Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 98044 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 2004
TA1213
UI - Tugas Akhir  Universitas Indonesia Library
cover
Universitas Indonesia, 2006
TA1530
UI - Tugas Akhir  Universitas Indonesia Library
cover
Universitas Indonesia, 2004
TA1254
UI - Tugas Akhir  Universitas Indonesia Library
cover
Universitas Indonesia, 2009
TA1454
UI - Tugas Akhir  Universitas Indonesia Library
cover
Universitas Indonesia, 2009
TA1349
UI - Tugas Akhir  Universitas Indonesia Library
cover
Andri Wistianto
"Pembuatan baja cor tahan karat (cast stainless steel) membutuhkan salah satu unsur bahan baku yang sangat penting yaitu nikel murni. Kebutuhan nikel murni ini cukup tinggi sedangkan harganya paling tinggi diantara harga bahan baku lainnya dan saat ini masih diimpor. Telah dilakukan penelitian untuk memanfaatkan ferronikel dengan menambahkan unsur khrom yang hasilnya disebut ferronikelkhrom (Fe-Ni-Cr) lokal. Bahan tersebut juga telah diteliti sebagai bahan baku pembuatan material baja cor tahan karat. Meskipun cukup berhasil namun hasilnya kurang begitu memuaskan karena masih terdapat impurities pada hasil pemaduan.
Penelitian ini bertujuan untuk memanfaatkan ferronikel sebagai bahan baku baja cor tahan karat disamping untuk mengetahui pengaruh prosentase penggunaan ferronikel (Fe-Ni) terhadap sifat mekanis, struktur mikro dan ketahanan korosi baja tahan karat austenitik SS 316 (CF8M). Diharapkan bahan baku lokal ini dapat menggantikan nikel impor sebagai bahan baku baja cor tahan karat.
Pada penelitian ini Fe-Ni lokal ditambahkan pada bahan baku coran lain dengan penambahan prosentase sebanyak 0%, 23 %, 45 % dan 70 %. Dari masing-masing prosentase tersebut dilakukan proses pengecoran (foundry), dibuat sampel untuk uji komposisi, uji tarik, uji kekerasan, uji ketangguhan, analisa struktur mikro baik dengan mikroskop optik maupun SEM (Scanning Electron Microscope) dan pengujian korosi.
Hasil penelitian menunjukan bahwa semua sampel yang dibuat memiliki komposisi kimia sesuai standar SS 316 (CF8M) sehingga bahan baku Fe-Ni dapat dimanfaatkan sebagai bahan baku baja cor tahan karat SS 316 meskipun masih ditemukan adanya impurities pada setiap prosentase penambahan Fe-Ni. Pada semua prosentase Fe-Ni kekuatan tarik dan kekerasan yang didapat masih dibawah SS 316 standar namun lebih ulet darpada SS 316 standar."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
T20180
UI - Tesis Membership  Universitas Indonesia Library
cover
Sarah Alya Firnadya
" ABSTRAK
Baterai lithium ion merupakan baterai yang sedang dikembangkan untuk menjadi tempat penyimpanan energi khususnya untuk mobil listrik. Anoda Li4Ti5O12 LTO atau lithium titanat merupakan anoda yang cukup menjanjikan untuk aplikasi ini karena sifat zero-strain yang dimiliki sehingga dapat tahan pada high rate. Namun, kapasitas yang dimiliki LTO masih tergolong rendah. Oleh karena itu LTO perlu dikombinasikan dengan bahan lain yang memiliki kapasitas tinggi seperti Si. Silikon memiliki kapasitas yang sangat tinggi yaitu 4200mAh/g namun volume ekpansinya pun tinggi. Ukuran nano juga dapat membantu meningkatkan kapasitas. Oleh karena itu komposit LTO/nano Si dibuat untuk mendapat anoda dengan kapasitas yang tinggi dan bersifat stabil. Nano Si yang ditambahkan dengan variasi 1 , 5 , dan 10 . Komposit LTO/nano Si dikarakterisasi dengan XRD, SEM-EDX, dan TEM-EDX. Lalu, untuk mengetahui performa baterai, pengujian yang dilakukan adalah EIS, CV, dan CD. Hasil yang didapat adalah Si meningkatkan konduktivitas, namun tidak signifikan. Penambahan Si menghasilkan kapasitas baterai yang lebih besar yaitu 262,54 mAh/g pada LTO-10 Si. Stabilitas dari komposit LTO/nanoSi baik, dibuktikan dengan efisiensi coulomb pada high rate yang mendekati 100 .
ABSTRACT The lithium ion battery is a battery that is being developed to become a repository of energy, particularly for electric cars. Li4Ti5O12 LTO anode or lithium titanate anodes are quite promising for this application because of its zero strain properties so it can withstand the high rate. However, the capacity of LTO is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200mAh g but, it has a high volume of the expansion. Nano size can also help increase the capacity. Therefore composite of LTO nano Si is made to create an anode with a high capacity and also stable. Nano Si is added with a variation of 1 , 5 and 10 . LTO nano Si composite is characterized using XRD, SEM EDX, and TEM EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh g in the LTO 10 Si. Stability of composite LTO nanoSi is good, evidenced by the coulomb efficiency at the high rate of close to 100 ."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66640
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zidni Eilma Laallani Chairunnisa
"ABSTRAK
Salah satu bahan aktif paling populer yang digunakan dalam baterai lithium ion adalah Lithium Titanate (Li4Ti5O12), karena menunjukkan sifat regangan nol serta ketahanan tinggi terhadap perubahan volume. Salah satu kelemahannya adalah kapasitasnya yang rendah dan konduktivitas listrik yang rendah. Dalam percobaan ini, Lithium Titanate didoping dengan bahan aktif lain dengan kapasitas teoritis yang lebih tinggi dalam bentuk partikel nano Seng Oksida (ZnO). Perbedaan konsentrasi Zinc Oxide yang digunakan dalam percobaan ini adalah 5%, 8% dan 11% Zinc Oxide. Bahan aktif kemudian dibuat menjadi anoda baterai lithium ion setengah sel. Anoda baterai lithium ion setengah sel kemudian diuji menggunakan Uji Voltametri Siklus, Spektroskopi Impedansi Listrik (EIS) dan Uji Pengisian Daya Muatan (CD). Hasil akhir menunjukkan bahwa dengan penambahan doping Zinc Oxide menggunakan metode solid state dan sintering yang mampu meningkatkan kapasitas KPP dan ketahanan terhadap kehilangan kapasitas, meskipun itu meningkatkan resistansi dalam hasil tes EIS.

ABSTRACT
One of the most popular active materials being used in a lithium ion battery is Lithium Titanate (Li4Ti5O12), as it exhibits zero strain properties as well as high resistance to volume change. One of its disadvantages is its low capacity and low electrical conductivity. In this experiment, Lithium Titanate is doped with another active material with higher theoretical capacity in the form of Zinc Oxide (ZnO) nanoparticles. The different concentrations of Zinc Oxide used in this experiment are 5%, 8% and 11% Zinc Oxide. The active materials are then fabricated into a half-cell lithium ion battery anode. The half-cell lithium ion battery anodes are then tested using the Cycle Voltammetry Test, Electrical Impedance Spectroscopy (EIS) and Charge Discharge (CD) Test. The final results show that with the addition of Zinc Oxide doping using a solid state and sintering method that it is able to enhance the LTO capacity and resistance to capacity loss, although it does increase its resistance in the EIS test results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2003
S41320
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Reza Firdaus
"Baterai ion litium merupakan salah satu jenis baterai sekunder yang memiliki keunggulan dibandingkan jenis baterai sekunder lainnya yaitu densitas energi tinggi, ringan, tidak memiliki memory effect, tahan lama, dapat diisi ulang, dan ramah lingkungan. Anoda LTO merupakan anoda yang menjanjikan untuk diaplikasikan pada komponen baterai ion litium karena cycle performance yang baik dan hanya sedikit terjadi perubahan struktural selama proses interkalasi dan deinterkalasi ion litium. Namun, dibalik keunggulannya terdapat kekurangan dari bahan anoda LTO ini yaitu konduktivitas elektron yang rendah, koefisien difusi yang buruk, dan kapasitas baterai yang cukup rendah. Pada penelitian ini cara untuk mengatasi kelemahan tersebut dan meningkatkan kinerja elektrokimia baterai adalah doping struktural dengan co-doping MgFe dan memperkecil ukuran butir dengan penambahan cerasperse (Ammonium Polycarbonate). Proses sintesis LTO co-doping MgFe menggunakan metode solid state dengan bantuan sonikasi. Variasi penambahan cerasperse yang digunakan adalah 0%, 2,5%, 5%, dan 7,5%. Hasil pengujian SEM EDS ditemukan bahwa penambahan cerasperse memiliki kecenderungan untuk memperkecil ukuran butir dan mengurangi terbentuknya aglomersi. Sampel LTO MgFe cerasperse 7,5% menunjukkan morfologi dengan aglomerasi paling sedikit dan distribusi ukuran partikel paling kecil yaitu 0,212 mm. Hasil XRD telah ditemukan adanya senyawa yang mengindikasikan adanya cerasperse pada sampel. Berdasarkan hasil pengujian EIS, CV, dan CD menunjukkan bahwa penambahan ceraspesrse 7,5% pada LTO MgFe dapat menghasilkan konduktivitas paling tinggi dan kapasitas spesifik paling tinggi sebesar 113,23 mAh/g.

Ion lithium battery is a secondary battery type that has several advantages compared to other secondary batteries such as high energy density, lightweight, no memory effect, high durability, can be rechargeable and environmentally friendly. Due to its excellent cycle performance and slightly structural changes that occurred during the lithium-ion intercalation and deintercalation process, anode LTO is a promising anode that can be applicated to the ion lithium battery components. However, there are some disadvantages that LTO anode possessed such as low electron conductivity, poor diffusion coefficient, and low battery capacity. In this study, those disadvantages can be overcome by implementing the structural doping with MgFe co-doping and reducing grain size with the addition of cerasperse (Ammonium Polycarbonate) which can also improve the electrochemical performance of the battery. The MgFe co-doping LTO synthesis process uses the solid-state method with sonication by adding the cerasperse of 0%, 2.5%, 5%, dan 7.5% respectively. The results of the EDS SEM test found that the addition of cerasperse has a tendency to reduce grain size and reduce the formation of agglomerations. The sample of LTO MgFe cerasperse 7.5% showed the morphology with the least agglomeration and the smallest particle size distribution of 0.212 mm. XRD results have found the presence of compounds that indicate the presence of cerasperse in the sample. Based on the results of the EIS, CV, and CD tests, it was shown that the addition of 7.5% cerasperse to LTO MgFe could produce the highest conductivity and the highest specific capacity of 113.23 mAh/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>