Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81681 dokumen yang sesuai dengan query
cover
Achmad Fatchuttamam Abka
"Natural Language Generation (NLG) merupakan salah satu topik dalam bidang Natural Language Processing (NLP) yang hingga sekarang penelitiannya masih banyak dilakukan. Tugas dari NLG adalah menghasilkan bahasa natural (manusia) dari data non-linguistik. Secara umum, sistem NLG melibatkan tahapan-tahapan utama yaitu document planning, microplanning, dan surface realisation.
Penelitian yang dilakukan adalah mengembangkan sistem NLG yang menggunakan konsep inference dalam prosesnya menghasilkan dokumen. Selain itu sistem juga diharapkan mampu memanfaatkan informasi yang sifatnya historis dalam proses menghasilkan dokumen tersebut. Pengembangan terutama dilakukan pada subbagian perencanaan (document planning dan microplanning) dengan domain yang dipilih adalah sepak bola. Implementasi dilakukan dengan menggunakan prolog. Prolog dipilih karena sangat cocok digunakan untuk proses inference. Evaluasi sistem dilakukan dengan cara melakukan pengujian unit untuk setiap komponen, terutama komponen yang melakukan inference.
Hasilnya menunjukkan bahwa sistem berjalan sebagaimana mestinya yaitu mengeluarkan output yang benar sesuai dengan permintaan pada input (query). Selain itu, dilakukan juga evaluasi oleh manusia dengan cara menyebarkan kuesioner penilaian terhadap laporan yang dihasilkan oleh sistem NLG dibandingkan dengan laporan hasil buatan manusia. Hasilnya menunjukkan bahwa laporan buatan manusia masih lebih baik, namun laporan hasil dari sistem juga memperoleh penilaian yang cukup baik.

Natural Language Generation (NLG) is one of the topics in the field of Natural Language Processing (NLP), which until now is still a lot of research done. Task of NLG is to generate natural (human) language from non-linguistic data. In general, the NLG system involves main phases namely document planning, microplanning, and surface realisation.
This research is to develop NLG system which uses the concept of inference in the process of generating document. Furthermore, the system also expected to use historical information in the process of producing the document. Development is mainly on planning phase (document planning and microplanning) with selected domain is football. Implementation is done by using prolog. Prolog selected because it is suitable for inference process. Evaluation of the system is done by doing a unit testing for each component, especially for component which perform inference.
The result shows that the system is running as it should be that is gives correct output according to the request on the input (query). In addition, the evaluation was also conducted by distributing questionnaires to compare the reports generated by the NLG system with man-made reports. The results show that man-made report is still better, but the report generated by the NLG system also obtain a fairly good assessment.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Joshua Kurniawan Djafar
"Penerapan dari pengolahan bahasa alami ini telah banyak dilaksanakan dengan tujuan tertentu. Salah satu tujuannya adalah aplikasi basis data yang dikembangkan oleh program ini. Pada dasarnya program ini akan mengolah bentuk dari kalimat-kalimat query dalam bahasa Indonesia dan merubahnya menjadi bentuk SQL standar. SQL standar inilah yang akan diinterpretasikan oleh suatu RDBMS (Oracle, Informix,dan sebagainya). Kelemahan utama dari pengolahan bahasa alami ini adalah keterbatasan dari semantik kalimat yang disebabkan oleh keterbatasan yang ada pada SQL ini sendiri. Suatu kalimat membutuhkan suatu bentuk tata bahasa. Bagaimanapun alaminya suatu kalimat bahasa, kalimat tersebut pasti akan mengikuti kaidah umum yang ada pada suatu struktur tata bahasa. Penyusunan dari tata bahasa inilah yang merupakan hal yang terpenting dalam pengolahan bahasa alami. Tata bahasa semantik adalah tata bahasa yang disusun bukan berdasarkan pada sintak kalimat, tetapi disusun berdasarkan pada arti kata penyusun kalimat. Kebutuhan akan pembentukan tata bahasa semantic ini membutuhkan penelitian tersendiri untuk memperoleh struktur umum dari kalimat-kalimat yang akan digunakan oleh pemakai."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1992
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ageng Anugrah Wardoyo Putra
"

Walaupun belum semaju dan sekomprehensif bahasa-bahasa lainnya, penelitian NLP bahasa Indonesia telah mengalami perkembangan yang cukup signifikan. Penelitian NLP tersebut mencakup POS-Tagging, Named Entity Recognition, dependency parsing, coreference resolution, dan lain sebagainya. Dari penelitian-penelitian NLP bahasa Indonesia yang telah ada, perlu dilakukan validasi dan verifikasi apakah modul NLP pada penelitian tersebut masih relevan atau tidak. Hal tersebut perlu dilakukan karena mungkin saja terjadi kesalahan pada penelitian sebelumnya atau terdapat model yang lebih baik dari penelitian tersebut. Proses tersebut dapat dilakukan melalui evaluasi intrinsik maupun ekstrinsik. Evaluasi intrinsik dapat dilakukan dari reproduksi atau replikasi penelitian yang telah ada, sementara itu evaluasi ekstrinsik dilakukan dengan membangun sistem tanya jawab dari modul-modul NLP tersebut. Hasilnya, didapatkan beberapa modul seperti POS-Tagging dan NER masih cukup relevan dan memiliki dataset yang berkualitas. Namun, beberapa modul lain seperti coreference resolution, constituency parsing, dan dependency parsing masih perlu perkembangan lebih lanjut. Berdasarkan hasil evaluasi, sistem yang dibangun memiliki performa terbaik untuk metrik exact match dan F1 berturut-turut di angka 0,108 dan 0,151 untuk dataset SQuAD, 0,063 dan 0,191 untuk dataset TyDiQA, serta 0,127 dan 0,173 untuk dataset IDK-MRC. Dari evaluasi tersebut diketahui juga bahwa sistem tanya jawab yang dibangun menggunakan pipeline modul-modul NLP tidak sebaik model tanya jawab end-to-end menggunakan BERT yang telah di-finetuning. Meskipun begitu, dari hasil penelitian ini ditunjukkan bahwa kita dapat membangun suatu sistem tanya jawab berdasarkan modul-modul NLP bahasa Indonesia yang tersedia.


Although not as advanced and comprehensive as in other languages, research in Indonesian NLP has experienced significant development. This NLP research encompasses POS-Tagging, Named Entity Recognition, dependency parsing, coreference resolution, and other related areas. From the existing NLP studies conducted in the Indonesian language, it is essential to validate and verify whether the NLP modules used in the research are still relevant. This is important because there might have been errors in previous research or there might be better models available. This process can be accomplished through both intrinsic and extrinsic evaluations. Intrinsic evaluation can be conducted by reproducing or replicating existing research, while extrinsic evaluation involves building a question answering system using these NLP modules. The results show that some modules, such as POS-Tagging and NER, are still quite relevant and have high-quality datasets. However, other modules like coreference resolution, constituency parsing, and dependency parsing still require further development. Based on the evaluation results, the constructed system performs best in terms of exact match and F1 metrics, with scores of 0.108 and 0.151 for the SQuAD dataset, 0.063 and 0.191 for the TyDiQA dataset, and 0.127 and 0.173 for the IDK-MRC dataset, respectively. The evaluation also reveals that the question-answering system built using a pipeline of NLP modules does not perform as well as the end-to-end question-answering model using fine-tuned BERT. Nevertheless, this research demonstrates the feasibility of building a question-answering system based on the available Indonesian NLP modules.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Popi Puspitasari
Depok: Fakultas Teknik Universitas Indonesia, 2002
S39084
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boston: Kluwer Academic , 1991
006.35 NAT
Buku Teks SO  Universitas Indonesia Library
cover
Hajra Faki Ali
"Penelitian ini mengusulkan pengembangan model monolingual untuk Natural Language Inference (NLI) dalam bahasa Swahili untuk mengatasi keterbatasan model multibahasa saat ini. Studi ini melakukan fine-tuning pada model SwahBERT yang sudah dilatih sebelumnya untuk menangkap hubungan semantik dan nuansa kontekstual unik dalam bahasa Swahili. Komponen penting dari penelitian ini adalah pembuatan dataset SwahiliNLI, yang dirancang untuk mencerminkan kompleksitas bahasa Swahili, sehingga menghindari ketergantungan pada teks bahasa Inggris yang diterjemahkan. Selain itu, kinerja model SwahBERT yang telah di-fine-tune dievaluasi menggunakan dataset SwahiliNLI dan XNLI, dan dibandingkan dengan model multibahasa mBERT. Hasilnya menunjukkan bahwa model SwahBERT mengungguli model multibahasa, mencapai tingkat akurasi sebesar 78,78% pada dataset SwahiliNLI dan 73,51% pada dataset XNLI. Model monolingual juga menunjukkan presisi, recall, dan skor F1 yang lebih baik, terutama dalam mengenali pola linguistik dan memprediksi pasangan kalimat. Penelitian ini menekankan pentingnya menggunakan dataset yang dihasilkan secara manual dan model monolingual dalam bahasa dengan sumber daya rendah, memberikan wawasan berharga untuk pengembangan sistem NLI yang lebih efisien dan relevan secara kontekstual, sehingga memajukan pemrosesan bahasa alami untuk bahasa Swahili dan berpotensi menguntungkan bahasa lain yang menghadapi keterbatasan sumber daya serupa.

This research proposes the development of a monolingual model for Natural Language Inference (NLI) in Swahili to overcome the limitations of current multilingual models. The study fine-tunes the pre-trained SwahBERT model to capture Swahili's unique semantic relationships and contextual nuances. A critical component of this research is the creation of a SwahiliNLI dataset, crafted to reflect the intricacies of the language, thereby avoiding reliance on translated English text. Furthermore, the performance of the fine-tuned SwahBERT model is evaluated using both SwahiliNLI and the XNLI dataset, and compared with the multilingual mBERT model. The results reveal that the SwahBERT model outperforms the multilingual model, achieving an accuracy rate of 78.78% on the SwahiliNLI dataset and 73.51% on the XNLI dataset. The monolingual model also exhibits superior precision, recall, and F1 scores, particularly in recognizing linguistic patterns and predicting sentence pairings. This research underscores the importance of using manually generated datasets and monolingual models in low-resource languages, providing valuable insights for the development of more efficient and contextually relevant NLI systems, thereby advancing natural language processing for Swahili and potentially benefiting other languages facing similar resource constraints."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dhar, Pranab Kumar
"This book introduces audio watermarking methods in transform domain based on matrix decomposition for copyright protection. Chapter 1 discusses the application and properties of digital watermarking. Chapter 2 proposes a blind lifting wavelet transform (LWT) based watermarking method using fast Walsh Hadamard transform (FWHT) and singular value decomposition (SVD) for audio copyright protection. Chapter 3 presents a blind audio watermarking method based on LWT and QR decomposition (QRD) for audio copyright protection. Chapter 4 introduces an audio watermarking algorithm based on FWHT and LU decomposition (LUD). Chapter 5 proposes an audio watermarking method based on LWT and Schur decomposition (SD). Chapter 6 explains in details on the challenges and future trends of audio watermarking in various application areas."
Switzerland: Springer Nature , 2019
e20505616
eBooks  Universitas Indonesia Library
cover
Rizky Juniastiar
"Kebutuhan akan informasi yang cepat dan valid semakin mendesak di tengah arus in- formasi yang cepat. Kemajuan teknologi memberikan dampak signi kan terhadap in- dustri jurnalisme untuk mengakomodasi kebutuhan informasi tersebut. Proses produksi berita, yang tradisionalnya memakan waktu, terus dihadapkan pada tuntutan untuk meng- hasilkan informasi dengan cepat dan akurat. Penelitian ini merespon tantangan terse- but dengan melakukan pengembangan model generatif yang dapat melakukan pembuatan berita secara otomatis. Dalam pengembangan model generatif, penulis melakukan bebe- rapa skenario percobaan untuk menguji pengaruh ukuran jumlah parameter, jenis prompt- ing, dan penggunaan delimiter pada prompt yang digunakan terhadap kualitas model yang dihasilkan. Percobaan dilakukan dengan melakukan ne tuning pada dua buah large language model yang memiliki arsitektur berbeda, yaitu Falcon dan BLOOM. Pengem- bangan large language model selanjutnya dilakukan proses evaluasi dengan menggunakan metrik measurement BLEU, ROUGE, perplexity, dan human evaluation kepada wartawan terhadap berita yang dihasilkan. Hasil yang penulis dapatkan menunjukkan bahwa terda- pat beberapa aspek yang memengaruhi kualitas berita yang dihasilkan oleh model dalam proses ne tuning. Beberapa aspek tersebut di antaranya adalah ukuran jumlah parameter, jenis prompting, dan penggunaan delimiter pada prompt yang digunakan. Model terbaik yang didapatkan dari keseluruhan model percobaan adalah BLOOM dengan jumlah pa- rameter 7B yang mendapatkan hasil evaluasi ROUGE-1 sebesar 0,3856 dan perplexity sebesar 5,79809. Model ini juga dapat menghasilkan berita yang sesuai dengan kebu- tuhan wartawan dalam proses human evaluation, baik dari kesesuaian dengan kaidah ke- bahasaan dan penulisan berita maupun ketepatan berita dengan fakta sebenarnya. Model ini mendapatkan penilaian sebesar 4,25 dari 5,00 untuk kesesuaian dengan kaidah keba- hasaan dan 4,27 dari 5,00 untuk ketepatan dengan fakta sebenarnya.

The escalating need for swift and accurate information in today's dynamic information landscape poses a significant challenge. Technological advancements have profoundly impacted the journalism industry, necessitating adaptations to fulfill evolving information requirements. The traditional, time-consuming news production process is under constant pressure to deliver information swiftly and accurately. This research tackles these challenges by developing a generative model capable of automating news creation. The author explores various experimental scenarios in the generative model development, investigating the influence of parameters' quantity, prompting techniques, and the use of delimiters in prompts on the resulting model's quality. The experiments involve fine-tuning two large language models with different architectures, Falcon and BLOOM. The subsequent evaluation process utilizes metrics such as BLEU, ROUGE, perplexity, and human evaluation by journalists to assess the quality of the generated news. The findings underscore that several factors, including parameter quantity, prompting techniques, and delimiter use, impact the news model's quality during the fine-tuning process. Significantly, among the experimented models, the BLOOM model with 7B parameters emerges as the overall best performer. This model achieves a ROUGE-1 evaluation of 0.38656 and a perplexity of 5.79809. In human evaluation, the BLOOM model excels in linguistic adherence and factual accuracy, receiving ratings of 4,25 out of 5.00 and 4,27 out of 5.00, respectively."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josef
"Di tahun-tahun ke depan, komunitas akademik, bisnis dan industri akan dihadapkan pada kemunculan kebutuhan komputasi yang beraneka ragam dengan jumlah besar. Kebutuhan ini memicu penyediaan sumber daya komputasi dalam jumlah besar pula. Penyediaan sumber daya semacam ini harus memiliki nilai efisien dan efektif baik dari segi ruang, biaya dan waktu sehingga bukan sekedar penumpukan mesin-mesin komputer saja. Salah satu solusinya adalah melalui penyediaan sistem high-throughput computing. Penelitian ini mencoba membangun sistem tersebut dengan berbasis grid menggunakan Condor dan Globus Toolkit. Alasan penggunaan Condor didasarkan pada kemampuan dan spesialisasi Condor sebagai job scheduler yang mampu menyediakan lingkungan high-throughput computing. Selain itu, Condor merupakan salah satu job manager yang didukung penggunaannya di dalam Globus Toolkit. Percobaan pembangunan ini meliputi perancangan sistem, perencanaan simpul-simpul komputasi, instalasi dan konfigurasi sistem, dan pengujian sistem. Produk akhir dari penelitian ini menghasilkan sebuah sistem grid yang siap digunakan dan dapat dikembangkan lebih lanjut serta dapat dipertanggungjawabkan kebenaran perancangannya."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Hendra Kurniawan
"Framework manajemen insiden merupakan sebuah tools yang dapat digunakan sebagai early warning system dalam mengatasi permasalahan penerapan teknologi informasi di ranah siber. Framework ini juga dapat menjadi sumber informasi intelijen yang bersifat terbuka dan dapat digunakan untuk mengukur sejauh mana tingkat kematangan manajemen insiden yang telah dilakukan oleh institusi/perusahaan di Indonesia. Dalam lingkupĀ  nasional, framework ini juga dapat digunakan untuk melihat sejauhmana kemampuan Indonesia dalam menghadapi terjadinya insiden siber. Hal ini sangat penting mengingat framework manajemen insiden belum diterapkan secara masif oleh institusi/perusahaan di Indonesia, sehingga masih banyak terdapat celah-celah kerawanan yang dapat dimanfaatkan oleh penyerang dalam melakukan cipta kondisi terhadap insiden keamanan siber. Oleh karena itu, penulis melakukan penelitian terkait penerapan framework manajemen insiden ini. Metode penelitian yang digunakan berupa mix-method, dimana merupakan perpaduan dari metode kualitatif dan kuantitatif. Selain itu, teknik analisis data yang digunakan berupa comparative analysis dan content analysis. Hasil dari penelitian ini diantaranya: (1) Nilai koefisien potensi ancaman terhadap pengelolaan intelijen keamanan siber adalah 15.86. Nilai tersebut termasuk dalam kategori tinggi (high); (2) Kerangka kerja (framework) manajemen insiden yang dihasilkan terdiri dari 354 aktifitas manajemen insiden, yang dapat diimplementasikan oleh institusi/perusahaan, dan terbagi dalam 50 kategori pada framework manajemen insiden. Selain itu, distribusi aktifitas dalam framework terdiri dari 12.4% berasalĀ  dari SIM3 Model, 42.1% berasal dari Joao Model, dan 70% berasal dari CREST Model.

.The incident management framework is a tools that can be used as an early warning system to overcome problems in the implementation of information technology. This Framework also used for measuring the maturity level of incident management that has been carried out by institutions in Indonesia. We can used it as an open intelligence of information source. Within national scope, this framework used for knowing Indonesia's ability to deal with cyber incidents. This is very important thing considering that the incident management framework has not been implemented massively by institution in Indonesia. This causes many vulnerabilities than can be exploited by an attacker for creating new conditions in cybersecurity incident. Therefore, author employed mix-methode research, which is the combination between qualitative and quantitative research. The data analysis techniques used were comparative analysis and content analysis. The result of this research are: (1) coefficient value of potential threat to cybersecurity intelligence management is 15.86. This value is included in high category; (2) This research produces a incident management framework that consisting of 354 incident management activity, which are divided into 50 incident management category. Furthermore, the distribution of incident management activity are consist of 12.4% SIM3 Model, 42.1% Joao Model, and 70% CREST Model."
Depok: Sekolah Kajian Stratejik dan Global Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>