Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 196048 dokumen yang sesuai dengan query
cover
Rangga Pradipta Dwitiya
"ABSTRAK
Aluminium paduan seri 7xxxmerupakan paduan yang memiliki kombinasi yang baik antara kekuatan yang tinggi, ketangguhan yang baik, dan memiliki kemampulasan yang baik pada kondisi tertentu.Kombinasi sifat yang baik dari material Al 7xxxdalam berbagai aplikasitetap memiliki kelemahanyang membatasi aplikasi dari material tersebut. Salah satu nya adalah ketahanan yang rendah terhadap korosi.
Penelitian ini bertujuan untuk mempelajari dan menganalisispengaruh parameter proses anodisasi yakni temperatur dan rapat arus anodisasi terhadap pembentukan lapisan anodik berporipada aluminium seri 7xxx. Anodisasi dilakukan pada tiga variasi temperatur yaitu20oC,10oC dan 0oC danvariasi rapat arus adalah15 mA/cm2, 20 mA/cm2dan 25 mA/cm2. Material hasil anodisasi kemudian dilakukanduajenis pengujian yaitu pengujian kekerasan dan pengujian laju korosi. Pengujian kekerasan mikro Vickersdigunakan untuk mengetahui sifat mekanik lapisan anodik yang terbentuk dan pengujian laju korosimenggunakan metode polarisasibertujuan untuk mengetahui ketahanan korosi darilapisan anodikyang terbentuk.
Hasil pengujian memperlihatkan adanya peningkatan kekerasan permukaan lapisan anodik alumina saat variabel temperaturditurunkanke temperatur 0oC dimana kekerasan tertinggi adalah 763HV yang didapat pada temperatur 10oC dengan rapat arus 25mA/cm2. Kemudian penurunan temperatur hingga 0oCdan peningkatan rapat arus hingga 25 mA/cm2akan meningkatkan ketahanan korosi.

ABSTRACT
7xxx series aluminum alloy is an alloy that has a good combination of high strength, good toughness, and have a good weldabilityin certain circumstances. The combination of good properties of Al 7xxx material in a variety of applications still has weaknesses that can limit the application of these materials. One of them is low corrosion resistance.
This research aims is to study and analyze the influence of the anodizing process parameters,temperature andcurrent density,on the formation of porous anodic coatings on aluminum 7xxx series. Anodizing is done in three variationsof temperature is 20oC, 10oC and 0oC and variation of current density is 15 mA/cm2, 20 mA/cm2and 25 mA/cm2. The anodized materialthen performedintwo kindof tests, hardness testing and corrosion ratetesting. Micro Vickershardness testing is used to determine the mechanical properties of the anodic layer formed and the corrosion rate testing using the polarization method is usedto determine thecorrosion resistance of anodic coatings formed.
The test result showed an increase in surface hardness of anodic layer when the temperature is lowered to 0oC. The higest hardness achieved is 763 HV
Obtained at 10oC with 25 mA/cm2current density. The decrease in temperatur an increase in current density will improve the corrosion resistance like achieved in 0oC and 25 mA/cm2."
Fakultas Teknik Universitas Indonesia, 2014
S56321
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yanita Firda Adelia
"Paduan aluminium 2024-T3 biasa digunakan dalam industri penerbangan seperti komponen pada pesawat terbang. Material ini digunakan karena sifatnya yang ringan dan cenderung tahan korosi jika dibandingkan dengan material selain aluminium, namun jika dibandingkan dengan paduan aluminium seri lainnya, paduan aluminium 2xxx cenderung memiliki ketahanan korosi yang rendah. Untuk memperbaiki sifat ini, maka dilakukan proses anodisasi dengan larutan elektrolit asam oksalat 0,5 M selama 30 menit. Proses anodisasi dilakukan pada temperatur 0, 10, dan 20°C serta rapat arus 15, 20, dan 25 mA/cm2.
Penelitian bertujuan untuk mengetahui pengaruh dari kedua variabel tersebut terhadap kekerasan mikro dan laju korosi tiap sampel. Didapat hasil bahwa nilai kekerasan mikro paling tinggi pada permukaan sampel didapat pada sampel 0°C - 20 mA/cm2 dengan nilai kekerasan sebesar 543 HV. Sedangkan ketahanan korosi paling baik diperoleh pada sampel 20°C - 20 mA/cm2 dengan laju korosi sebesar 0,00004 mm/year.

Aluminum alloy 2024-T3 is commonly used in the aviation industry as components of aircrafts. This material is used because of its light weight and good corrosion resistant when compared to material other than aluminum, but when compared to other series of aluminum alloy, aluminum alloy 2xxx tend to have low corrosion resistance. To improve this property, then carried out the anodizing process with 0,5 M oxalic acid for 30 minutes. Anodizing was carried out at temperatures of 0, 10, and 20°C also at current densities of 15, 20, and 25 mA/cm2.
The research aim is to know the influence of both these variables against the corrosion rate and micro-hardness of each samples. The result shows that the highest micro-hardness on the surface of samples is obtained at 0°C and 20 mA/cm2 with a value of 543 HV. While the most excellent corrosion resistance is obtained at 20°C and 20 mA/cm2 with the rate of corrosion of 0,00004 mm/year.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56339
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Adhiyat
"Aluminium paduan seri 2xxx-T3 merupakan paduan yang memiliki kombinasi yang baik antara kekuatan yang tinggi, ketangguhan yang baik, dan memiliki kemampulasan yang baik pada kondisi tertentu. Aplikasi dari Al2xxx-T3 adalah struktur pesawat terbang, badan truk, baut dan sekrup pesawat terbang, dan tangki roket. Kombinasi sifat yang baik dari material Al2xxx-T3 dalam berbagai aplikasi tersebut tetap memiliki kelemahan. Salah satu kelemahan material tersebut adalah ketahanan yang rendah terhadap korosi. Kelemahan ini dapat menjadi keterbatasan penggunaan material pada kondisi lingkungan yang korosif sehingga dapat mempercepat terjadinya degradasi dari material Al2xxx-T3 tersebut. Oleh karena itu diperlukan suatu modifikasi permukaan dengan proses anodisasi.
Penelitian ini bertujuan untuk menganalisis pengaruh parameter proses yakni temperatur dan rapat arus anodisasi terhadap pembentukan lapisan anodik berpori. Anodisasi dilakukan pada tiga temperatur berbeda yakni 10oC, 0oC dan -10oC dengan variasi rapat arus adalah 15 mA/cm2, 20 mA/cm2 dan 25 mA/cm2. Material hasil anodisasi kemudian dilakukan dua jenis pengujian yaitu pengujian kekerasan dan pengujian ketahanan korosi. Pengujian kekerasan mikro Vickers digunakan untuk mengetahui sifat mekanik lapisan anodik yang terbentuk dan pengujian ketahanan korosi menggunakan metode polarisasi bertujuan untuk mengetahui ketahanan korosi dari lapisan anodik yang terbentuk.
Hasil pengujian memperlihatkan adanya peningkatan kekerasan permukaan lapisan anodik alumina saat variabel temperatur diturunkan ke temperatur 0oC dimana kekerasan tertinggi adalah 511 HV yang didapat pada temperatur 0oC dengan rapat arus 20 mA/cm2. Kemudian penurunan temperatur hingga 0oC dan peningkatan rapat arus hingga 25 mA/cm2 akan meningkatkan ketahanan korosi namum kembali turun dengan penurunan temperatur hingga -10oC. Parameter proses yang paling optimal untuk menciptakan lapisan anodik yang memiliki kekerasan dan ketahanan korosi yang tinggi adalah pada temperatur 0oC dan rapat arus 20 mA/cm2.

Aluminum alloys series 2xxx-T3 are an alloy that has a good combination of high strength, good toughness, and have a good weldability on certain conditions. The application of Al2xxx-T3 are for the structure of the aircraft, truck bodies, airplanes bolts and screws, and rockets tanks. The combination of good properties of this material Al2xxx-T3 in a variety of applications still have a weaknesses. One disadvantage of these materials is low resistance to corrosion. This weakness may become a limitations on the use of materials on corrosive environmental conditions which is can accelerate the degradation of the material Al2xxx-T3. Therefore we need a surface modification by anodizing process.
This study aims to analyze the influence of anodizing process parameters which is temperature and current density on the formation of porous anodic coating, Anodizing has been done at three different temperatures which are 10oC, 0oC and -10oC with variation of current density which are 15 mA/cm2, 20 mA/cm2 and 25 mA/cm2. Sample that has been done being anodized then will be tested by two methods. Micro Vickers hardness testing was used to determine the mechanical properties of anodic layer and corrosion resistance testing using the polarization method to determine the corrosion resistance of anodic coatings formed.
The test result shows an increase of the surface layer of anodic alumina hardness when the variable temperature is lowered to 0oC with the highest hardness is 511 HV obtained at the temperature and the current density are 0oC and 20 mA/cm2. Then lowering the temperature to 0oC and increasing the current density into 25 mA/cm2 would increase the anodic film corrosion resistance but the corrosion resistance would drop again after lowering the temperature into -10oC. The optimum process parameters to form an anodic coating which have the hardest surface and high corrosion resistance is at 0oC temperature and the current density is 20 mA/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57320
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Mirsa
"Paduan aluminium seri 7 adalah material yang banyak digunakan untuk aplikasi dalam dunia transportasi dan industri. Material ini memiliki kombinasi sifat ringan dengan kekuatan tinggi, kekakuan, ketahanan aus tinggi dan koefisien ekspansi termal yang rendah. Namun, material ini tidak luput dari kelemahan terhadap serangan korosi. Diantara paduan aluminium yang lain, seri 7xxx ini merupakan yang paling lemah ketahannya terhadap korosi. Kelemahan ini bisa menjadi keterbatasan penggunaan material pada kondisi lingkungan yang korosif yang bisa mempercepat degradasi sifat mekanik dari material Al7xxx. Oleh karena itu diperlukan suatu perlakuan tambahan untuk memperbaiki sifat dari material tersebut, salah satunya dengan anodisasi.
Penelitian ini bertujuan untuk menganalisis pengaruh parameter proses yakni temperatur dan rapat arus anodisasi terhadap pembentukan lapisan anodik berpori. Anodisasi dilakukan pada tiga temperatur berbeda yakni 25°C, 0°C dan -25°C dengan variasi rapat arus adalah 25 mA/cm2, 20 mA/cm2 dan 15 mA/cm2.
Material hasil anodisasi kemudian diberikan 2 jenis pengujian yaitu pengujian kekerasan dan pengamatan mikrostruktur. Pengujian kekerasan mikro Vickers digunakan untuk mengetahui sifat mekanik lapisan anodik yang terbentuk dan pengamatan struktur mikro menggunakan FE-SEM bertujuan untuk mengetahui morfologi permukaan lapisan anodik dan mengukur ketebalan lapisan anodik."
"Hasil pengujian memperlihatkan adanya peningkatan kekerasan permukaan lapisan anodik alumina saat variabel temperatur dan rapat arus menurun dimana kekerasan tertinggi adalah 264 HV yang didapat pada temperatur 0°C dengan rapat arus 15mA/cm2. Kemudian penurunan temperatur hingga 0°C akan meningkatkan ketebalan lapisan oksida namun ketebalan kembali menurun pada saat diturunkan ke temperatur -25°C. Parameter proses yang paling optimal untuk menciptakan lapisan anodik yang tebal dan keras adalah pada temperatur 0°C dan rapat arus 15mA/cm2.

Aluminum Alloy 7xxx mostly used in transportation and industry application. This material has extremely less weight combined with high specific strength, high specific stiffness, and low coefficient of thermal expansion and good wear resistance. However this type is the most susceptible to corrosion among any other aluminum alloy in various environments. This weakness could be a limitation working area for this material. So, Anodizing has been considered as a modification treatment for enhancing corrosion resistant.
This study aims to analyze the influence of anodizing process parameters which is temperature and current density on the formation of porous anodic coating, Anodizing process has been done at three different temperatures which are 25°C, 0°C and -25°C with variation of current density which is 25 mA/cm2, 20 mA/cm2 and 15 mA/cm2. Sample that has been done being anodized then will be tested by 2 types of method. First is Vickers micro hardness testing was used to determine the mechanical properties of anodic layer and another is observation of microstructure using FE-SEM to determine surface morphology and to measure anodic layer thickness.
Test results showed that decreasing temperature and current density would increase surface hardness of aluminum anodic layer. The highest surface hardness was 264 HV which was got by anodizing at temperature 0°C with using 15 mA/cm2 of current density. Decreasing temperature and current density would also relatively increasing density and make the surface smoother and looks more uniform. Decreasing temperature until 0°C would increase thickness of the oxide layer but the thickness would be decreased when the temperature was decreased to -25°C. The most optimum process parameters to form anodic layer that has hardest surface and thickest layer is in temperature 0°C with the current density is 15mA/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53293
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachyandi Nurcahyadi
"Aluminum matrix composite (AMC) menjadi material yang sangat potensial bagi aplikasi industri ketika terdapat kebutuhan untuk mendapatkan kombinasi sifat ringan dengan sifat lainnya yang menunjang seperti kekuatan, kekakuan, ketahanan aus, konduktivitas listrik dan termal tinggi, dan koefisien ekspansi termal rendah. Namun material AMC sangat rentan terkena korosi pitting dan galvanik, yang disebabkan oleh pembentukan pasangan galvanik antara matriks dan penguat, serta terbentuknya mikrostruktur pada interface penguat/matrix. Anodisasi merupakan proses modifikasi permukaan yang potensial untuk meningkatkan ketahanan korosi AMC dengan menghasilkan lapisan oksida berpori. Namun, adanya penguat dalam AMC menghalangi pembentukan lapisan oksida protektif dengan mendorong terbentuknya cavity dan retak mikro. Oleh karena itu, metode cerium sealing digunakan untuk memperbaiki cacat pada lapisan oksida hasil anodisasi, sehingga dapat meningkatkan ketahanan korosi pada lingkungan yang sangat agresif.
Penelitian ini bertujuan untuk menganalisis pengaruh parameter proses yakni temperatur dan rapat arus anodisasi terhadap pembentukan lapisan anodik berpori. Anodisasi dilakukan pada tiga temperatur yakni 25°C,0°C dan -25°C dengan variasi rapat arus 25,20 dan 15 mA/cm2. Pengujian kekerasan mikro Vickers digunakan untuk mengetahui sifat mekanik lapisan anodik. Pengamatan struktur mikro menggunakan FE-SEM untuk mengetahui morfologi permukaan dan mengukur ketebalan lapisan anodik.
Hasil pengujian menunjukkan penurunan temperatur dan rapat arus akan meningkatkan kekerasan permukaan lapisan anodik alumina dimana kekerasan tertinggi adalah 427 HV yang didapat pada temperatur -25°C dengan rapat arus 15mA/cm2. Penurunan temperatur dan rapat arus juga relatif akan meningkatkan kerapatan dan keseragaman permukaan hasil anodisasi. Serta penurunan temperatur hingga 0°C akan meningkatkan ketebalan lapisan oksida dimana ketebalan terbesar adalah 14,13 μm yang yang didapat pada temperatur 0°C dengan rapat arus 25mA/cm2. Namun ketebalan kembali menurun pada saat diturunkan ke temperatur -25°C.

Aluminum matrix composites (AMC) become potential materials for transport application where there is an obvious need for combination of weight saving and other properties, i.e. high specific strength, high specific stiffness, electrical and thermal conductivities, low coefficient of thermal expansion and wear resistance. However they are generally susceptible to corrosion in various environments, due to galvanic reactions between the reinforcements and the matrix, and selective corrosion on the interface due to the formation of new compounds. Anodizing has been considered as a potential modification treatment for enhancing corrosion resistant of AMC by forming porous anodic oxide on the surface area.
This study aims to analyze the influence of anodizing process parameters which is temperature and current density on the formation of porous anodic coating, Anodizing process has been done at three different temperatures which are 25°C,0°C and -25°C with variation of current density at 25,20 and 15 mA/cm2. Vickers microhardness testing was used to determine the mechanical properties of anodic layer. Observation of microstructure using FE-SEM to determine surface morphology and to measure anodic layer thickness.
Test results showed that decreasing temperature and current density would increase surface hardness of aluminium anodic layer. The highest surface hardness was 427 HV which was got by anodizing at temperature -25°C with using 15 mA/cm2 of current density. Decreasing temperature and current density would also relatively increasing density and make the surface smoother and looks more uniform. Decreasing temperature until 0°C would increase thickness of the oxide layer where the highest thickness was 14,13 μm which was got by anodizing at temperature 0°C with using 25 mA/cm2 of current density. But the thickness would decrease when the temperature was decreased to -25°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53800
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adyutatama
"Perkembangan teknologi pelapisan logam dengan metode anodisasi sangat berkembang dewasa ini, sehingga penelitian dalam bidang anodisasi untuk aplikasi material porous juga mengalami perkembangan yang cepat Proses anodisasi dengan material aluminium foil dilakukan dengan media larutan asam oksalat 0,2 M dilakukan dengan variasi terhadap temperatur dan tegangan menghasilkan lapisan oksida yang beragam. Tegangan yang diaplikasikan yaitu tegangan konstan 10, 40, dan 70 V dengan variasi temperatur 4, 22, dan 40 °C menghasilkan perbedaan tebal dan bentuk permukaan oksida pada permukaan aluminium foil.
Penggunaan tegangan yang tinggi dan temperatur yang rendah diharapkan menghasilkan lapisan aluminium oksida dengan pori yang berukuran kecil sehingga membran porous dapat dibentuk.
Pada pengamatan menggunakan SEM dengan perbesaran hingga 10000 X didapat garis gelap terang searah rolling. Garis yang berwarna gelap mengindikasikan lapisan porous yang telah tergerus. Pada potongan melintang didapat ketebalan lapisan aluminium oksida mulai dari 0,91 hingga 11,56 pm. Indikasi pori berukuran besar terlihat pada proses anodisasi dengan variasi temperatur 22 °C dengan tegangan 40 V yaitu sebesar 2-8 pm dengan tebal 8.81 pm dan pada variasi 40 °C dengan tegangan 10 V yaitu sebesar 400 nm dengan tebal 5,38 pm.

The development of metal coating technology with anodizing method is unfolding now days, so that research in anodizing for applied as porous materials also flourish rapidly. Anodized process using aluminium foil materials with Oxalic acid solution 0.2 M have varieties in oxide layer result Voltage that applied are constant voltage 10, 40, 70 V with different fix temperatures 4, 22, and 40 °C resulting difference oxide layer thickness in aluminium foil surface.
Using high voltage and low temperature, we expect that small oxide pore diameter i s created, so porous membrane can be formed.
Observation using SEM up to 10000X magnification, the light and dark layer in the line of rolling direction is visible. Dark layer indicate porous layer that had been solute. In the cross section area, the aluminium oxide layers are observed resulting 0.91 to 11.56 pm thick. Wide pore indication had shown in 22 °C and voltage 40 V anodizing process is 2 - 8 pm wide and 8.81 pm thick and in 40 °C and voltage 10 V is 400 nm wide and 5.38 thick.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25893
UI - Tesis Open  Universitas Indonesia Library
cover
Muhammad Adyutatama
"Perkembangan teknologi pelapisan logam dengan metode anodisasi sangat berkembang dewasa ini, sehingga penelitian dalam bidang anodisasi untuk aplikasi material porous juga mengalami perkembangan yang cepat. Proses anodisasi dengan material aluminium foil dilakukan dengan media larutan asam oksalat 0,2 M dilakukan dengan variasi terhadap temperatur dan tegangan menghasilkan lapisan oksida yang beragam. Tegangan yang diaplikasikan yaitu tegangan konstan 10, 40, dan 70 V dengan variasi temperatur 4, 22, dan 40 _C menghasilkan perbedaan tebal dan bentuk permukaan oksida pada permukaan aluminium foil. Penggunaan tegangan yang tinggi dan temperatur yang rendah diharapkan menghasilkan lapisan aluminium oksida dengan pori yang berukuran kecil sehingga membran porous dapat dibentuk. Pada pengamatan menggunakan SEM dengan perbesaran hingga 10000 X didapat garis gelap terang searah rolling. Garis yang berwarna gelap mengindikasikan lapisan porous yang telah tergerus. Pada potongan melintang didapat ketebalan lapisan aluminium oksida mulai dari 0,91 hingga 11,56 _m. Indikasi pori berukuran besar terlihat pada proses anodisasi dengan variasi temperatur 22 _C dengan tegangan 40 V yaitu sebesar 2 - 8 _m dengan tebal 8.81 _m dan pada variasi 40 _C dengan tegangan 10 V yaitu sebesar 400 nm dengan tebal 5,38 _m

The development of metal coating technology with anodizing method is unfolding now days, so that research in anodizing for applied as porous materials also flourish rapidly. Anodized process using aluminium foil materials with Oxalic acid solution 0.2 M have varieties in oxide layer result. Voltage that applied are constant voltage 10, 40, 70 V with different fix temperatures 4, 22, and 40 _C resulting difference oxide layer thickness in aluminium foil surface. Using high voltage and low temperature, we expect that small oxide pore diameter is created, so porous membrane can be formed. Observation using SEM up to 10000X magnification, the light and dark layer in the line of rolling direction is visible. Dark layer indicate porous layer that had been solute. In the cross section area, the aluminium oxide layers are observed resulting 0.91 to 11.56 _m thick. Wide pore indication had shown in 22 _C and voltage 40 V anodizing process is 2 - 8 _m wide and 8.81 ??m thick and in 40 _C and voltage 10 V is 400 nm wide and 5.38 thick."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41135
UI - Tesis Open  Universitas Indonesia Library
cover
Hendry Setiawan
"Aluminium merupakan logam yang paling ekonomis yang ada saat ini. Hal ini disebabkan karena aluminium merupakan material logam yang paling kedua terbanyak yang terdapat dalam lapisan bumi. Anodisasi adalah rerekayasa permukaan aluminium. Prinsip proses anodisasi menggunakan sel elektrolisa, dimana aluminium berperan sebagai anoda, katodanya adalah logam inert, saling dihubungkan dalam larutan elektrolit tertentu dan diberi arus selama beberapa saat. Hasil dari proses tersebut, aluminium akan teroksidasi dan akan membentuk lapisan tipis Al2O3 yang protektif terhadap serangan korosi. Dalam proses ini, hasil akhir pelapisan akan ditentukan dari beberapa parameter yang digunakan, salah satunya adalah tegangan yang digunakan. Oleh sebab itu, untuk mengetahui pengaruh tegangan terhadap ketebalan dan kekerasan lapisan oksida yang dihasilkan pada permukaan aluminium HD2G. Penelitian dilakukan menggunakan 20 % larutan asam sulfat dan 5 % asam oksalat dengan tegangan 5, 10, 15, 20, dan 25 volt. Pada penelitian ini dengan penambahan tegangan maka akan secara signifikan menambah ketebalan lapisan oksida. Semakin tinggi tegangan yang digunakan maka distribusi kekerasan menjadi tidak teratur. Ketebalan terbesar yang dihasilkan adalah 64 _m pada 25 volt dan kekerasan tertinggi yang dihasilkan adalah 70 VHN.

Aluminium is the most economical metal nowadays because aluminium is second largest metal in the earth crust. Anodizing is a process to change its surface properties. Principle of anodizing is the electrochemical process called electrolytic cell, the anode is aluminium while the inert metal acts as cathode. Electrodes immersed in an electrolyte solution and current is applied to the electrodes. Aluminium will be oxidized and form protective thin oxide film Al2O3 that resist to corrosion attack. Some of important parameters that determine final coating are voltage. An experiment is conducted to understand the effect voltage to hardness and thickness of oxide film at aluminium HD2G. Solultion of 20 % sulfuric acid and 5 % oxalic acid with 5, 10 ,15, 20, and 25 voltage are used in this experiment. With the changes of voltage significantly add the thickness of oxide layer. More higher voltage so hardness distribution is non uniform. The maximum thickness of oxide layer is 64 um at 25 voltage and the highest hardness is 70 VHN"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41629
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vika Rizkia
"Proses anodisasi pada aluminium menghasilkan struktur fenomenal berupa oksida logam yang terkenal dengan istilah Anodic Aluminum Oxide (AAO). AAO sangat diperlukan untuk meningkatkan daya adhesi pada proses pelapisan selanjutnya baik pada aluminium dan paduannya maupun komposit aluminium. Hal tersebut terjadi akibat adanya ikatan saling kunci antara lapisan oksida hasil anodisasi (AAO) dengan pelapis berikutnya. Morfologi pori pada AAO dapat dengan mudah dimodifikasi melalui perubahan parameter anodisasi. Namun, sayangnya penelitian-penelitian sebelumnya belum menyediakan informasi apapun mengenai pengontrolan diameter pori. Sedangkan seperti yang kita ketahui bahwa perbedaan aplikasi yang diinginkan membutuhkan diameter pori yang berbeda pula.
Oleh karena itu guna mendapatkan diameter pori dengan ukuran tertentu maka pemilihan parameter proses anodisasi yang tepat sangatlah penting. Untuk memenuhi kebutuhan tersebut, dalam penelitian ini akan dihasilkan persamaan empiris yang dapat memprediksi ukuran diameter dan densitas pori AAO yang terbentuk hasil anodisasi dengan berbagai parameter tertentu agar dapat digunakan dalam aplikasi yang sesuai.
Tujuan utama penelitian ini adalah pengembangan persamaan empiris yang menggambarkan hubungan konsentrasi oksalat, tegangan dan waktu anodisasi terhadap diameter pori. Namun penelitian ini juga menganalisis mekanisme pembentukan, karakteristik, dan ketahanan korosi lapisan terintegrasi pada Al7075/SiC. Serta menganalisis pengaruh konsentrasi, temperatur, dan resistivitas larutan elektrolit, dan tegangan anodisasi terhadap diameter dan densitas pori AAO pada aluminium foil.
Proses anodisasi Al7075/SiC dilakukan dalam larutan asam sulfat 16% H2SO4 dengan rapat arus 15, 20, 25 mA/cm2 pada 25, 0, -25oC selama 30 menit. Selanjutnya dilakukan proses sealing dalam larutan CeCl3.6H2O + H2O2 pada temperatur ruang dengan pH 9 selama 30 menit. Proses anodisasi pada aluminium foil dilakukan dalam larutan 3 M H2SO4 + 0,5 M; 0,7 M; dan 0,9 M H2C2O4, dan 0,3; 0,5; 0,7 M H2C2O4 selama 40-60 menit. Proses anodisasi dilakukan pada tegangan konstan 35, 40, dan 45 V untuk larutan asam oksalat dan 15 V untuk larutan campuran.
Pengamatan dan evaluasi morfologi lapisan pori hasil anodisasi dilakukan menggunakan alat FE-SEM (Field Emission Scanning Electron Microscope), ketahanan korosi material diinvestigasi menggunakan pengujian polarisasi dan EIS, sedangkan analisa kualitatif terhadap morfologi pori (diameter dan densitas) pada AAO menggunakan perangkat lunak ImagePro. Pengembangan persamaan empiris menggunakan metode derajat terkecil dan permukaan respon.
Proses terintegrasi yang diaplikasikan pada komposit Al7075/SiC pada temperatur anodisasi 0 oC menghasilkan terbentuknya deposit bulat kaya cerium dengan diameter 64 nm ( 3 nm) yang menutupi seluruh permukaan lapisan oksida dan rongga secara efektif. Proteksi terintegrasi anodisasi dan pelapisan cerium meningkatkan ketahanan korosi hingga 4 order perbesaran dibandingkan tanpa perlindungan akibat terjadinya ikatan saling kunci antara kedua lapisan tersebut.
Peningkatan konsentrasi larutan elektrolit asam oksalat, temperatur, tegangan dan waktu celup anodisasi dalam larutan 0,3; 0,5; dan 0,7 M mengakibatkan peningkatan diameter pori permukaan pada AAO. Sedangkan, penambahan asam sulfat dalam asam oksalat menghasilkan pori dengan morfologi diameter pori yang jauh lebih halus dan densitas pori yang jauh lebih besar. Secara umum, densitas pori hanya tergantung pada diameter pori hasil anodisasi, dimana peningkatan diameter pori menghasilkan densitas pori yang semakin menurun. Persamaan empiris hubungan antara tiga faktor anodisasi (konsentrasi asam oksalat, tegangan, dan waktu anodisasi) dengan diameter pori hasil dari penelitian ini adalah : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (derajat terkecil) dan Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (metode derajat satu)

Anodizing process in aluminum produces a phenomenal structure in form of metal oxide which is known as Anodic Aluminum Oxide (AAO). AAOis a very useful morfology to improve the adhesion properties for further coating in aluminum alloy and composite aluminum. This phenomenon is related to the presence of interlock bond between AAO and the next layer. The AAO morphology can be modified simply by varying anodizing parameters.
Therefore, selecting appropriate parameters plays an important role in order to obtain the desired pore size. Unfortunately, the preliminary studies did not provide any information on controlling the pore size and density (through increasing/decreasing the concentration of sulfuric acids, voltage, and duration of anodizing to determine pore diameter and density).
For that purpose, in this research some empirical models were built to predict the pore size produced by anodizing process in various parameters. The grand design if this research aims to develop empirical equations which predict the relationship between oxalic acid concentration, anodizing voltage and time to the pore diameter. However, this research also aims to analyze the formation mechanism and of the integrated layer on Al7075/SiC, as well as the enhancement of corrosion resistance resulted from the integrated layer. Moreover, the influence of various anodizing parameters, i.e. resistivity, concentration, temperature, and type of electrolyte on pore characteristics of AAOis also conducted in this study.
Anodizing process of Al7075/SiC was conducted in 16% H2SO4 solution in current densities 15, 20, 25 mA/cm2 at25, 0, -25oC for 30 minutes. Subsequently, cerium sealing process was carried out in CeCl3.6H2O+H2O2 at room temperature and pH 9 for 30 minutes. Anodizing of aluminum foil were carried out in 0,3; 0,5; 0,7M H2C2O4 solution and a mixture solution of 0.5M, 0.7M, and 0.9M H2C2O4 and 3M H2SO4 for 40-60 minutes. Anodizing processes were performed under potentiostatic conditions with constant potentials of 35, 40, and 45V for oxalic solution and 15 V for a mixture solution.
Morphology of AAO layer observations were performed using field emission scanning electron microscopy (FE-SEM) FEI Inspect F50, while the corrosion resistance of materials were investigated by means of polarization and EIS, and qualitative analysis of pore characteristics (pore diameters and densities) accomplised by ImagePro software.
The development of empirical equations using least square and response surface methods Integrated protection by conducting anodization at 0oC prior to cerium sealing in Al7075/SiC leads tothe formation of cerium spherical deposit in the diameter of 64 nm ( 3nm) which effectively covered most of the surface of oxide film as well as cavity. Moreover, this integrated protection enhanced four orders magnification of corrosion resistance than that of bare composite due to interlock bonding between the layers.
The increasing of electrolyte concentration and temperature, as well as voltage and duration of anodizing in 0.3; 0.5; dan 0.7 M oxalic acid leads to the increasing of pore diameter in AAO surface. While, the addition of sulfuric acid in oxalic acid provides much smaller pore diameters and higher pore densities at lower voltages than single electrolyte of oxalic acid. In general, pore density is only dependent on pore diameter, which decreases with the increases of pore diameter. The empirical equations built in this research are : Dp = 0,140625 MVt + 0,33125 MV ? 523542 Mt + 35,64583 M ? 0,04006 Vt + 0,685764 V +1,792431 t ? 42,5053 (least square) and Dp = 33,3 ? 236,3 M ? 1,453 V + 0,3942 t + 7,60 MV (first order model)
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2263
UI - Disertasi Membership  Universitas Indonesia Library
cover
Siahaan, Jessie Messa
"Aluminium merupakan salah satu material logam yang banyak digunakan, diaplikasikan dan dikembangkan pada berbagai macam produk otomotif, contohnya piston. Piston sebagai salah satu komponen otomotif yang cukup penting pada mesin kendaraan bermotor memerlukan sifat ketahanan abrasi dan ketahanan korosi yang baik. Salah satu metode perlakuan akhir yang dapat digunakan untuk mendapatkan sifat ketahanan abrasi dan korosi yang baik adalah anodisasi. Dalam proses anodisasi ini permukaan aluminium akan diubah menjadi lapisan aluminium oksida yang amat keras dan tahan korosi. Salah satu parameter terpenting yang amat menentukan karakteristik permukaan hasil anodisasi adalah konsentrasi dan jenis elektrolit yang digunakan. Penelitian kemudian dilakukan untuk memahami pengaruh dari besarnya konsentrasi elektrolit anodisasi terhadap kekerasan dan ketebalan dari lapisan oksida yang dihasilkan pada permukaan logam paduan aluminium silikon. Pada penelitian ini digunakan elektrolit tetap asam sulfat 20%wt, serta variabel bebas penambahan oksalat 3% wt, 5% wt, 7% wt, 10% wt, 15% wt. Hasil penelitian kemudian menunjukkan bahwa dengan meningkatnyapenambahan oksalat sampai 7% akan menurunkan kekerasan lapisan oksida rata-rata dan penambahan selanjutnya akan menambah kekerasan yang ditunjukkan dari hasil uji kekerasan mikro. Peningkatan juga dialami oleh ketebalan lapisan oksida rata-rata yang dihasilkan.

Aluminum is one of the most common metal that has been used, a applicated, and developed in automotive products, such as pistons. As a component that important in machine, this part needs high abrasive and good corrosion resistance. One method that can be used to get the properties is anodizing In this process aluminum will be ?artificially corroded? and produce an oxide film that have great hardness and good corrosion resistance, one of the most important thing to measure the film characteristic is the used electrolyte. This experiment was held to understand the effect of electrolyte concentration to hardness and thickness of the layer. This experiment used 20wt% sulfite acid mixed with 3 wt%,5 wt%, 7 wt%, 10 wt%, 15 wt% oxalic acid. The results show that oxalic addition up to 7 wt% will give it film hardness decrease, but further addition will increase it. The oxalic addition will also improve the film thickness."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S48393
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>