Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 124918 dokumen yang sesuai dengan query
cover
Yudi Prasetyo
"Material biologis mampu luruh berbasis paduan Fe-Mn-C hasil proses pemaduan mekanik dan metalurgi serbuk besi, mangan dan karbon diamati dengan paduan Fe-26Mn-1C dan Fe-33Mn-2C. Material biologis mampu luruh berbasis Fe-Mn-C telah diteliti dengan pengujian sifat korosi dengan Electrochemical Impedance Spectroscopy (EIS) pada larutan Hanks', pengamatan SEM dan EDAX pada material setelah direndam di dalam lautan Hanks', pengujian AAS (Atomic Absorption Spectroscopy) dengan ekstrak material pada larutan Hanks' dan pengujian sitotoksitas dengan menggunakan sel osteoblas. Impedansi paduan Fe-33Mn-2C lebih tinggi dibandingkan dengan paduan Fe- 26Mn-1C. Lapisan Ca/P terbentuk dan menutupi permukaan paduan Fe-26Mn-1C dan Fe-33Mn-2C. Konsentrasi Fe dan Mn terlarut pada kedua material di dalam larutan Hanks' secara berurut yaitu di bawah 45 mg/L dan 11 mg/L per hari. Hasil ekstrak paduan Fe-26Mn-1C dan Fe-33Mn-2C memiliki persentase viabilitas yang tinggi dengan tingkat toksisitas yang rendah. Dengan demikian, paduan Fe-26Mn-1C dan Fe-33Mn-2C memiliki sifat biokompatibilitas yang baik.

Degradable biomaterial based on Fe-Mn-C alloy product from mechanical alloying and powder metallurgy process of iron, manganese and carbon is observed with Fe-26Mn-1C and Fe-33Mn-2C alloys. This Fe-Mn-C based degradable biomaterial alloy has been investigated with corrosion properties examination by Electrochemical Impedance Spectroscopy (EIS) Method with Hanks' solution, SEM and EDAX observation of material after immersion in Hanks' solution, Atomic Absorption Spectroscopy (AAS) examination of material extracts with Hanks' solution and cytotoxicity examination with osteoblast cell. Impedance of Fe-33Mn-2C alloy is higher than Fe-26Mn-1C alloy. Ca/P layer formed and covered the interface of Fe-26Mn-1C and Fe-33Mn-2C alloys. Solute concentrations of iron and manganese from each material in Hanks' solution were lower than 45 mg/L per day and 11 mg/L per day in sequence. Extracts of Fe-26Mn-1C and Fe-33Mn-2C alloys have high viability percentage with low toxicity level. From the result, Fe-26Mn-1C and Fe-33Mn-2C alloys have good biocompatibility properties."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35948
UI - Tesis Membership  Universitas Indonesia Library
cover
Rhidiyan Waroko
"Material Fe-M n-C telah banyak dikembangkan sebagai material mampu luruh untuk aplikasi penyangga pembuluh dalam satu dekade belakangan ini. Penggunaan biomaterial Fe-M n-C mampu menghindari tindakan pembedahan kembali setelah pembuluh jantung kembali normal setelah mengalami penyempitan, yaitu sekitar 6-12 bulan. Pengujian material Fe-M n-C dilakukan untuk mencari kelayakan kandidat biomaterial ini digunakan sebagai penyangga pembuluh yang mampu luruh. Material tersebut dibuat dengan cara pemaduan mekanik kemudian metalurgi serbuk. Hasil pengujian EDAX pada material akhir menunjukkan komposisi material yaitu Fe-24Mn-0.4C dan Fe-33Mn-0.3C. Hasil pengujian atomic absorption spectroscopy pada ektrak larutan kedua larutan menunjukkan kandungan logam pada ekstrak material Fe-24M n-0.4C lebih tinggi dari ekstrak material Fe-33M n-0.3C. Pada permukaan kedua material juga menunjukkan adanya pembentukan lapisan kalsium fosfor yang dapat memberikan tahanan antarmuka seperti data pada pengujian electrochemical impedance spectroscopy. Secara umum, hasil pengujian biokompatibilitas dengan metode sitotoksisitas pada kedua material menunjukkan nilai viabilitas sel yang lebih baik dari material SS 316 L. Secara keseluruhan, material Fe-24M n-0.4C dan material Fe-33M n-0.3C layak digunakan sebagai kandidat biomaterial.

Fe-M n-C materials has been developed as biodegradable material for coronary stent application in recent decades. The use of Fe-Mn-C biomaterials is able to avoid surgery after heart vessels returned to normal condition after a constriction, which is about 6-12 months. Material testing of Fe-M n-C alloy is performed to proving of feasibility that biomaterials candidate for biodegredable coronary stent. Fe-Mn-C biomaterials produce by mechanical alloying and powder metallurgy. EDAX test result shows that both material composition is Fe-24M n-0.4C and Fe-33Mn-0.3C. Atomic absorption spectroscopy (AAS) test result of solution extract of both materials shows that metal composition at solution extract of Fe-24M n-0.4C material higher than solution extract of Fe-33M n-0.4C material. On the surface of both materials shows that there is a Calsium/Phospor layer. Electrochemical impedance sp ectroscopy (EIS) test result shows that there is interface barrier on the surface, that cause by Calsium/Phospor layer. Generally, biocompatibility test result shows that the cell viability of both materials is higher than SS 316 L material. For all test result shows that both material, Fe-24M n-0.4C and Fe-33Mn-0.3C material can be used for biodegradable material candidate."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T43305
UI - Tesis Membership  Universitas Indonesia Library
cover
Fuad Hakim
"Stent mampu luruh alami sudah menjadi salah satu metode alternatif yang sedang banyak dikembangkan dalam aplikasinya untuk stent koroner. Besi murni dan paduan magnesium merupakan material stent mampu luruh alami yang populer saat ini. Bagaimanapun dalam lingkungan tubuh manusia, laju peluruhan besi murni terlalu lambat dan paduan magnesium terlalu cepat. Paduan Fe-Mn-C diproduksi dengan metode metalurgi serbuk diharapkan menjadi material alternatif dengan laju korosi diantara besi murni dan paduan magnesium. Besi, ferromangan, dan karbon dalam bentuk serbuk manjadi bahan baku paduan ini. Pemaduan mekanik secara sederhana dan variasi komposisi mangan (25% dan 35%) dilakukan pada paduan Fe-Mn-C ini. Proses sinter dilakukan dengan aliran Ar pada temperatur 1100°C.
Karakterisasi terhadap porositas, mikrostruktur, kekerasan, laju korosi, dan biokompatibilitas dilakukan pada sampel hasil sinter. Laju korosi dilakukan pada cairan simulasi tubuh larutan Hank’s dan ringer laktat. Pengujian biokompatibilitas dengan metode sitotoksisitas in vitro dilakukan dengan sel osteoblas MG 63. Hasil uji laju korosi memperlihatkan paduan Fe-Mn-C berada diantara laju korosi besi murni dan paduan magnesium. Pada hasil sitotoksisitas paduan Fe-Mn-C memperlihatkan viabilitas kehidupan sel MG 63 yang tinggi. Pada akhirnya dapat disimpulkan paduan Fe-Mn-C dapat dikembangkan lebih lanjut untuk aplikasi biomaterial mampu luruh alami.

Biodegradable stents have become one of the alternative method which being widely developed for corronary stent application. Pure iron and magnesium alloy are biodegradable stent materials which popular at this time. However, magnesium alloy degrades too fast and pure iron is too slow, in human body environment. Fe-Mn-C alloy produced by powder metallurgy method is expected to be an alternative material with range of degradation rate between pure iron and magnesium alloy. Iron, ferromanganese, and carbon in the form of powder as raw material for this alloy. Simple mechanical alloying and compositional variations of manganese (25% and 35%) performed for Fe-Mn-C alloy. Sinter process is done with Ar inert flow gas at a temperature of 1100°C.
Porosity, microstructure, hardness, degradation rate, and biocompatibility characterization performed on samples of sinter. Degradation rate performed in simulated body fluid of Hank’s and ringer lactate. Biocompatibility with in vitro cytotoxicity methods performed by MG 63 osteoblast cells. The results show the degradation rate of Fe-Mn-C alloy is between pure iron and magnesium alloys. The cytotoxicity test show the high metabolic activities of MG 63 cells. In conclusion, Fe-Mn-C alloy are considered for further development of biodegradable materials.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35613
UI - Tesis Membership  Universitas Indonesia Library
cover
Almira Larasati
"Material biologis mampu luruh alami dikembangkan sebagai kandidat aplikasi perancah pembuluh darah untuk mencegah restenosis. Pada penelitian sebelumnya Fe-Mn-C berhasil dikembangkan dengan fasa austenit dan sifat mekanis yang baik. Namun laju degradasi dari material ini masih rendah untuk aplikasi perancah pembuluh darah. Fe-Mn-C berstruktur busa dikembangkan untuk memperbaiki laju degradasi pada paduan Fe-Mn-C. Kalium karbonat ditambahkan dengan Fe-Mn-C sebagai agen pembentuk busa yang diproduksi dengan metode fabrikasi metalurgi serbuk dengan variabel persen penambahan kalium karbonat (K2CO3) sebesar 5%, 10%, dan 15% dari jumlah total persen berat paduan Fe-Mn-C. Sinter dilakukan pada temperatur 850oC selama 3 jam yang kemudian dilanjutkan dengan sinter dekomposisi pada temperatur 1100oC selama 1,5 jam di atmosfer inert gas Nitrogen (N).
Hasil sinter dilakukan karakterisasi sifat fisik, kimia, mekanik, dan perilaku korosi. Paduan yang dihasilkan memilki kompoisisi Fe-30Mn-8C pada penambahan 5% K2CO3, Fe-27Mn-8,6C pada penambahan 10% K2CO3, dan Fe-27Mn-9,5C pada penambahan 15% K2CO3. Fasa yang terbentuk adalah fasa austenit, fasa mangan oksida, dan fasa grafit. Kekerasan paduan mencapai hingga 271,53 VH pada paduan dengan penambahan 15% K2CO3. Laju korosi semakin meningkat hingga 5,1 mm/tahun seiring dengan porositas yang semakin meningkat karena adanya penambahan persen K2CO3.

Degradable biomaterial has been developed for coronary stent application to prevent restenosis. Fe-Mn-C was developed with fully austenite phase and good mechanical properties. But degradation rate of Fe-Mn-C still relatively low for coronary stent application. In this study, Fe-Mn-C foam has been developed to improve degradation rate on Fe-Mn-C alloy by addition of potassium carbonate as foaming agent to create porosity. Variable used in this experiment was the percentage of potasium carbonate (K2CO3) 5%, 10%, and 15% from the total weight percent of Fe-Mn-C powder. Sintering process was done in inert gas nitrogen (N) at temperature of 850oC for 3 hours and continued at 1100oC for 1,5 to decompose K2CO3. Several characterization was performed on samples such as physical, chemical, and mechanical properties also degradation behaviour of samples.
The results showed that materials formed Fe-30Mn-8C in 5% of K2CO3 addition, Fe-27Mn-8,6C in 10% K2CO3 addition, and Fe-27Mn-9,5C in 15% K2CO3 addition. Phase and microstructure formed austenite, manganese oxide, and graphite phase. Hardness value in each alloying increased up to 271,53 VH in 15% K2CO3 addition. Corrosion rate increased up to 6,05 mmpy along with the increasing porosity in materials as the results of K2CO3 addition.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53864
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudha Pratesa
"Penelitian ini bertujuan untuk mendapatkan kandidat biomaterial yang mampu luruh
berbasis Fe-Mn-C menggunakan proses metalurgi serbuk. Karbon ditambahkan
dalam paduan dengan tujuan untuk meningkatkan sifat mekanik dan korosi sebagai
biomaterial yang mampu luruh. Hasil pencampuran serbuk disinter dalam tungku
kedap udara. Hasil sinter dilakukan karakterisasi sifat mekanik, fisik,
kimia,biokompatibilitas dan perilaku korosi dalam lingkungan albumin dan tanpa
albumin dalam larutan ringer. Pengujian biokompatibilitas invitro dilakukan dengan
metode Methylthiazol Tetrazolium Assay (MTT) untuk mengetahui toksisitas paduan.
Hasil penelitian menunjukkan fasa Austenite terbentuk hingga 99% pada paduan Fe-
25%Mn-1%C dan Fe-35%Mn-1%C. Karakteristik laju korosi meningkat dari
1.01mm/year menjadi 1.53 mm/year seiring dengan peningkatan kadar mangan
dalam paduan dan menurun dalam kondisi mengandung Albumin. Nilai viabilitas sel
pada persentase 50% hingga 72 jam pengamatan menujukan paduan ini potensial
untuk dikembangkan sebagai kandidat biomaterial mampu luruh

This study aims to find the candidate of degradable biomaterial using Fe-Mn-C alloy
formed by powder metallurgy. Carbon added in the alloy to improve the mechanical
properties and corrosion rate of material as a degradable biomaterial. The result from
powder mixing process sintered in a vacuum furnace. Sintering product was
characterized to gain the mechanical, physical, chemical properties,
biocompatibilities and corrosion behavior in the presence of albumin and without
albumin in ringer solution. Biocompatibility In Vitro testing was performed by
Methylthiazol Tetrazolium Assay (MTT) method to determine the toxicity of alloys.
This research shows 99% of austenite phase formed at Fe-25%Mn-1%C and Fe-
35%Mn-1%C alloy. The corrosion rate increase proportionally with Manganese
content in the alloy from 1.01mm/year to 1.53 mm/year and decline in albumin
environment. The decline of percentages viabilities into 50% after 72 hours shows
potential of this alloy to be developed as degradable biomaterial candidate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35068
UI - Tesis Membership  Universitas Indonesia Library
cover
Yudi Prasetyo
"ABSTRAK
Biomaterial mampu luruh berbasis Fe-Mn-C diproduksi melalui proses
metalurgi serbuk besi, mangan dan karbon diteliti dengan paduan Fe-26Mn-1,4C
dan Fe-33Mn-2,6C. Biomaterial mampu luruh berbasis Fe-Mn-C telah diteliti
dengan pengujian struktur mikro dan fasa, kekerasan Rockwell A, serta polarisasi
dan pencelupan pada larutan Hanks? dan ringer laktat. Struktur mikro dan fasa
yang terbentuk adalah austenit-ferit dengan austenit yang dominan terbentuk pada
kedua paduan. Kekerasan sampel paduan Fe-26Mn-1,4C adalah 50 HRA dan
paduan Fe-33Mn-2,6C adalah 58 HRA karena porositas yang terbentuk pada
paduan Fe-26Mn-1,4C lebih banyak (9,8%) dibandingkan dengan paduan Fe-
33Mn-2,6C (4,7%). Laju korosi yang didapatkan lebih tinggi pada paduan Fe-
26Mn-1,4C dibandingkan dengan Fe-33Mn-2,6C pada pengujian polarisasi
dengan larutan Hanks? dan ringer laktat. Laju korosi paduan Fe-26Mn-1,4C dan
paduan Fe-33Mn-2,6C pada pengujian pencelupan mengalami penurunan dengan
waktu pencelupan yang bertambah.

ABSTARCT
Biodegradable material based on Fe-Mn-C produced by powder
metallurgy process of iron, manganese and karbon is observed by Fe-26Mn-1,4C
alloy and Fe-33Mn-2,6C alloy. Biodegradable material based on Fe-Mn-C has
been studied with microstructure and phase examination, Rockwell A hardness
test and polarization and immersion test with Hanks? solution and ringer lactate.
The microstructure and phase formed is austenite-ferrite with austenite as
dominant phase on both alloys. The Rockwell A hardness for Fe-26Mn-1,4C alloy
is 50 HRA and for Fe-33Mn-2,6C alloy is 58 HRA because the porosity is higher
in Fe-26Mn-1,4C alloy (9.8%) than in Fe-33Mn-2,6C alloy (4.7%).The corrosion
rate is higher for Fe-26Mn-1,4C alloy compared to Fe-33Mn-2,6C alloy by using
polarization test with Hanks? solution and ringer lactate. The corrosion rate Fe-
26Mn-1,4C alloy and Fe-33Mn-2,6C alloy by using immersion test with Hanks?
solution is decreased while the time of immersion increased."
Fakultas Teknik Universitas Indonesia, 2012
S42285
UI - Skripsi Open  Universitas Indonesia Library
cover
Fuad Hakim
"Paduan biomaterial baja mangan untuk aplikasi biodegredable stent diproduksi dengan metode metalurgi serbuk diteliti dengan melihat pengaruhnya terhadap post treatment (canai dingin + re-sintering). Pemaduan mekanik metalurgi serbuk dilakukan dengan metode pengadukan sederhana dengan komposisi target (25%Mn dan 35%Mn). Post treatment dengan canai dingin reduksi 50% dan sinter ulang dengan aliran gas Ar pada temperatur 1100oC selama 2 jam. Pengaruh post treatment pada mikrostruktur, sifat mekanik dengan kekerasan Rockwell A, dan sifat korosi dengan celup dan polarisasi telah diteliti dan dibandingkan dengan biomaterial baja mangan sebelum post treatment.
Hasil dari pengujian setelah post treatment, material membentuk fasa austenit, ferrit, dan martensit. Pengaruh post treatment meningkatkan ketahanan korosi dan kekerasan pada baja mangan. Hal ini disebabkan karena persentase porositas berkurang setelah dilakukan post treatment. Laju korosi dilakukan dalam larutan Hank's dan ringer laktat. Pembentukan lapisan pasif Ca/P dan hidroksida terjadi setelah pengujian celup 7 hari dalam larutan Hank's.

Manganese alloy steel as biodegredable biomaterials for stent applications produced by powder metallurgy methods were investigated by looking at the effect on post-treatment (cold rolled + re-sintering). Mechanical alloying powder metallurgy done by a simple mixing method with the target composition of Mn (25% and 35%). Post treatment with a cold rolled of 50% reduction and resnintering with Ar gas stream at a temperature of 1100oC for 2 hours. The effect of post treatment on the microstructure, mechanical properties with a Rockwell hardness, and corrosion properties with immersion and polarization have been studied and compared with the biomaterial manganese steel before post treatment.
The results after the post treatment material formed austenite, ferrite and martensite. The effect of post-treatment increase the corrosion resistance and hardness on manganese steel. This occured because the percentage of porosity is decreased after post-treatment. Corrosion rate performed in Hank's solution and ringer's lactate. Hydroxide and Ca/P Passive layer formation occurred after 7 days immersion tests in Hank's solution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42641
UI - Skripsi Open  Universitas Indonesia Library
cover
Syifa Rahmadiani Ayunindra
"Tulang merupakan organ penting pembentuk kerangka manusia yang mampu meregenerasi dirinya sendiri, tetapi tidak selamanya memiliki kapabilitas regenerasi yang memadai. Intervensi medis dibutuhkan untuk membantu proses penyembuhan tulang pada kasus-kasus cedera berat, salah satunya dengan melakukan rekayasa jaringan tulang menggunakan perancah. Penelitian ini melakukan fabrikasi perancah komposit berbahan dasar PCL dan hidroksiapatit dengan variasi konsentrasi propolis dan modifikasi permukaan menggunakan gelatin. Material alami PCL dan hidroksiapatit digabungkan dengan material sintetis PCL untuk membantu memperlambat proses degradasi di dalam tubuh dan mempertahankan integritas struktural hingga waktu yang dibutuhkan tulang untuk melakukan regenerasi. Penambahan propolis dilakukan untuk membantu proses penyembuhan tulang. Perancah difabrikasi menggunakan metode solvent casting/particulate leaching (SCPL) dan pelapisan (coating) untuk memodifikasi permukaan. Untuk mengetahui biokompatibilitas perancah, dilakukan uji viabilitas sel secara langsung menggunakan hemasitometer dan viabilitas tidak langsung menggunakan uji MTT. Uji viabilitas yang dilakukan menunjukkan laju proliferasi dan viabilitas yang sangat baik terutama untuk perancah yang dilapisi gelatin dibanding perancah yang tidak dilapisi gelatin. Uji viabilitas juga menunjukkan hasil yang baik untuk perancah dengan penambahan konsentrasi propolis 5% dan 7%. Proliferasi tertinggi ada pada perancah PCL/HAp + gelatin dengan kenaikan 993,02%, PCL/HAp/prop5% + gelatin dengan kenaikan 680,85%, dan PCL/HAp/prop7% + gelatin dengan kenaikan 562,32% pada hari terakhir pengujian. Viabilitas tertinggi ada pada perancah PCL/HAp + gelatin dengan nilai 90,41%, PCL/HAp/prop5% + gelatin dengan nilai 89,62%, dan PCL/HAp/prop7% + gelatin dengan nilai 87,37% pada hari terakhir pengujian. Absorbansi tertinggi ada pada perancah PCL/HAp + gelatin dengan nilai 0,731, PCL/HAp/prop5% + gelatin dengan nilai 0,6678, dan PCL/HAp/prop7% + gelatin dengan nilai 0,7135 pada hari terakhir pengujian. Penelitian ini memberikan kesimpulan bahwa perancah dengan kombinasi material PCL, hidroksiapatit, gelatin, dan propolis yang dibuat dengan metode SCPL dan pelapisan dapat menjadi kandidat untuk aplikasi rekayasa jaringan.

Bone is an important organ forming the human skeleton which is capable of regenerating itself, but does not always have adequate regeneration capability. Medical intervention is needed to help the bone healing process in cases of severe injuries, one of which is by engineering bone tissue using a scaffold. This study fabricated composite scaffolds made from PCL and hydroxyapatite with various concentrations of propolis and surface modification using gelatin. The natural ingredients PCL and hydroxyapatite are combined with the synthetic ingredients PCL to help slow down the degradation process in the body and maintain structural integrity until the time it takes for bone to regenerate. The addition of propolis is done to help the bone healing process. Scaffolds were fabricated using solvent casting/particulate leaching (SCPL) and coating methods to modify the surface. To determine the biocompatibility of the scaffolds, direct cell viability tests were performed using a hemacytometer and indirect viability using the MTT test. Viability tests performed showed very good proliferation rates and viability, especially for gelatin-coated scaffolds compared to non-gelatin-coated scaffolds. The viability test also showed good results for the scaffolds with the addition of 5% and 7% propolis concentrations. The highest proliferation was in the PCL/HAp + gelatin scaffold with an increase of 993.02%, PCL/HAp/prop5% + gelatin with an increase of 680.85%, and PCL/HAp/prop7% + gelatin with an increase of 562.32% on the last day of testing. The highest viability was in the PCL/HAp + gelatin scaffold with a value of 90.41%, PCL/HAp/prop5% + gelatin with a value of 89.62%, and PCL/HAp/prop7% + gelatin with a value of 87.37% on the last day of testing. The highest absorbance was found in the PCL/HAp + gelatin scaffold with a value of 0.731, PCL/HAp/prop5% + gelatin with a value of 0.6678, and PCL/HAp/prop7% + gelatin with a value of 0.7135 on the last day of testing. This study concludes that scaffolds with a combination of PCL, hydroxyapatite, gelatin, and propolis made by the SCPL and coating methods can be candidates for tissue engineering applications.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Aini
"Magnesium merupakan pilihan material yang dapat digunakan sebagai material implan tulang dengan karakteristik yang mirip dengan tulang, merupakan elektrolit normal dalam tubuh, memiliki harga yang ekonomis, dan bersifat dapat terdegradasi. Namun magnesium memiliki keterbatasan yaitu memiliki tingkat korosi yang tinggi. Untuk meningkatkan resistensi korosi dan memperbaiki sifat mekanis dikembangkan berbagai metode, salah satunya adalah proses Equal Channel Angular Pressing (ECAP). Persyaratan utama sebagai material implan tulang adalah bersifat biokompatibel. Tujuan: Mengevaluasi karakteristik biokompatibilitas magnesium yang telah melalui proses ECAP secara in vitro. Metode: Karakteristik biokompatibilitas magnesium ECAP dievaluasi melalui uji toksisitas terhadap sel osteoblas menggunakan MTT Assay, analisis logam berat yang terkandung di dalamnya dengan perhitungan paparan akumulatif logam berat berdasarkan provisional tolerable daily intake (PTDI),
serta uji sterilitas setelah melalui proses sterilisasi menggunakan autoclave. Hasil:
Tingkat proliferasi sel osteoblas dengan pemberian ekstrak magnesium ECAP lebih tinggi dibandingkan kelompok kontrol. Logam berat yang dihitung paparan akumulatifnya adalah aluminium, arsen, timbal, kadmium, dan merkuri. Paparan akumulatif logam berat 100% pada penggunaan magnesium ECAP 11,8297 g. Pada uji steriitas tidak ditemukan adanya pertumbuhan bakteri pada tiap tahapan pengujian. Kesimpulan: Magnesium ECAP bersifat tidak toksik, dan dapat merangsang pertumbuhan sel osteoblas dengan batas penggunaan maksimum
11,8297 g, serta steril.

Magnesium is the choice of material for bone implant with characteristic similiar to the bone, one of the normal elctrolytes in the body, have economical price, and degradable. However magnesium has limitation which is
high corosity rate. To improve corosion resistance and mechanical properties, many methods proposed, one of them is the Equal Channel Angular Pressing (ECAP). The important requirement for bone implant material is biocompatible. Purpose: To evaluate the biocompatibility of magnesium through Equal Channel Angular Pressing (ECAP) process in vitro. Method: Biocompatibility characteristics of magnesium ECAP was evaluated by toxicity test using MTT assay, analysis of heavy metals in magnesium ECAP by accumulative heavy metal exposure based on provisional tolerable daily intake (PTDI), also sterility test after sterilized using autoclave. Results: Cell proliferation rate in magnesium extract treatment group was higher than the control group. The heavy metals count for accumulative exposure were aluminium, arsenic, lead, cadmium, and mercury. Hundred percent of accumulative exposure was on the use of 11.8297 g magnesium ECAP. In sterility test there was no evidence of bacterial growth in every part of the test. Conclusion: Magnesium ECAP is not toxic and able to induce proliferation of osteoblast with maximum dose is 11.8297 g, and also proved sterile after sterilization using autoclave.
"
Depok: Fakultas Kedokteran Gigi Universitas Indonesia, 2012
T33058
UI - Tesis Membership  Universitas Indonesia Library
cover
Rhidiyan Waroko
"Material Fe-Mn-C telah banyak dikembangkan sebagai material mampu luruh untuk aplikasi penyangga pembuluh dalam satu dekade belakangan ini. Penggunaan biomaterial Fe-Mn-C mampu menghindari tindakan pembedahan kembali setelah pembuluh jantung kembali normal setelah mengalami penyempitan, yaitu sekitar 6-12 bulan. Pengujian material Fe-Mn-C dilakukan untuk mencari kelayakan kandidat biomaterial ini digunakan sebagai penyangga pembuluh yang mampu luruh. Komposisi Mn digunakan sebagai variabel pengujian, yaitu Fe-25Mn-0.8C dan Fe-35Mn-0.8C. Material tersebut dibuat dengan cara pemaduan mekanik kemudian metalurgi serbuk. Karakterisasi serbuk hasil pemaduan mekanik menunjukkan terjadinya reduksi ukuran partikel dan membentuk paduan serbuk yang lebih merata.
Hasil pengujian kekerasan dengan Rockwell A menunjukkan bahwa kekerasan material Fe-24Mn-0.42C adalah 43 HRA dan Fe-33Mn-0.27C adalah 49 HRA, nilai kekerasan tersebut memiliki nilai kekerasan yang lebih tinggi dari material SS 316L. Hasil pengujian polarisasi menunjukkan laju korosi untuk Fe-24Mn-0.42C adalah 0.84 mmpy dan Fe-35Mn-0.8C 0.34 mmpy. Nilai tersebut lebih tinggi dari besi murni tetapi lebih rendah dari paduan magnesium. Hasil uji mikrostruktur dengan uji metalografi dan uji XRD menunjukkan fasa austenit. Berdasarkan pengujian ini, menunjukkan bahwa pengaruh komposisi Mn untuk meningkatkan kekerasan material. Pada pengujian ini juga menunjukkan proses pemaduan mekanik mampu meningkatkan kekerasan material dan menurunkan laju korosi material.

Fe-Mn-C materials has been developed as biodegredable material for coronary stent application in recent decades. The use of Fe-Mn-C biomaterials is able to avoid surgery after heart vessels returned to normal condition after a constriction, which is about 6-12 months. Material testing of Fe-Mn-C alloy is performed to proving of feasibility that biomaterials candidate for biodegredable coronary stent. Mn composition is used for the test variable, namely Fe-25Mn-0.8C and Fe-35Mn-0.8C. That material is from production of mechanical alloying and then powder metallurgy. Powder as-mechanical alloying characterization shows particle reduction size and make a alloy powder is more evenly.
Result of hardness test with Rockwell A showed the hardness of Fe-24Mn-0.42C is 43 HRA and hardness of Fe-33Mn-0.27C is 49 HRA. That hardness value is bigger than hardness value of SS 316 L material. The result of polarization test shows corrosion rate of Fe-24Mn-0.42C is 0.84 mmpy and 0.34 mmpy for Fe-33Mn-0.27C. That corrosion rate is higher than pure iron and lower than magnesium alloy. Microstructure test with metallographic test and XRD test shows austenitic phase. Based on this research shows that effect of Mn composition is for increasing hardness value. On this research is shows that mechanical alloying can increasing hardness of material and decreasing corrosion rate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S53410
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>