi (Fe), dan
Kobalt (Co) berbentuk nanocubes (kubus) dengan variasi panjang sisi dari ukuran
20 nm sampai dengan 100 nm, ukuran sel 2,5 × 2,5 × 2,5 􀝊􀝉ଷ, dan faktor
damping α = 0,1. Suhu sistem adalah 0 kelvin. Proses simulasi mikromagnetik ini
dilakukan dalam dua bagian, (1) pengamatan struktur domain pada keadaan
medan eksternal nol, dan (2) diberi medan magnet eksternal. Bagian pertama,
difokuskan pada pengamatan struktur domain dan energi sistem mikromagnetik
pada kedaan tanpa medan magnet eksternal atau ground state. Dari hasil
pengamatan, diperoleh bahwa terjadi transisi struktur domain dari domain tunggal
(single-domain/SD) menjadi struktur vortex-wall (VW) yang berhubungan dengan
diameter kritis atau panjang sisi kritis. Di bawah panjang sisi kritis, struktur
domain yang terbentuk adalah SD, sedangkan struktur VW teramati di atas
panjang sisi kritis. Hasil simulasi mikromagnetik memperlihatkan bahwa panjang
sisi kritis mendekati prediksi teori. Selanjutnya dianalisis energi sistem
mikromagnetik berhubungan dengan transisi struktur domain. Menariknya, pada
daerah transisi terjadi perubahan energi demagnetisasi dan energi exchange.
Dibawah panjang sisi kritis, energi demagnetisasi lebih besar daripada energi
exchange. Berikutnya, energi exchange mengalami kenaikan di atas panjang sisi
kritis. Bagian kedua, dilakukan pengamatan jika material diberi medan magnet
eksternal.Pada bagian ini, difokuskan untuk memperoleh data karakteristik
magnet; seperti kurva histeresis, medan koersivitas, magnetisasi remanen, medan
pembalikan, medan nukleasi, dan waktu pembalikan. Dari analisis kurva
histeresis, diperoleh medan koersivitas menurun dengan meningkatnya panjang
sisi kubus. Hasil ini sesuai dengan hasil eksperimen. Tentang medan pembalikan,
berhubungan dengan besar medan magnet eksternal yang diperlukan untuk
membalik dari keadaan saturasi ke keadaan saturasi berikutnya. Teramati bahwa
medan pembalikan Co mempunyai nilai paling besar dibandingkan Py, Fe, dan Ni,
serta meningkat dengan bertambahnya panjang sisi kubus. Hal yang sangat
menarik, struktur domain dan profil energi pada keadaan remanen mirip dengan
keadaan ground state. Hasil ini memperlihatkan bahwa feromagnetik nanocubes
dapat dipertimbangkan dalam merealisasikan devais-devais berbasis magnet.

ABSTRACT
We have systematically investigated domain structures of ferromagnetic
nanocubes model by means of public micromagnetic simulation, OOMMF based
on Landau-Lifshitz-Gilbert equation. Materials used in the micromagnetic
simulation consisted of Permalloy (Py), Nickel (Ni), Iron (Fe), and Cobalt (Co).
Edge length of nanocubes were carried out from 20 nm to 100 nm with cell size
2.5 × 2.5 × 2.5 􀝊􀝉ଷ and the damping constant was fixed ߙ= 0.1. The
temperature system was fixed absolute zero temperature. The micromagnetic
investigation of domain structures, we separated in two part, (1) the investigation
domain structures in zero external field condition, and (2) applied magnetic field.
First part, we have focused to domain structure and magnetization energy in zero
external field condition or ground state. From the observation, we found that the
transition of domain structure from a single-domain (SD) to a vortex-wall
structure (VW) was related to critical diameter (critical edge length). Below the
critical edge length, all the cases exhibited a SD structures while a VW structure
was found above the critical edge length. The micromagnetic simulation results
showed that the critical edge length agrees with the theoretical prediction.
Furthermore, we have analyzed the magnetization energy systems corresponded to
the transition domain structure. Interestingly, the transition domain structure is
shown by changing the demagnetization and exchange energy. Below the critical
edge length, the magnetization energy was dominated by the demagnetization
energy rather than exchange energy. Then, the exchange energy startly dominated
above the critical edge length. Second part, we investigated the dynamics domain
structure with applied the external field. In this, we focused to find the magnetic
properties; such as hysteresis loops, coercivity field, remanent magnetization,
switching field, nucleation field, and switching time. From analyzing the
hysteresis loops, we found that the coercivity field decreased as the diameter
increased. This results in agreement with the experiment results. Concern to the
switching field, the magnitude of applied field to switch from one saturation to
another saturation. We found that the switching field of Co the largest of
switching field with respect to diameter. Mostly interesting, the domain structures
similarly exhibited to the ground state condition at the remanent state as well as
the magnetization energy profiles. We concluded that behavior in ferromagnetic
nanocubes may allow us to consider in a practical design of magnetic recording
devices."
2013
T35485
UI - Tesis Membership  Universitas Indonesia Library
cover
Sulaiman Hawibowo
"Pada penelitian ini telah dilakukan pengamatan dinamika domain-wall pada material feromagnet berbasis Co CoFe, CoFeB dan Fe FePt, FePd dalam bentuk nanowire. Analisis dilakukan dengan menggunakan simulasi mikromagnetik berdasarkan persamaan Landau-Lifshitz Gilbert LLG yang dimodifikasi menggunakan perangkat lunak mikromagnetik OOMMF Object Oriented Micromagnetic Framework Donahue and Porter, 1999. Ukuran dan geometri dari nanowire mempunyai panjang 2000 nm, dengan variasi lebar 50 nm, 100 nm, 150 nm dengan tebal 2,5 nm dan 5 nm. Faktor damping 0,05 dan ukuran sel 5 x 5 x t nm3 dengan t adalah ketebalan nanowire. Simulasi dinamika domain-wall ini menggunakan pulsa medan magnet aktif dengan durasi 0,5 ns serta variasi pemberain medan magnet luar menyatakan amplitudo pulsa.
Hasil simulasi memperlihatkan kecepatan domain-wall meningkat dengan bertambahnya medan magnet luar sampai medan magnet luar maksimum atau yang dikenal dengan medan Walker Breakdown WB . Kemudian, kecepatan domain-wall akan menurun drastis. Menariknya, kondisi sebelum medan WB menunjukan struktur transverse-wall sedangkan struktur vortex/antivortex-wall muncul setalah medan WB. Jika pemberian variasi tebal dan lebar pada geometri nanowire semakin besar maka hasil menunjukkan bahwa medan WB akan semakin menurun. Hasil pengamatan juga melibatkan energi demagnetisasi yang meningkat dengan bertambahnya medan magnet luar sebelum medan WB dan energi exchange yang meningkat ketika struktur vortex/antivortex-wall muncul setelah medan WB.

In this study we have observed the propagation of domain wall in Co based ferromagnetic materials CoFe, CoFeB and Fe FePt, FePd in the form of nanowire. The analysis was performed using a micromagnetic simulation based on the Landau Lifshitz Gilbert LLG equation modified using the OOMMF Object Oriented Micromagnetic Framework micromagnetic software Donahue and Porter, 1999. The size and geometry of nanowire has a length of 2000 nm, with variations in width 50 nm, 100 nm, 150 nm with 2.5 nm and 5 nm thickness. Damping factor 0.05 and cell size 5 x 5 x t nm3 with t is nanowire thickness. This domain wall dynamics simulation uses active magnetic field pulses with a duration of 0.5 ns and an external magnetic field variation represents pulse amplitudes.
The simulation results show that the domain wall velocity increases with the increase of the external magnetic field to the maximum outer magnetic field known as the Walker Breakdown WB field. Then, the domain wall speed will decrease dramatically. Interestingly, the condition before the WB field shows the transverse wall structure whereas the vortex antivortex wall structure appears after the WB field. If the variation of thickness and width in nanowire geometry is greater then the result indicates that the WB field will decrease further. The observations also involve increased demagnetization energy by increasing the external magnetic field before the WB field and increasing energy exchange when the vortex antivortex wall structure appears after the WB field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Widia Nursiyanto
"Saat ini divais spintronik untuk penyimpan data berbasis magnet telah menjadi perhatian para peneliti. Salah satu bahan yang berpotensi adalah feromagnetik berbentuk nanowire, seperti Racetrack Memory yang cara kerjanya berdasarkan pergerakan domain wall (DW). Pada penelitian ini, telah dilakukan analisa osilasi dan struktur domain wall di dalam kontriksi notch pada bahan feromagnetik (Fe, Ni, dan Co) berbentuk nanowire. Simulasi mikromagnetik menggunakan perangkat lunak bersifat publik bernama Object Oriented Micromagnetic Framework berdasarkan persamaan dinamika spin magnet Landau-Lifshitz- Gilbert. Ukuran nanowire 2000 200 5 nm, di bagian tengah diberikan notch ganda bersifat simetris berbentuk lengkung, segitiga, dan persegi. Di tengah notch diletakkan sebuah tipe struktur DW berbentuk transverse-wall (TW) dengan konfigurasi head-to-head. Penelitian diawali dengan pengamatan kondisi ground state yang diperoleh hasil bahwa DW stabil di tengah notch. Selanjutnya diberi medan magnet bolak-balik dengan amplitudo tetap 2 mT dan variasi frekuensi dari 0,3 -2,0 GHz. Hal yang menarik, terjadi osilasi DW dengan struktur TW yang stabil. Nilai amplitudo osilasi DW terlihat semakin turun dengan bertambahnya frekuensi medan bolak-balik, artinya notch berfungsi sebagai potensial pinning. Selanjutnya dilakukan perhitungan lebar DW berdasarkan FWHM dari data magnetisasi My dan hasil nilai lebar DW tergantung pada bentuk notch. Dari nilai lebar DW juga dihitung massa DW dengan memberlakukan DW sebagai model osilasi harmonik sederhana.

Recently, the development spintronic devices become great attention because its potential for magnetic storage and magnetic sensor devices. One of the materials has potential is the ferromagnetic nanowire, such as Racetrack Memory based on the domain wall motion. In this study, we have analyzed the oscillation and structure of domain wall in the ferromagnetic nanowire Co, Fe, dan Ni. We used micromagnetic simulation with public micromagnetic software Object Oriented Micromagnetic Framework (OOMMF) based on the spin dynamic Landau- Lifshitz-Gilbert (LLG) equation. The dimension of nanowire is 2000 × 200 × 5 nm with double notch is positioned at the center of the nanowire. The shape of notchs consisted of arch-notch, triangle-notch, and rectangular-notch with initial a head-to-head transverse wall (TW) is located at the center of nanowire. Firstly, we investigated the DW in ground state condition and we found the DW is stable at the center of nanowire. Secondly, we applied AC magnetic field with various frequency from 0.3 GHz-2.0 GHz and the amplitude of AC field is fixed to be 2 mT. Interestingly, we observed the DW oscillation with stably TW structure. Increasing the frequency of AC field, the amplitude of DW oscillation showed to decrease. This mean that the notch acted as the pinning potential. Furthermore, we also calculated the DW width based on FWHM from My magnetization and depended on the shape of the notch. From DW width, we also determined the DW mass with driven simple harmonic model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
D1956
UI - Disertasi Membership  Universitas Indonesia Library
cover
Candra Kurniawan
"Penelitian spintronika memiliki ide untuk memanipulasi spin elektron pada suatu sistem zat padat dengan tujuan untuk menghasilkan divais masa depan, seperti divais logika terintegrasi dan sistem penyimpan data non-volatile. Salah satunya adalah pengembangan divais racetrack memory yang berbasis domain wall (DW) magnetik dalam sistem kawat nano (nanowire) sebagai media penyimpanan data yang diusulkan oleh S. Parkin, dkk. pada tahun 2008. Perhatian penting pengembangan racetrack memory adalah karakteristik DW pada material magnetik dengan orientasi magnetisasi anisotropik sejajar bidang (in-plane anisotropy, IMA) dan tegak lurus bidang (perpendicular magnetic anisotropy, PMA). Kelebihan dari material PMA adalah mampu mengurangi besarnya arus ambang (threshold) hingga satu orde (~ 1011 Am-2) untuk menggerakkan DW sepanjang kawat nano dan mengurangi dampak pemanasan Joule. Dalam penelitian ini, dilakukan studi dinamika pegerakan DW dalam kawat nano berorientasi magnetisasi sejajar (IMA) dan tegak lurus (PMA) berbasis material feromagnetik menggunakan pendekatan simulasi mikromagnetik. Dari hasil penelitian ini diketahui bahwa pada material CoFeB yang bertipe PMA, DW memiliki kecenderungan orientasi perputaran magnetisasi secara natural (groundstate) yang bergantung pada geometri kawat nano sehingga memunculkan tipe Bloch Wall atau Néel Wall. Dengan demikian dapat didefinisikan suatu ukuran kritis (tc) transisi Bloch Wall menjadi Néel Wall sebanding dengan perubahan ukuran kawat nano melalui kalkulasi sederhana berdasarkan profil magnetisasi Mx dan My. Pada nanowire CoFeB, diketahui bahwa perubahan durasi pulsa magnetik eksternal mempengaruhi besaran medan Walker breakdown (HWB). Semakin pendek durasi pulsa magnetik, maka nilai HWB akan semakin besar. Pergeseran nilai HWB pada durasi pulsa magnetik yang lebih singkat disebabkan adanya kebutuhan energi DW untuk bergerak sepanjang kawat nano yang lebih dominan. Pada material IMA, seperti Permalloy, ditunjukkan bahwa ukuran kedalaman notch yang semakin besar sebanding dengan peningkatan arus depinning (Jd) untuk menggerakkan DW keluar dari area notch. Stuktur internal DW juga mengalami transformasi bentuk dari transversal menjadi anti-vortex dalam proses depinning. Pada material PMA CoFeB, ditunjukkan juga bahwa kedalaman ukuran notch memiliki korelasi berbanding lurus terhadap besarnya Jd. Namun demikian, pada kedalaman notch yang semakin besar terjadi peningkatan nilai Jd yang signifikan, terutama pada ukuran > 20 nm. Selain itu, nilai Jd tersebut lebih dipengaruhi oleh ketebalan kawat nano pada ukuran yang lebih tipis. Karakteristik ini dipengaruhi oleh peningkatan luas ukuran melintang (cross-sectional area), sehingga meningkatkan dominasi energi demagnetisasi untuk menahan DW pada kondisi pinning. Dipahami bahwa peningkatan energi DW saat depinning dapat disebabkan oleh perubahan ukuran struktur DW yang terjadi pada ukuran kawat nano yang lebih besar.

The spintronics research had an idea to manipulate the electron spin in the solid state system with the purpose to obtain future devices, such as the integrated logic and the non-volatile memory. One of the important topics was the development of racetrack memory, based on the magnetic domain wall (DW) on the nanowire system as proposed by S. Parkin et al. in 2008. The interesting part of racetrack memory was the DW characteristics in the magnetic materials with in-plane anisotropy (IMA) and perpendicular magnetic anisotropy (PMA). The advantages of the PMA materials are the lower threshold current (~1011 Am-2) to move DW along the nanowire and reduce the impact of Joule heating. In this work, the DW dynamics on the ferromagnetic nanowire with IMA and PMA orientation have been studied utilizing micromagnetic simulation. The results showed that on the PMA CoFeB material, the DW magnetization tends to change gradually in the groundstate condition depending on nanowire geometries to obtain the Bloch Wall or the Néel Wall. Therefore, a critical transition size (tc) of the Bloch Wall to Néel Wall can be defined as the increasing nanowire size by performing a simple calculation based on the Mx and My magnetization profile. In the CoFeB nanowire, it is understood that the decreasing of external magnetic pulse duration influenced the value of the Walker breakdown field (HWB). The HWB increased as the decreasing of pulse duration decreased. The shifted HWB values in the shorter pulse duration were caused by the dominant energy needed to move DW along the nanowire. The IMA material, such as Permalloy, showed that the increasing of notch dept related to the increasing of depinning current (Jd) to move the DW out from the notch area. The DW internal structure was also transformed from transverse to anti-vortex in the depinning process. The PMA CoFeB materials also showed that the notch dept size was related proportionally to the increased Jd. However, the Jd value increased significantly in the notch dept size larger than 20 nm. Furthermore, the Jd values are more influenced by the decreasing nanowire thickness. This characteristic was related to the increase of the cross-sectional area, so the demagnetization energy was dominated on the DW in the pinning condition. It is understood that the increase of DW depinning energy is caused by the DW structural change in the larger nanowire."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Qoimatul Mustaghfiroh
"Telah dilakukan pengamatan terhadap kurva histeresis dan struktur domain pada lapisan tipis CoFe dan CoFeB model disk dan square yang diberi medan magnetik eksternal pada arah in-plane dan arah out-plane menggunakan pendekatan simulasi mikromagnetik. Simulasi mikromagnetik menggunakan perangkat lunak OOMMF berbasis Landau-Lifshitz-Gilbert LLG. Variasi ukuran model material CoFe dan CoFeB dilakukan pada rentang diameter 50 nm 500 nm dan ketebalan 5 nm dan 10 nm. Parameter simulasi menggunakan ukuran sel 2,5 x 2,5 x 2,5 nm3 dan faktor redaman = 0,05. Lapisan tipis CoFe model disk dan square menunjukkan sifat Perpendicular Magnetic Anisotropy PMA dengan menghasilkan koersivitas yang rendah ketika diberi medan eksternal arah out-plane. Hal menarik ditunjukkan pada lapisan tipis CoFeB model disk dan square dengan pemberian medan arah in-plane dan out-plane yang mengindikasikan pengaruh Boron mengubah nilai koersivitas CoFe menjadi lebih tinggi. CoFeB bersifat Perpendicular Magnetic Anisotropy PMA. Analisis terhadap besarnya medan nukleasi, koersivitas, dan waktu pembalikan menunjukkan adanya pengaruh perubahan ukuran size-dependent terhadap perubahan kurva histerisis lapisan tipis CoFe dan CoFeB. Pengamatan terhadap struktur domain CoFeB memperlihatkan terjadi perubahan struktur domain dari keadaan single domain SD menjadi multi domain MD dengan menunjukkan tipikal mekanisme pembalikan Neel wall.

Hysteresis loop and domain structure in thin film CoFe and CoFeB model disk and square are applied external field in two ways parallel and perpendicular has been investigate by using micromagnetic simulation. Micromagnetic simulation software OOMMF based on magnetization dynamic Landau Lifshitz Gilbert. Thin film CoFe and CoFeB size diameter ranging from 50 nm to 500 nm and variation thickness 5 nm and 10 nm. Size of cell size 2,5 x 2,5 x 2,5 nm3 and damping factor 0,05. Hysteresis loop of thin film CoFe disk applied parallel external field showed square loop hysteresis which showed typical in easy axis. In otherwise when applied perpendicular external magnetic field showed typical hysteresis loop in hard axis with low coercivity. Therefore, thin film CoFe disk and square has characteristic Perpendicular Magnetic Anisotropy PMA. Interestingly, thin film CoFeB disk and square applied by parallel and perpendicular magnetic field showed hysteresis loop which indicate that Boron changed coercivity from low 40 mT to high 780 mT. CoFeB showed Perpendicular Magnetic Anisotropy PMA. Moreover, coercivity, switching time, and nucleation field were shifted as the CoFe and CoFeB size varied size dependent. Observation domain structure of CoFeB showed change of domain structure from single domain to multi domain with switching mechanism in multi domain structure showed Neel wall typical."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ummaira Fadhilah
"Salah satu material feromagnetik yang memiliki magnetik anisotropi yang tinggi yaitu FePt dan FePd telah diamati dalam bentuk lapisan tipis disk dan square dengan menggunakan perangkat lunak simulasi mikromagnetik bersifat publik OOMMF berdasarkan persamaan Landau-Lifshitz-Gilbert LLG. Variasi diameter yang digunakan mulai dari ukuran 50 nm hingga 500 nm, dua variasi ketebalan 5 dan 10 nm, dan konstanta redaman ?=0.05 dengan ukuran sel 2.5 2.5 2.5 ? nm ?^ 3 disimulasi dengan pemberian medan magnet arah in-plane dan out-plane. Pengamatan kurva histeresis dan dinamika struktur domain difokuskan untuk memperoleh karakteristik sifat magnet berupa pengaruh bentuk dan ukuran terhadap kurva histeresis, struktur domain yang dibentuk, medan koersivitas, medan nukleasi, waktu pembalikan dan mekanisme pembalikan yang terjadi. Hasil pengamatan memperlihatkan kurva histeresis yang diperoleh memiliki nilai koersivitas yang besar pada saat pemberian medan arah inplane namun pada saat pemberian medan arah outplane koersivitas yang diperoleh mendekati nol sebagaimana tipikal kurva histeresis material yang diberikan medan ke arah hard-axisnya. Namun, menariknya pada ukuran dibawah le; 100 nm masih ditemukan nilai koersivitas dengan nilai berkisar antara 20 80 mT. Nilai koersivitas ini mengindikasikan material FePt dan FePd sebagai material PMA. Selain itu, teramati nilai medan koersivitas yang meningkat seiring dengan berkurangnysa ukuran diameter yang ditunjukkan di daerah meso nilai koersivitas yang diperoleh kecil dan cenderung konstan. Medan Nukleasi menunjukkan adanya pergeseran nilai seiring dengan berubahnya ukuran material. Hal ini menunjukkan bahwa ukuran berpengaruh pada sifat magnetik lapisan tipis FePt dan FePd. Struktur domain sebagian besar pada model square ditemukan dalam keadaan vortex dengan mode pembalikan curling, namun pada model disk, ditemukan struktur single domain di bawah diameter 200 nm untuk material FePt dan di bawah 80 nm untuk material FePd yang selanjutnya dijelaskan dengan profil energi sistem mikromagnetik.

One of the highly anisotropic ferromagnetic materials FePt and FePd has been observed by using public micromagnetic simulation software, OOMMF based on the Landau Lifshitz Gilbert LLG equation. In this study, we used disk and square shaped model with size from 50 nm to 500 nm, two variations in thicknesses are 5 and 10 nm, and damping constant 0.05 with cell size 2.5 2.5 2.5 nm 3 were simulated by in plane and out plane applied field. We focused to find magnetic properties such as hysteresis loops, domain structure, coercivity field, nucleation field, and switching time.The results showed the hysteresis loops has a large coercivity when the external inplane field was applied and zero coercivity when the external outplane field was applied as typical of the material 39 s hysteresis loops given the field toward the hard axis. Interestingly, coercivity still found in materials with size below le 100 nm with ranging between 20 80 mT. From this result, a certain value of the coercivity field appeared in out plane applied field indicated a perpendicular magnetic anisotropy PMA behaviour in FePt and FePd ferromagnets. We found that the coercivity tended decreasing as the length and thickness of disk and square ferromagnets increased, however in the mesoscopic region showed small coercivity and tended to be constant. Moreover, nucleation fields was shifted as the material rsquo s size varied. The results showed that the size effected in the magnetic properties of the FePt and FePd thin layers. The domain structure in the square shaped is mostly found in the state of vortex with curling reversal mode, but in the disk shaped with size below 200 nm formed single domain structure for FePt and size below 80 nm for FePd. Furthermore, these results could be explained by its energy profiles."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dede Djuhana
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
PGB-pdf
UI - Pidato  Universitas Indonesia Library
cover
Mardona
"Dalam penelitian ini telah dilakukan pengamatan dinamika domain-wall dan efek anisotropi pada material ferromagnet Co dan Ni dalam bentuk nanowire. Pengamatan dinamika domain-wall dan efek anisotropi dilakukan dengan menggunakan simulasi micromagnetic berdasarkan persamaan Landau-Lifshitz-Gilbert (LLG) menggunakan perangkat lunak micromagnetic OOMMF. Ukuran dan geometri nanowire simulasi micromagnetic mempunyai panjang 2000 nm dengan variasi lebar 100 nm, 150 nm, dan 200 nm dan tebal 2,5 nm dan 5,0 nm. Faktor damping 0,01 dan ukuran sel dengan t adalah ketebalan nanowire. Simulasi micromagnetic dilakukan secara sistematis dengan memberikan medan magnet luar dalam bentuk pulsa dengan waktu pulsa 1 ns dan variasi amplitudo sebagai besarnya medan magnet luar. Hasil pengamatan memperlihatkan kecepatan domain-wall meningkat dengan bertambahnya medan magnet luar sampai mencapai medan magnet luar maksimum yang dikenal dengan medan Walker breakdown. Kemudian kecepatan domain-wall menurun dengan bertambahnya medan magnet luar setelah medan Walker breakdown. Hal yang sangat menarik dari hasil pengamatan bahwa struktur domain-wall memperlihatkan struktur berbentuk transverse sebelum Walker breakdown dan timbul struktur vortex/anti-vortex wall sesudah Walker breakdown. Selanjutnya, analisis energi sistem juga dilakukan yaitu energi total, energi Zeeman, energi exchange, energi anisotropi, dan energi demagnetisasi. Hasil analisis menunjukkan energi demagnetisasi meningkat dengan bertambahnya medan magnet luar sebelum Walker breakdown dan menurun ketika struktur vortex/antivortex wall terbentuk sesudah Walker breakdown. Efek anisotropi dari material Co dan Ni diperlihatkan pada profil kecepatan domain-wall dan kerapatan energi total nanowire. Profil kecepatan domain-wall memperlihatkan kecepatan menurun secara landai di sekitar Walker breakdown dibandingkan material Py yang menurun cukup curam. Kerapatan energi total untuk material Co lebih besar dari material Py karena pengaruh nilai kontansta anisotropi bernilai positif dan material Ni yang lebih kecil dibandingkan material Py karena nilai konstanta anisotropi bernilai negatif. Hasil ini memperlihatkan efek anisotropi mempengaruhi dinamika domain-wall dalam nanowire dan harus dipertimbangkan dalam merealisasikan devais-devais berbasis magnet di masa depan.

In this work, we have investigated the domain wall dynamic and anisotropy effect of materials Co and Ni in ferromagnetic nanowires by means of micromagnetic simulation. The simulation is carried out by the public micromagnetic software based on Landau-Lifshitz-Gilbert (LLG) equation. The length of ferromagnetic nanowire is set to be 2000 nm corresponds to width variation from 100 nm to 200 nm and the thickness variation are 2.5 nm and 5.0 nm. The damping factor is 0.01 and the cell size is with t is the thickness. The simulation is applied by the external magnetic pulsed with length of 1 ns and the variation the external magnetic field strength. The calculation showed the domain wall velocity increases as the external magnetic field increases and reach the maximum the external field as known the Walker breakdown. Then the domain wall velocity abruptly decreases after the Walker breakdown. Very interestingly, before the Walker breakdown, the domain wall exhibits the transverse wall while the vortex/anti-vortex wall after the Walker breakdown. We have also investigated the energy system that consists of the total energy, Zeeman energy, the exchange energy, the demagnetization, and the anisotropy energy. The analyzed showed that the demagnetization increases as the external field increases before the Walker breakdown and decreases as the vortex/anti-vortex formed after the Walker breakdown. The anisotropy effect of Co and Ni ferromagnetic is shown by the domain wall velocity and the total energy density profile. The velocity shows slightly decreasing around the Walker breakdown compare with the material Py. The total energy density of Co shows large than Py since the anistropy contant is positive (K > 0) and Ni shows small that Py since the anisotropy is negative (K < 0). This means that the effect anisotropy also contributes the domain wall motion in ferromagnetic nanowire and must be considered in the realization magnetic devices in the future."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T29862
UI - Tesis Open  Universitas Indonesia Library
cover
Christianto
"Dalam bahan feromagnetik terdapat daerah-daerah yang memiliki magnetisasi dalam keadaaan saturasi, yang disebut magnetic domain. Diantara dua buah domain yang berbeda terdapat suatu daerah transisi, yang disebut Domain wall. Domain wall terbentuk akibat adanya interaksi momen magnet yang bersebelahan melalui interaksi exchange dan interaksi demagnetisasi. Ketika domain wall mendapat pengaruh arus listrik, domain wall akan mengalami dinamika yang merupakan akibat munculnya efek spin transfer torque dan dapat menyebabkan perubahan struktur pada domain wall. Kecepatan dinamika domain wall akan bertambah hingga mencapai arus kritis, dimana kecepatan akan berkurang dan seringkali disertai dengan perubahan struktur pada domain wall. Penelitian ini dilakukan dengan menggunakan simulasi mikromagnetik, yang diselesaikan dengan menggunakan persamaan Landau-Lifshitz-Gilbert (LLG).

In the ferromagnetic materials, there are regions contain the saturation magnetization, called magnetic domains. Between two different domains there is a transition region, called Domain wall. Domain wall is formed by the interaction of the magnetic moment through exchange interaction and demagnetization interaction.When a domain wall is under applied electric current, the domain wall dynamics will occur as the effect of spin transfer torque and it can cause structural changes in the domain wall. The dynamics of the domain wall velocity will increase until it reaches the critical current, where the speed will be reduced and often accompanied by structural changes in the domain wall. This study is performed using micromagnetic simulation, which is solved using the Landau-Lifshitz-Gilbert (LLG) equation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54848
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>