Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 85440 dokumen yang sesuai dengan query
cover
Pradipta Mahatidana
"Pada skripsi ini dilakukan rancang bangun sistem embedded simulator surya yang dapat menguji kinerja sel surya berupa tegangan rangkaian terbuka (Voc), arus hubung singkat (Isc), fill factor (FF), karakteristik kurva I-V, daya keluaran (Pout) dan efisiensi. Sistem ini memiliki modul pengukur tegangan, arus, intensitas cahaya, dan temperatur yang dibangun dengan memanfaatkan komponen yang ekonomis. Sistem ini memiliki resolusi pengukuran Voc, Isc, intensitas cahaya, dan temperatur berturut-turut sebesar 0,244 mV, 1,21 µA, 1 lux, dan 0,1 °C. Sistem ini dilengkapi dengan perangkat lunak untuk pengendali simulator surya dan sebagai datalogger.

This thesis presents a design and construction of the embedded system of solar simulator to test the performance of solar cell such as open circuit voltage (Voc), short-circuit current (Isc), fill factor (FF), I-V curve characteristic, output power (Pout) and efficiency. This system has a measurement module of voltage, current, light intensity, and temperature built with cost effective materials. This system has a measurement resolution of 0,244 mV, 1,21 µA, 1 lux, and 0,1 °C for Voc, Isc, light intensity, and temperature, respectively. This embedded system has an included software for controlling solar simulator and datalogging."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S57492
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Zaki Auliya HM
"Simulator surya merupakan sebuah perangkat yang mensimulasikan cahaya matahari menggunakan suatu sumber cahaya buatan yang berfungsi untuk menganalisa karakteristik dan performa sel surya. Simulator surya dioperasikan di dalam ruangan tanpa harus dipengaruhi oleh faktor alam seperti awan, hujan, dan sebagainya. Simulator surya memiliki 3 blok komponen utama yaitu sumber cahaya, tracking receiver, dan rangkaian karakteristik.
Pada skripsi ini, dilakukan rancang bangun tracking receiver yang dapat mensimulasikan gerak matahari selama 12 jam, yaitu dari pagi hingga sore. Tracking receiver ini terdiri dari motor stepper VEXTA PXB44H sebagai penggerak sel surya yang dikendalikan geraknya oleh mikrokontroller ATmega8535 serta menggunakan Light-Depending Resistor (LDR). Sensor LDR ini berfungsi untuk mengukur iluminasi cahaya yang masuk pada setiap derajat perputaran motor stepper.
Dari hasil pengujian ditunjukkan bahwa resolusi motor stepper, yaitu sebesar 1.8o/step, tidak dipengaruhi oleh posisi motor stepper, baik vertikal maupun horizontal, dan oleh kondisi motor stepper, baik dengan beban maupun tanpa beban.

Solar simulator is a device that simulates solar light by using an artificial light, which is used to analyze solar cell characteristic and performance. Solar simulator is operated indoor, without be influenced by any factor of nature like cloud, rain, and others. Solar simulator has 3 main component block, there are light source, tracking receiver, characteristic circuit.
In this final project, is designed a tracking receiver that simulates motion of sun along 12 hours, from sunrise to sunset. The tracking receiver consist of stepper motor VEXTA PXB44H as an actuator of solar cell and based-on microcontroller ATmega8535 and also using Light Depending Resistor (LDR). The LDR is used to measure incoming light illuminance every degree of stepper motor rotation.
From measurements, is shown that resolution of stepper motor, 1.8o/step, is not influenced by any position of stepper motor, vertikal or horizaontal, and by any condition of stepper motor, with load or no load.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45971
UI - Skripsi Membership  Universitas Indonesia Library
cover
Malvin Edward
"Sebuah survei yang dilakukan oleh National Highway Traffic Safety Administration NHTSA memperkirakan 5.895.000 kasus kecelakaan yang terkait dengan permasalahan kantuk maupun tidur saat berkendara di jalan jalan U.S.A pada tahun 2005-2009. Dari jumlah tersebut, 83.000 kasus setiap tahunnya merupakan kecelakaan fatal, bahkan pada tahun 2014, 846 orang meningga pada kecelakaan berkendara yang berkaitan dengan kantuk. Sistem pendeteksi kantuk dikembangkan untuk mengatasi hal ini. Sistem pendeteksi kantuk dibangun menggunakan pustaka OpenCV, dengan kombinasi dari beberapa algoritma, yaitu Haar Cascade Classifier, fungsi Blur, fungsi Canny dan fungsi Kontur. Algoritma Haar Cascade Classifier digunakan untuk mendeteksi area wajah dan area mata pada pengemudi. Sedangkan kombinasi antara fungsi color thresholding dan fungsi kontur digunakan untuk mendeteksi objek mata dan menganalisis sedang terbuka atau tertutupnya mata.
Kinerja sistem deteksi kantuk diuji melalui empat variabel, yaitu mesin pengolah yang berbeda, nilai ambang batas, kondisi pencahayaan dan karakteristik mata yang berbeda. Berdasarkan hasil pengujian, nilai ambang batas Vlo dan VHi terbaik adalah Vlo = 10 atau 20 dengan perbedaan VHI 10-20. Selain itu, ditemukan bahwa setiap kecepatan setiap proses bergantung pada pengolahan mesh dimana semakin baik pengolahannya. Mesin semakin cepat waktu prosesnya. Perbedaan dalam kondisi pencahayaan pagi, siang, siang dan malam berpengaruh terhadap kinerja sistem deteksi kantuk dengan tingkat kesalahan 20 , yaitu saat kondisi malam hari. Karakteristik mata berkacamata dan tanpa kacamata berpengaruh pada kinerja sistem deteksi kantuk dengan deteksi 100 tingkat keberhasilan, yaitu bila kondisi mata tertutup pada orang dengan kacamata.

survey conducted by the National Highway Traffic Safety Administration NHTSA estimates 5,895,000 cases of accidents related to sleepiness and sleep problems while driving on the U.S.A roadway in 2005 2009. Of these, 83,000 cases each year are fatal accidents, even by 2014, 846 people die in a dormant driving accident. The drowsiness detection system was developed to overcome this. The sleepiness detection system is built using the OpenCV library, with a combination of several algorithms, the Haar Cascade Classifier, the Blur function, the Canny function and the Contour function. Haar Cascade Classifier algorithm is used to detect the facial area and eye area of the driver. While the combination of color thresholding function and contour function is used to detect the eye object and analyze the open or closed eyes.
The performance of the drowsiness detection system is tested through four variables, ie different processing machines, threshold values, lighting conditions and different eye characteristics. Based on the test results, the best Vlo and VHi threshold values are Vlo 10 or 20 with a VHI difference of 10 20. In addition, it was found that every speed of each process depends on mesh processing where the better the processing. The faster the machine the process time. Differences in lighting conditions morning, noon, day and night affect the performance of the drowsiness detection system with a 20 error rate, ie during nighttime conditions. Eye characteristics bespectacled and without glasses affect the performance of the drowsiness detection system with a 100 detection rate of success, ie when eye conditions are closed in people with glasses.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68630
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elsa Alfiansyah
"Dalam suatu proses pengukuran daya listrik fotovoltaik penting dilakukan pemantauan secara teratur agar semua kegiatan dapat terkontrol dengan baik. Suatu cara yang efektif dan efisien adalah dengan menggunakan sistem monitoring yang bersifat realtime, dimana semua proses pengukuran tegangan dan arus yang sedang berlangsung dapat dipantau secara seksama pada saat itu juga.
Pada tugas akhir ini dibahas suatu sistem monitoring fotovoltaik dengan memanfaatkan mikrokontroler dan komputer. Mikrokontroler berfungsi sebagai kontrol aksi monitoring fotovoltaik sekaligus menghubungkannya dengan komputer. Komputer berfungsi sebagai tempat memproses data-data yang dikirim oleh mikrokontroler dan menampilkannya pada monitor dengan menggunakan software fotovoltaik.
Perangkat lunak dibuat dalam bahasa basic untuk mikrokontroller, Borland Delphi 6.0 untuk proses data dan tampilan, Microsoft Access untuk manajemen database. Perangkat lunak yang dibuat mampu melakukan monitoring dari modul fotovoltaik untuk mengumpulkan data: tegangan (V) serta arus (I) yang dihasilkan oleh modul fotovoltaik. Dari grafik yang didapat, diketahui bahwa tegangan maksimum yang diperoleh sekitar 202,79 V, dan arus maksimum berharga 0,894 A. Dari hasil pengujian yang dilakukan sistem dapat bekerja dengan baik dan berjalan sesuai dengan yang diharapkan.

It is important to do monitoring in a measurement of photovoltaic electric energy process, so every activity will be well controlled. One way that effective and efficient is by using the realtime monitoring system, where every activity measurement of voltage and current will be watch accurately in the same time, in the real time.
This final project will discuss about using microcontroller and computer in photovoltaic monitoring system. The microcontroller will control the photovoltaic and make connection to the computer while the computer will handle data process and output view with using photovoltaic software.
Software will write in basic language for microcontroller, Borland Delphi 6.0 for data process and output view, Microsoft Access for data base management.The software be able to monitoring from photovoltaic modul and collect voltage and current that are produced by photovoltaic modul. From the graphic we can know that that maximum voltage there about 202,79 V, and maximum current have value 0,894 A. From the test result, the system works properly and successfully.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51141
UI - Skripsi Open  Universitas Indonesia Library
cover
Kusnandar
"Sistem penurun tegangan (step down converter) pada solar sel adalah suatu sistem penurun tegangan dengan memanfaatkan solar sel sebagai sumbernya yang kemudian diswitching dengan menggunakan PWM (Pulse Width Modulation) yang dihasilkan mikrokontroller untuk mendapatkan tegangan Ac kotak pada inverter bridge mosfet. Kemudian tegangan Ac tersebut, akan diturunkan dengan menggunakan trafo step down sesuai dengan tegangan yang diinginkan. Setelah melalui rangkaian penyearah dan filter, tegangan tersebut dapat diatur menggunakan rangkaian adjustable tegangan. Sistem penurun tegangan ini untuk ke depannya dapat difungsikan untuk mengisi baterai. Maka tegangannya dapat diatur dari 6V sampai 24 V disesuaikan dengan kondisi baterai yang akan diisi.

Step down converter system on solar cell is a step down voltage system using solar cell of source then switched with pulse width modulation (PWM) is producted microcontroller to get AC voltage in inverter bridge mosfet. Then this AC voltage will step down using step down transformer with voltage if we want. After across rectifier and filter circuit, this voltage can tuned using voltage adjustable circuit. This step down converter for future can functioned to charging battery. Then this voltage can tuned from 6V to 24 V and other with battery condition will charged."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51419
UI - Skripsi Open  Universitas Indonesia Library
cover
Universitas Indonesia, 2001
S28718
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Arifandi
"Kebutuhan daripada elemen penyimpan baterai dalam sistem arus searah menjadi semakin penting dengan kebutuhan akan manusia akan energy yang efisien dan juga terbarukan. Kemampuan dari energi listrik untuk dapat disimpan memungkinkan pemanfaatan energi listrik dalam menyumbang manfaat untuk masyarakat dan juga memungkinkan untuk meningkatkan rasio elektrifikasi terutama untuk daerah terpencil.
Dalam mengoperasikan baterai, diperlukan pertimbangan terutama dalam parameter yang terukur yaitu tegangan dan arus dari operasi baterai. Melalui media mikrokontroller jenis Arduino, maka monitoring melalui sensor analog untuk mengukur masing ndash; masing parameter yang terkait memungkinkan pemantauan dalam pengoperasian daripada baterai.
Berdasarkan hasil percobaan yang dibangun, sistem rancang bangun memberikan simpangan sebesar untuk masing ndash; masing tegangan dan arus adalah 0,122 V dan 0,005819 A. Hasil yang diperoleh menunjukkan bahwa simpangan untuk parameter tegangan masih termasuk kedalam batas yang diperbolehkan, namun untuk parameter arus masih memerlukan penelitian lebih lanjut.

The requirement of energy storage element increases in Direct Current electrical systems as the need for an efficient and renewable source of energy. The capability of electrical energy to be stored brings the possibility to contribute the needs of society for power and to increase the ratio of electrification especially in remote areas.
On operating a battery, there are several parameters that are needed to be carefully considered which are its voltage and current. Through a microcontroller such as an Arduino, the process of monitoring a battery in its operation becomes possible through analog sensors to measure each parameters.
Through the experimentation that is conducted, the system gives the highest deviation for both its voltage and current as much as 0.122 V and 0.005819 A. the given margin of error for the voltage parameter is still within the given limit for allowed deviation, but the current parameter still needs further research."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67679
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail
"Dengan menghitung pusat massa dari warna yang spesifik, dan pengontrol servo untuk menggerakkan kamera, telah dibuat suatu sistem pengikut warna dengan parameter warna yang dapat diubah-ubah untuk mengikuti warna RGB. Sistem dibuat dengan menggunakan mikrokontroler 32-bit LPC2106 yang mempunyai kapasitas RAM 64K byte dan ROM sebesar 128K byte dengan kecepatan 60MHz. Sensor kamera CMOS dengan resolusi 352 x 288 digunakan sebagai sumber masukan ke memori buffer FIFO dengan kapasitas 1MB sebelum akhirnya diproses pada mikrokontroler. Sebagai masukan parameter warna dan antar muka pengguna, sistem didukung oleh mikrokontroler Atmega16 yang memiliki kapasitas RAM 16K byte dan ROM 512 byte yang bekerja pada frekuensi 16 MHz. Kedua mikrokontroler berkomunikasi secara serial dalam menentukan proses tracking. Untuk menangkap citra dan data tracking, aplikasi pada komputer dibuat dengan LabVIEW. Jangkauan tracking dari sistem yang dibuat adalah 20,9° untuk pan dan 15,4° untuk tilt. Hasil menunjukkan bahwa tingkat keberhasilan mencapai 80% dengan respon gerak pada jangkauan maksimum kurang dari 1 detik dengan kecepatan gerak maksimum adalah 260° perdetik. Laju keluaran data yang dihasilkan adalah 14 data perdetik.

By calculating center of mass of spesific color, and servo controller to move camera, a color tracking system has been made with changeable color parameter to track color within RGB range. This system was build using 32-bit microcontroller LPC2106 which has 64K byte RAM and 128K byte ROM at 60MHz. CMOS image sensor with 352 x 288 resolution used as input of FIFO memory buffer which has 1 MB of capacity before they were processed in. As input parameter and user interface, system was supported by other microcontroller Atmega16 with 16K byte RAM and 512 byte ROM at 16MHz of frequency operation. These both microcontroller communicating serially in order to decide a tracking process. To grab an image and tracked data, computer application was made with LabVIEW. Frame tracking range from the system is about 20,9° for pan tracking and 15,4° for tilt tracking. Result shows success is about 80% with moving response for maximum range less than 1 second and maximum moving velocity is 260° persecond Data rate produced by system is 14 data persecond."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S29369
UI - Skripsi Open  Universitas Indonesia Library
cover
Mahansa Putra
"Material multiferroic merupakan material yang berkembang pesat berdasarkan peningkatan jumlah publikasi per tahun. Material multiferroic sendiri adalah material yang memiliki dua atau lebih sifat ferroic; feroelektrik, feromagnetik, dan feroelastis. Dalam penelitian ini, penulis ingin mengetahui apakah bahan magneto-listrik multiferroik atau bahan yang memiliki sifat feroelektrik dan feromagnetik dapat dipengaruhi oleh medan magnet. Dengan merancang suatu alat yang dapat mengukur perubahan nilai permitivitas relatif dengan frekuensi ketika diberikan medan magnet, penulis dapat mengetahui apakah material yang diuji merupakan material multiferroic magneto-electric. Hasil pengukuran sampel piezoelektrik diperoleh nilai permitivitas relatif dari 18047-35254 pada frekuensi 100Hz-1kHz dan 9524-18047 pada frekuensi 1kHz-10kHz. Hasil yang diperoleh tetap sama bila dipengaruhi oleh medan magnet, karena piezoelektrik merupakan bahan feroelektrik.

Multiferroic material is a material that is growing rapidly based on the increasing number of publications per year. Multiferroic material itself is a material that has two or more ferroic properties; ferroelectric, ferromagnetic, and ferroelastic. In this research, the writer wants to know whether multiferroic magneto-electric materials or materials that have ferroelectric and ferromagnetic properties can be affected by magnetic fields. By designing a tool that can measure changes in the relative permittivity value with frequency when a magnetic field is applied, the authors can find out whether the material being tested is a magneto-electric multiferroic material. The measurement results of piezoelectric samples obtained relative permittivity values ​​from 18047-35254 at a frequency of 100Hz-1kHz and 9524-18047 at a frequency of 1kHz-10kHz. The results obtained remain the same when affected by a magnetic field, because piezoelectric is a ferroelectric material."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldo Rahmansyah Sosodoro
"Sel Surya dewasa ini merupakan salah satu Sumber Daya Alternatif yang amat dilirik. Selain itu, ia memiliki perkembangan pesat dengan variasi yang jamak: Monocrystallyne, Polycrystallyne, DSSC dan lain sebagainya dimana masing-masing memiliki jenis Sel Surya tersebut memiliki kualitas serta harga yang bervariasi. Imbas dari hal itu ialah banyaknya Sel Surya yang terdapat di pasaran. Namun banyaknya Sel Surya di pasaran tersebut tidak diimbangi dimana tidak ditemui satu pun perangkat yang mampu mengkarakterisasi Sel Surya-Sel Surya tersebut.
Pada penelitian ini dirancang dan dibangun sebuah Perangkat berbasis Mikrokontroler ATmega16 yang telah mampu untuk melakukan karakterisasi dari Sel Surya yang terdapat di pasaran. Dari karakterisasi Sel Surya, dapat diketahui parameter-parameter dari sel surya mulai dari Tegangan Open Circuit, Arus Short circuit, Fill Factor, Maximum Power Point dan lain-lain. Dari data yang didapat dan dibandingkan dengan datasheet produk, ditemukan bahwa ada perbedaan antara data dari datasheet dengan data dari hasil pengujian. Dilakukan pula percobaan-percobaan dengan variasi Iluminasi yang membuktikan bahwa Iluminasi yang masuk ke perangkat Sel surya akan mempengaruhi besarnya nilai daya yang keluar dari Sel Surya tersebut.

Solar Cell nowadays is one of main Alternative power sources. Solar Cell also already has advanced development with many warations in its technology, such as: Monocrystallyne, Polycrstallyne, DSSC and othe. Each type of technology has it own quality and price. It affects the availability of many types of Solar Cells in the market. But the availability of Solar Cells in the market is not compensated by any Instrument that can Characterized every Solar Cells.
In this research, Designed and Developped a Solar Cell Efficiency Characterizing Instrument Based on ATmega16 Microcontroller that can caharacterized Solar Cell that exist in the market. From the Solar Cell's characterization, can be known the parameters of Solar Cell such as Open circuit Voltage, Short Circuit Current, Fill Factor, Maximum Power point, and many more. In this research, founded differences between the data from datasheet of the products and the data from the testing with the Instrument. In this research also conducted experiments with various Light brightness that verifiy that the light brightness that go into the Solar Cell will effecting the quantity of Power that came out from the Solar Cell.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42889
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>