Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 71053 dokumen yang sesuai dengan query
cover
Siahaan, Gidson Andriano
"Lapangan "X" merupakan salah satu lapangan panas bumi di Indonesia yang terbentuk pada lingkungan magma basaltik. Fluida panas satu fasa bertemperatur tinggi terbentuk pada zona resevoir yang memiliki permeabilitas tinggi sebagai fasa cair. Fluida ini dapat tersimpan dengan baik di reservoir dikarenakan ditutupi lapisan penudung berupa batuan ubahan yang bersifat inpermeable. Zona upflow terbentuk di dalam kaldera komplek Telong tepatnya di puncak Gunung Telong seperti batuan alterasi. Sedangkan zona outflow terbentuk di daerah sekitar manifestasi air panas Mapane, Masaingi dan Buayana bertipe klorida-bikarbonat dan berada pada zona immature water dengan suhu berkisar antara 35-36 °C. Inversi 3-D dari data magnetotellurik dilakukan untuk mengetahui distribusi resitivitas bawah permukaan. Inversi 3-D ini dilakukan dengan menggunakan initial model yang berbeda, yaitu initial model heterogen (inversi 2-D) dan initial model homogen (100 Ωm).
Hasil penelitian menunjukkan bahwa inversi 3-D dengan model awal heterogen mampu menggambarkan distribusi resistivitas bawah permukaan dengan lebih baik dibandingkan dengan inversi 3-D dengan model awal homogen. Zona clay cap dengan nilai resistivitas <10 Ωm memiliki ketebalan hingga 1,5 km dari permukaan. Zona reservoir yang berada di bawah clay cap dengan range nilai resistivitas 30-60 Ωm berada pada kedalaman 1,5-2,5 km dari permukaan. Sumber panas bumi (heat source) yang ditandai dengan nilai resistivitas tinggi >100 Ωm berada pada kedalaman >2,5 km.

Field "X" is one of the Indonesia geothermal field that formed in basaltic magma environment. Single phase high temperature thermal fluids formed in the resevoir zone that has a high permeability as liquid phase. This fluid can be stored in the reservoir due to the covering of alteration as cap rocks. Upflow zone formed within the caldera of Telong complex, exactly at the top of Mount Telong such as altered rock. While its outflow zone formed at around of the manifestations of Mapane, Masaingi and Buayana that categorized as chloride-bicarbonate type and include on immature water zone with temperature range between 35 - 36 °C. The 3-D inversion of magnetotelluric data was performed to determine the subsurface resistivity distribution. The 3-D inversion using different initial model, a model compiled from 2-D inversion and a homogeneous earth of resistivity 100 Ωm.
The results of inversion show that 3-D inversion with a model compiled from 2-D inversion can delineate subsurface resistivity distribution more clearly than 3-D inversion with 100 Ωm homogeneous initial model. Clay cap zone with resistivity value <10 Ωm has a thickness of about 1500 m b.s.l. Reservoir zone is discovered below the clay cap has resistivity value about 30 - 60 Ωm at elevation 1500 - 2500 m b.s.l. And heat source with high resistivity (>100 Ωm) seen at >2500 m b.s.l.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54793
UI - Skripsi Membership  Universitas Indonesia Library
cover
Chevy Iskandar
"Dalam beberapa tahun terakhir, pembahasan mengenai inversi 3-dimensi (3-D) untuk pemodelan data magnetotelurik menjadi pembahasan yang menarik untuk dibahas oleh para ilmuwan geofisika. Hal ini disebabkan hasil pengolahan data lapangan yang dikorelasikan dengan data geologi dan geokimia masih terdapat ambiguitas dalam interpretasi hasil inversi 2-dimensi (2-D) dibandingkan hasil pemodelan dengan inversi 3-D. Salah satu faktor penyebabnya adalah bumi yang memiliki model tiga dimensi, maka model 2-D terkadang kurang bisa digunakan untuk menjelaskan kondisi bumi yang kompleks secara 3-D. Untuk mempermudah pemahaman lebih lanjut mengenai hal tersebut, dilakukan pembuatan model sintetik 3-D dengan menggunakan software WinGlink dan MT3DFor-X. Model sintetik 3-D dibentuk dari model yang sederhana untuk melihat pengaruh efek anomali 3-D bawah permukaan, sampai dengan model yang kompleks yaitu sistem geotermal. Model sintetik yang dibuat kemudian diinversi 2-D dan 3-D dan dibandingkan hasilnya. Pemodelan dengan inversi 2-D dan 3-D secara berturut-turut dilakukan dengan menggunakan software WinGlink dan MT3DInv-X. Hasil dari kedua inversi tersebut kemudian diinterpretasi yang selanjutnya dapat digunakan sebagai acuan dalam pemilihan inversi yang digunakan dalam pengolahan data magnetotellurik ataupun sebagai bahan pertimbangan saat pengambilan data magnetotelurik di lapangan. Selain itu, variasi ukuran grid terhadap pemodelan 3-D dibahas juga pada penelitian ini, sehingga nantinya dapat digunakan juga sebagai acuan dalam pemodelan data 3-D dengan menggunakan data lapangan.

In few recent years, the discussion about 3-dimensional (3-D) inversion for magnetotelluric (MT) data modeling has become the interesting topic for geophysicists. It is caused by the the ambiguity of 2-D inversion result compared with 3-D inversion result of field data processing when it is correlated with geological and geochemistry data. One of the contributing factor is that the Earth is in 3-D shape, so the 2-D model often less describes the complex 3-D Earth model. For further understanding about this topic, a synthetic 3-D model was made using WinGLink and MT3Dfor-X software. 3-D synthetic model is formed from the simple one, to see the effect of the 3-D subsurface anomali towards both inversion results, to the complex one such as geothermal system. The synthetic model is then inversed in 2-D and 3-D approaches to compare the result. 2-D inversion model is conducted using WinGLink and 3-D inversion model is conducted using MT3Dinv-X. Both results can be used as reference of choosing which inversion process is used for modeling magnetotelluric data and can be used to consider the field survey design. Furthermore, the number of grid variation in 3-D modeling is also discussed in this work as the consideration of 3-D modeling of field data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52956
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adilla Armando
"Daerah Cubadak terletak di Kabupaten Pasaman Barat, Provinsi Sumatera Barat. Ditinjau dari data geologi, daerah ini didominasi oleh batuan Sabak berumur Permo-Karbon dan berada pada zona depresi yang dipengaruhi oleh sesar-sesar normal sebagai akibat aktivitas tektonik. Daerah Cubadak diduga memiliki prospek panasbumi yang ditandai dengan kemunculan manifestasi permukaan berupa 3 mata air panas yang bertipe klorida-bikarbonat. Untuk mengkonfirmasi adanya potensi panasbumi tersebut, dilakukan survei metode Magnetotellurik (MT). Tahapan prosesing MT adalah sebagai berikut: seleksi data time-series, Transformasi Fourier, Robust Processing, Seleksi Cross Power, Static Shift Correction, dan kemudian inversi 2 dimensi dengan menggunakan model awal berupa sounding 1 dimensi. Hasil pengolahan data 2 dimensi kemudian diintegrasikan dengan data geologi, geokimia, metode gravitasi dan dijadikan acuan untuk mendapatkan suatu model konseptual dari sistem panasbumi Cubadak. Model konseptual tersebut menunjukkan bahwa lapisan reservoir panasbumi Cubadak berada di bawah lapisan alterasi and silifikasi permukaan. Batas atas zona reservoir diduga berada pada kedalaman 2000 m. Kisaran temperatur reservoir didapat dari data geotermometrik yaitu sebesar 148-161°C sehingga sistem panasbumi Cubadak termasuk kedalam moderate temperature geothermal system. Estimasi luasan area reservoir berdasarkan data MT adalah 8 km2. Berdasarkan kalkulasi, sumber panasbumi Cubadak memiliki potensi sekitar 28 MWe.

Cubadak area is located in West Pasaman, West Sumatra province. Based on the geological data, the area is dominated by Permo-Carbon Sabak formation and located in depression zone that influenced by normal faults. Cubadak area is estimated have the geothermal prospect due to presence of surface manifestations. There are three chloride-bicarbonate hot springs types. To confirm the geothermal potential, magneto telluric ( MT ) method was then carried out. MT Processing includes: time-series data selection, Fourier transform, Robust Processing, Cross Power Selection, Static Shift Correction, then two-dimensional inversion was conducted initial model as resulted from one-dimensional inversion. The result was then integrated with geological, geochemical, and gravity data. The conceptual model shows that geothermal reservoir zone is located under alteration layer and surface silification. The depth of the reservoir top zone is estimated to be 1000-1500 m. Reservoir temperature is estimated using a geothermometry is about 148-161 ° C. Accordingly, the Cubadak geothermal system is clasified into the moderate temperature system. The reservoir area is estimated from MT data is about 8 km2. Based on calculation, Potential of Cubadak geothermal resources is about 28 MWe.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S54432
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Yunita
"Daerah penelitian “M” merupakan salah satu daerah yang memiliki potensi geotermal di Indonesia. Hal tersebut ditunjukkan dengan adanya struktur geologi dan kemunculan manifestasi di permukaan yang dapat membantu dalam mengidentifikasi keberadaan sistem geotermal di bawah permukaan. Penelitian ini menggunakan inversi 3-dimensi magnetotellurik untuk mengetahui distribusi resistivitas di bawah permukaan, penentuan area prospek, serta pembuatan model konseptual dengan integrasi data magnetotellurik dan data pendukung berupa data geologi, geokimia, dan gravitasi. Berdasarkan data pendukung geologi, daerah “M” terdiri dari susunan produk vulkanik berumur kuarter dan struktur geologi dengan arah barat laut-tenggara. Dari data pendukung geokimia, ditemukan endapan travertine di sekitar manifestasi mata air panas yang relatif bersifat netral, temperatur cukup tinggi, dan berasosiasi dengan struktur geologi. Fluida di mata air panas tersebut dominan bertipe bicarbonate water yang menandakan fluida berasal dari reservoir dan dominan telah terkontaminasi oleh meteoric water. Fluida tersebut juga dominan memiliki nilai klorida tinggi yang menandakan bahwa lingkungan manifestasi mata air panas berada di lingkungan vulkanik. Selain itu, perhitungan dengan geotermometer diperoleh dugaan temperatur reservoir berkisar antara 160°C-180°C. Berdasarkan hasil pemodelan inversi 3-dimensi magnetotellurik dan data pendukung berupa model forward2-dimensi gravitasi diketahui sebaran dari variasi resistivitas dan densitas bawah permukaan yang menggambarkan lapisan clay cap, top of reservoir, dan bentuk updome yang kemungkinan merupakan heat source. Lapisan dengan nilai resistivitas rendah diduga merupakan clay cap atau batuan penudung berupa sebaran batuan beku yang mengalami alterasi. Di bawah lapisan clay cap terdapat sebaran resistivitas medium yang diindikasikan sebagai reservoir berupa batu gamping bahbotala. Di bagian bawahnya terdapat lapisan dengan resistivitas tinggi yang kemungkinan adalah batuan metamorf yang menjadi batuan dasar/basement. Diantara basement ini terdapat bentuk updome dengan resistivitas sedikit lebih tinggi yang diduga merupakan batuan terobosan atau intrusi yang dapat menjadi sumber panas bagi sistem geotermal. Sumber panas ini diduga berasal dari Dolok Tinggi Raja dikarenakan terbentuknya dome di permukaan yang mungkin diakibatkan oleh adanya larutan magma yang tidak tererupsikan keluar permukaan sehingga membentuk batuan terobosan di bawah permukaan. Adanya sumber panas ini dapat menimbulkan aliran fluida panas secara vertikal (upflow). Berdasarkan integrasi data-data tersebut, area prospek geotermal di daerah “M” diperkirakan berada di sekitar Dolok Tinggi Raja melebar ke arah timur laut, timur, dan selatan.

The research area "M" is one of the areas with geothermal potential in Indonesia. This is indicated by the presence of geological structures and the appearance of manifestations on the surface which can assist in identifying the presence of subsurface geothermal systems. This study uses 3-dimensional magnetotelluric inversion to determine the distribution of resistivity below the surface, determine prospect areas, and construct a conceptual model by integrating magnetotelluric data and supporting data in the form of geological, geochemical and gravity data. Based on supporting geological data, the "M" area consists of volcanic products of quarter age and geological structures in a northwest-southeast direction. From supporting geochemical data, travertine deposits around hot spring manifestations were found which were relatively neutral, had relatively high temperatures, and were associated with geological structures. The fluid in the hot springs is dominant of the bicarbonate water type, which indicates that the fluid comes from a reservoir and has been predominantly contaminated by meteoric water. The fluid also dominantly has a high chloride value which indicates that the manifestation environment of the hot springs is in a volcanic environment. In addition, calculations with the geothermometer obtained an estimated reservoir temperature ranging from 160°C-180°C. Based on the results of 3-dimensional magnetotelluric inversion modeling and supporting data in the form of a 2-dimensional forward gravity model, it is known that the distribution of resistivity and subsurface density variations describes the clay cap layer, top of reservoir, and up-dome shape which may be a heat source. The layer with a low resistivity value is thought to be a clay cap or a cap rock in the form of a distribution of altered igneous rocks. Beneath the clay cap layer, there is a medium resistivity distribution which is indicated as a reservoir in the form of bahbotala limestone. At the bottom, there is a layer with high resistivity which is probably the metamorphic rock that became the basement. Among these basements, there is an up-dome with slightly higher resistivity which is thought to be a breakthrough or intrusive rock which can be a heat source for geothermal systems. This heat source is thought to have originated from Dolok Tinggi Raja due to the formation of a dome on the surface which may be caused by the presence of magma solution that has not erupted off the surface to form breakthrough rock below the surface. The existence of this heat source can cause a vertical flow of hot fluid (up-flow). Based on the integration of these data, the geothermal prospect area in the “M” area is estimated to be around Dolok Tinggi Raja, widening to the northeast, east, and south."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anzalna Naufal Amaya
"Pada kondisi pemanfaatan geotermal yang sedang direncanakan untuk meningkat, tahap eksplorasi menjadi tahap yang sangat penting dan dilakukan di banyak lokasi. Daerah prospek geotermal “X” belum banyak pihak yang melangsungkan tahap eksplorasi. Dalam penelitian ini, struktur daerah penelitian yang kemungkinan menjadi jalur bagi fluida geotermal didelineasi menggunakan data gravitasi darat dan juga data gravitasi satelit. Penggunaan dua jenis data ini bertujuan untuk mengetahui perbedaan yang dimiliki oleh kedua jenis data dan untuk mengetahui data gravitasi mana yang memilki akurasi paling tinggi. Dilakukan pemisahan anomali pada data gravitasi darat dan satelit menggunakan metode Polynomial TSA orde 1 dan orde 2 serta Spectrum Analysis Bandpass Filter. Kemudian data gravitasi juga diterapkan filter First Horizontal Derivative (FHD) dan Second Vertical Derivative (SVD) untuk delineasi struktur. Inversi 3 dimensi juga diterapkan pada data gravitasi darat dan gravitasi satelit karena inversi 3 dimensi lebih objektif dalam menampilkan kondisi vertikal dan lateral suatu daerah. Dari penerapan berbagai metode tersebut didapatkan kondisi daerah penelitian berupa struktur graben dengan litologi aluvium yang dikelilingi oleh batuan berdensitas tinggi seperti granit, diorite, dan metasedimen. Data gravitasi darat diintegrasi dengan data MT, data geologi, dan geokimia karena data gravitasi darat memiliki akurasi yang lebih tinggi dibandingkan dengan data gravitas satelit, yang dibuktikan dengan kesesuaian sesar geologi dengan pola anomali gravitasi yang ada. Dari hasil integrasi, didapatkan zona resistif terduga heat source pada bagian barat daya daerah penelitian diindikasikan sebagai batuan diorit karena berdasarkan inversi 3 dimensi zona tersebut memiliki anomali gravitasi tinggi. Selain itu, zona konduktif yang berada di tengah daerah penelitian merupakan lapisan aluvium karena memiliki anomali gravitasi rendah. Dari analisis FHD dan SVD didapatkan sesar yang membatasi lapisan beranomali gravitasi tinggi dengan anomali gravitasi rendah yang mengindikasikan keberadaan graben, serta sesar tersebut menjadi jalur fluida geothermal karena terdapat manifestasi air panas di ujung sesar.

Under the conditions of geothermal utilization that is being planned to increase, the exploration stage becomes a very important stage and is carried out in many locations. The geothermal prospect area "X" haven’t carried out by many parties for the exploration stage. In this study, the structure of the study area that is likely to be a pathway for geothermal fluids was delineated using ground gravity data and also satellite gravity data. The use of these two types of data aims to find out the differences between the two types of data and to find out which gravity data has the highest accuracy. Anomaly separation for ground and satellite gravity data were performed using the Polynomial TSA method of order 1 and order 2 and spectrum analysis bandpass filter. Then the First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) filters is applied to the gravity data for structural delineation. 3-dimensional inversions are also applied to ground gravity and satellite gravity data because 3-dimensional inversions are more objective in displaying the vertical and lateral conditions of an area. From the application of these various methods, the condition of the research area was obtained in the form of graben structures with alluvium lithology surrounded by high-density rocks such as granite, diorite, and metasedic. Ground gravity data is integrated with MT data, geological data, and geochemistry because ground gravity data have higher accuracy compared to satellite gravitas data, which is evidenced by the suitability of geological faults with existing gravitational anomalous patterns. From the integration results, a suspected heat source resistive zone in the southwestern part of the study area was indicated as a diorite rock because based on the 3-dimensional inversion the zone had a high gravitational anomaly. In addition, the conductive zone in the middle of the study area is an alluvium layer because it has a low gravity anomaly. From the analysis of FHD and SVD, it was found that faults limit the high-gravity patterned layer with low gravity anomalies indicating the presence of grabens, and the fault became a geothermal fluid path because there was a manifestation of hot water at the end of the fault."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Noor Ichwan
"ABSTRAK
Inversi data magnetotellurik merupakan suatu proses mengubah data magnetotellurik menjadi penampang resistivitas. Salah satu metode inversi yang digunakan adalah inversi 3D. Inversi 3D magnetotellurik mengasumsikan bahwa bumi memiliki variasi resistivitas baik arah vertikal maupun lateral. Inversi tersebut menghasilkan model yang paling mendekati keadaan lapisan bumi yang sebenarnya. Akan tetapi, inversi 3D dimensi membutuhkan memori serta waktu yang lama dalam prosesnya. Untuk mengatasi masalah tersebut, digunakan variasi model awal sebagai pengontrol proses inversi. Model awal yang dapat digunakan adalah resistivitas hasil inversi 1D dimana hasil inversi tersebut memiliki kemiripan dengan hasil inversi 3D. Pada penelitian ini, penulis melakukan inversi data riil magnetotellurik dengan memvariasikan beberapa model awal. Variasi 'inversi dengan menggunakan model awal 1D menunjukkan bahwa model awal 1D mampu mengontrol proses inversi 3D dilihat dari kesesuaian hasil inversi 3D dengan model awal yang digunakan. Selain itu, hasil inversi dengan menggunakan model awal data inversi 1D menunjukkan hasil yang lebih baik pada model yang menggunakan lebih banyak mesh grid. Hal tersebut dapat dilihat dari RMS error model terhadap data observasi.

ABSTRACT
Inversion of Magnetotelluric data is a process to obtain resistivity variation from magnetotelluric data. 3D Inversion of magnetotelluric data is a method that usually used. Those method assume that earth has resistivity variation along vertical and lateral direction. It can produce the most similliar earth resistivity model to the real earth. However, 3D inversion method need high amount of CPU memory and calculation time. In order to cover that weakness, initial model is used to control the inversion process. The initial model used is resistivity variation from 1D inversion of magnetotelluric data. Resistivity variation of 1D inversion has simmiliar pattern with resistivity variation of 3D inversion. 3D inversion is done on real magnetotelluric data with variation of initial model. The variabels which are used initial model are resistivity variation and number of mesh grid blocks. The results of 3D inversion using 1D resistivity initial model show that initial model can control the inversion process. The result of 3D inversion have similiar pattern with the inisial model which is used. The results of 3D inversion using 1D resistivity initial model show better result than 3D inversion using homogenous resistivity initial model on larger number of mesh grid, it can be proven by its RMS errors."
2015
S58259
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Noor Ichwan
"ABSTRAK
Inversi data magnetotellurik merupakan suatu proses mengubah data
magnetotellurik menjadi penampang resistivitas. Salah satu metode inversi yang digunakan adalah inversi 3D. Inversi 3D magnetotellurik mengasumsikan bahwa bumi memiliki variasi resistivitas baik arah vertikal maupun lateral. Inversi tersebut menghasilkan model yang paling mendekati keadaan lapisan bumi yang sebenarnya. Akan tetapi, inversi 3D dimensi membutuhkan memori serta waktu yang lama dalam prosesnya. Untuk mengatasi masalah tersebut, digunakan variasi
model awal sebagai pengontrol proses inversi. Model awal yang dapat digunakan adalah resistivitas hasil inversi 1D dimana hasil inversi tersebut memiliki kemiripan dengan hasil inversi 3D. Pada penelitian ini, penulis melakukan inversi data riil magnetotellurik dengan memvariasikan beberapa model awal. Variasi 'inversi dengan menggunakan model awal 1D menunjukkan bahwa model awal
1D mampu mengontrol proses inversi 3D dilihat dari kesesuaian hasil inversi 3D dengan model awal yang digunakan. Selain itu, hasil inversi dengan menggunakan model awal data inversi 1D menunjukkan hasil yang lebih baik pada model yang menggunakan lebih banyak mesh grid. Hal tersebut dapat dilihat dari RMS error model terhadap data observasi.
ABSTRACT
Inversion of Magnetotelluric data is a process to obtain resistivity variation from magnetotelluric data. 3D Inversion of magnetotelluric data is a method that usually used. Those method assume that earth has resistivity variation along vertical and lateral direction. It can produce the most similliar earth resistivity model to the real earth. However, 3D inversion method need high amount of CPU memory and calculation time. In order to cover that weakness, initial model is
used to control the inversion process. The initial model used is resistivity variation from 1D inversion of magnetotelluric data. Resistivity variation of 1D inversion has simmiliar pattern with resistivity variation of 3D inversion. 3D inversion is done on real magnetotelluric data with variation of initial model. The variabels
which are used initial model are resistivity variation and number of mesh grid blocks. The results of 3D inversion using 1D resistivity initial model show that initial model can control the inversion process. The result of 3D inversion have similiar pattern with the inisial model which is used. The results of 3D inversion using 1D resistivity initial model show better result than 3D inversion using homogenous resistivity initial model on larger number of mesh grid, it can be proven by its RMS errors."
2015
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anugrah Indah Lestari
"Data magnetotellurik biasanya masih dihimpun dan ditampilkan dalam bentuk profil dan diinterpretasi menggunakan inversi 1-dimensi (1-D) atau 2-dimensi (2-D). Asumsi yang digunakan dalam inversi 1-D dan 2-D dapat menyebabkan kesalahan interpretasi dikarenakan kondisi riil di bawah permukaan adalah 3-D. Oleh karena itu dilakukan pengujian inversi 1-D, 2-D, dan 3-D (full tensor impedance dan off diagonal elements) profil data sintetik 3D untuk menganalisis pengaruh efek 3D dan efek tepi. Hasil dari inversi 1D dan 2D memperlihatkan ketidakmampuan dalam mempertahankan geometri model sintetik 3D terutama dalam memperlihatkan batas tepi model sintetik 3D. Dengan menggunakan inversi 3-D, terlihat memberikan hasil yang lebih baik dalam memperlihatkan geometri model sintetik 3D. Pentingnya penggunaan on diagonal elements (Zxx dan Zyy) dalam proses inversi diperlihatkan melalui hasil data sintetik yakni menambah keakuratan dalam hasil inversi terutama pada profil bagian tepi dari benda konduktif dan resistif. Hal ini diperlihatkan melalui hasil plot nilai impedansi Zxx dan Zyy. Oleh karena itu penggunaan seluruh komponen tensor impedansi penting digunakan dalam inversi 3-D untuk menginterpretasi profil data. Arah strike juga terlihat sangat mempengaruhi hasil inversi 2-D. Analisis terhadap inversi multidimensi profil data dilakukan terhadap data riil magnetotelurik daerah prospek panas bumi Tawau, Malaysia. Dari hasil inversi1-D, 2-D, dan 3-D pada data riil didapatkan kemiripan pola distribusi zona resistivitas rendah dan tinggi pada hasil inversi 1-D dan 3-D dikarenakan hasil kedua inversi tidak dipengaruhi oleh arah strike serta hasil ini mendukung kesesuaian pada hasil model sintetik di mana hasil inversi 1-D dapat mencitrakan resistivitas bawah permukaan dengan baik pada kedalaman dangkal.

Magnetotelluric data is usually still collected and displayed in profile data and interpreted by using 1-dimensional inversion (1-D) or 2-dimensional inversion (2-D). The assumption that is used in 1-D and 2-D may lead potential pitfall during interpretation because real condition beneath the surface is 3-D. Therefore, inversion 1-D, 2-D, and 3-D (full tensor impedance and off diagonal elements) is tested in 3D synthetic profile data for analyzing the influence of 3D effect and edge effect. 1-D and 2-D inversion result shows an inability to maintain the geometry of 3D synthetic model, mainly in imaging edge border of 3D synthetic model. By using 3-D inversion profile synthetic data MT, it is proven that the use of 3-D inversion gives better result in showing the geometry of 3D synthetic model. The importance of on diagonal elements (Zxx and Zyy) in the inversion result is shown by the result of synthetic data which increase the accuracy of inversion result, particularly at edge of conductive and resistive feature. This is shown by the result of impedance value (Zxx and Zyy) ploting. Therefore, using all components of tensor impedance is important in 3D inversion to interpret profile data. Strike direction is also seen affect the result of 2D inversion. Analysis of multidimension inversion of profile data is then performed on real magnetotelluric data in Tawau geothermal prospect area. From 1-D, 2-D, and 3-D inversion result, it is obtained that there is similarity in distribution pattern of low and high resistivity zone because both of the inversion are not influenced by strike direction and this result supports the suitability of synthetic model result where 1-D inversion can image subsurface resistivity at shallow depth well.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54755
UI - Skripsi Membership  Universitas Indonesia Library
cover
Donny Isa Marianto Suryo Putro
"Daerah “D” merupakan salah satu daerah prospek panasbumi di Indonesia. Daerah ini di dominasi oleh batuan produk vulkanik yang terdiri dari aliran lava dan kubah-kubah vulkanik. Manifestasi di daerah ini terdiri dari kelompok mata air panas D dengan temperatur sebesar 95 – 97oC dan kelompok mata air panas M dengan temperatur sebesar 60,9 – 84,0oC. Kedua kelompok mata air panas tersebut memiliki tipe klorida. Selain itu, terdapat batuan ubahan di sekitar manifestasi yang mengandung mineral ubahan yang di dominasi oleh mineral silika. Untuk mendelineasi sistem panasbumi tersebut, maka dilakukan inversi 3-D data magnetotellurik, baik dengan full impedance tensor maupun dengan off-diagonal element dengan menggunakan software MT3Dinv-X. Hasil dari inversi 3-D dengan full impedance tensor menggambarkan kondisi bawah permukaan lebih baik dibandingkan dengan off diagonal element. Lapisan konduktif (<15 ohm-m) dengan ketebalan 200 m – 1 km diindikasikan sebagai caprock. Lapisan dibawah caprock (15 – 158 ohm-m) diindikasikan sebagai reservoar. Sedangkan body dengan resistivitas >1.000 ohm-m diindikasikan sebagai heat source yang merupakan intrusi dari batuan beku muda. Selanjutnya, hasil inversi 3-D tersebut diintegrasikan dengan data gravitasi untuk membuat model konseptual dari sistem panasbumi “D”. Dimana sistem panasbumi “D” merupakan jenis sistem panasbumi intermediate temperature dengan temperatur reservoar sebesar 190oC berdasarkan geotermometer Na/K."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54869
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syafrima Wahyu
"Telah dilakukan penelitian guna delineasi zona prospek sistem panasbumi daerah ldquo;Z rdquo; menggunakan permodelan tiga Dimensi magnrtotellurik didukung data terpadu berupa geologi dan geokimia serta terintegrasi data gravitasi. Daerah panasbumi ldquo;Z rdquo; dalam tatanan tektoniknya termasuk pada jalur backarc Sumatera, tepat pada salah satu segmen sesar Sumatera bagian selatan, disusun oleh batuan vulkanik dan sedimen klastik yang berumur Tersier hingga Kuarter Andesit-Basalt . Gejala adanya sistem panasbumi pada daerah penelitian ditandai dengan kemunculan manifestasi permukaan berupa alterasi dan lima mata air panas bersuhu 44,4 - 92,5 oC, pH 8,19 - 9,43 dan bertipe bikarbonat, sulfat-bikarbonat, serta sulfat-klorida. Pembentukan sistem panasbumi dipengaruhi oleh aktivitas tektonik menyerong oblique antara lempeng Samudera India dan Lempeng Kontinen Eurasia searah dengan pola sesar Sumatera.
Berdasarkan analisis air panasbumi temperatur reservoir diambil melalui perhitungan geothermomether SiO2 Fournier 1977 , Na-K Giggenbach 1988 , Na-K-Ca, diagram Na-K-Mg serta diagram Enthalphy - Cloride Mixing Model berkisar 145 - 155oC, termasuk dalam sistem panas bumi bertemperatur sedang. Berdasarkan inversi tiga dimensi data MT didapatkan kedalaman Top of Reservoar TOR sistem panasbumi daerah ldquo;Z rdquo; sekitar 400 m elevasi 50 mdpl sedangkan berdasarkan forward modeling data gravitasi lintasan 2 dimensi diperkirakan sumber panas berupa cooling instrusion diperkirakan batuan gabro ; resistivitas ge; 450 ?m ; densitas 2,95 - 3,15 gr/cc dan reservoar berupa batupasir resistivitas 50 - 250 ?m ; densitas 2,60 gr/cc . Sistem panasbumi daerah penelitian termasuk jenis tektonik fracture zone dengan temperatur sedang dengan luas daerah prospek sekitar 7,5 km2.

A study for delineating geothermal system of prospect area ldquo Z rdquo has been done by using tree dimension modeling of magnetotelluric supported unified data just like geological and goechemical and integrated gravity data. Geothermal area ldquo Z rdquo in tectonic setting included in Sumatra volcanic backarc, right on one of the southern part of Sumatra fault segment. Compodes by volcanic and clastic sendimentary rock are Tertiary to Quarternary Andesite Basalt. The existance of goethermal system in this area is indicated by the presence of thermal manifestation in form of alteration and five hot springs temperature in the ranges 44.4 ndash 92.5 oC, and pH 8.19 ndash 9.43 and type of fluida are bicarbonate, sulphate bicarbonate, and sulfate chloride. The development of geothermal system is affected by tectonic oblique between the Indian Ocean plate and the Eurasian Contenent Plate direction of the Sumatra fault patterns.
Based on the analysis of geothermal water reservoir temperature are taken through the calculation geothermometer SiO2 Fournier 1977, Na K Giggenbach 1988 , Na K Ca, Na K Mg diagram and Enthalpi Mixing Cloride Model range 145 ndash 155 oC, classified as intermediate temperature. Base on a three dimensional inversion of the magnetotelluric data obtained depth Top of Reservoir TOR geothermal system area ldquo Z rdquo about 400 m elevation 50 meters above sea leavel , while based on the two dimensional of the gravity data predicted heat sources such as cooling instrusion estimated gabbro density 2,95 ndash 3,15 gr cc and reservoar such as sandstone resistivity 50 ndash 250 m density 2,60 gr cc . The Geothermal systems of research area classified as the type of intermediate temperature tectonic fracture zone with prospect area about 7,5 km2.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46881
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>