Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 228651 dokumen yang sesuai dengan query
cover
Widia Nursiyanto
"Saat ini divais spintronik untuk penyimpan data berbasis magnet telah menjadi perhatian para peneliti. Salah satu bahan yang berpotensi adalah feromagnetik berbentuk nanowire, seperti Racetrack Memory yang cara kerjanya berdasarkan pergerakan domain wall (DW). Pada penelitian ini, telah dilakukan analisa osilasi dan struktur domain wall di dalam kontriksi notch pada bahan feromagnetik (Fe, Ni, dan Co) berbentuk nanowire. Simulasi mikromagnetik menggunakan perangkat lunak bersifat publik bernama Object Oriented Micromagnetic Framework berdasarkan persamaan dinamika spin magnet Landau-Lifshitz- Gilbert. Ukuran nanowire 2000 200 5 nm, di bagian tengah diberikan notch ganda bersifat simetris berbentuk lengkung, segitiga, dan persegi. Di tengah notch diletakkan sebuah tipe struktur DW berbentuk transverse-wall (TW) dengan konfigurasi head-to-head. Penelitian diawali dengan pengamatan kondisi ground state yang diperoleh hasil bahwa DW stabil di tengah notch. Selanjutnya diberi medan magnet bolak-balik dengan amplitudo tetap 2 mT dan variasi frekuensi dari 0,3 -2,0 GHz. Hal yang menarik, terjadi osilasi DW dengan struktur TW yang stabil. Nilai amplitudo osilasi DW terlihat semakin turun dengan bertambahnya frekuensi medan bolak-balik, artinya notch berfungsi sebagai potensial pinning. Selanjutnya dilakukan perhitungan lebar DW berdasarkan FWHM dari data magnetisasi My dan hasil nilai lebar DW tergantung pada bentuk notch. Dari nilai lebar DW juga dihitung massa DW dengan memberlakukan DW sebagai model osilasi harmonik sederhana.

Recently, the development spintronic devices become great attention because its potential for magnetic storage and magnetic sensor devices. One of the materials has potential is the ferromagnetic nanowire, such as Racetrack Memory based on the domain wall motion. In this study, we have analyzed the oscillation and structure of domain wall in the ferromagnetic nanowire Co, Fe, dan Ni. We used micromagnetic simulation with public micromagnetic software Object Oriented Micromagnetic Framework (OOMMF) based on the spin dynamic Landau- Lifshitz-Gilbert (LLG) equation. The dimension of nanowire is 2000 × 200 × 5 nm with double notch is positioned at the center of the nanowire. The shape of notchs consisted of arch-notch, triangle-notch, and rectangular-notch with initial a head-to-head transverse wall (TW) is located at the center of nanowire. Firstly, we investigated the DW in ground state condition and we found the DW is stable at the center of nanowire. Secondly, we applied AC magnetic field with various frequency from 0.3 GHz-2.0 GHz and the amplitude of AC field is fixed to be 2 mT. Interestingly, we observed the DW oscillation with stably TW structure. Increasing the frequency of AC field, the amplitude of DW oscillation showed to decrease. This mean that the notch acted as the pinning potential. Furthermore, we also calculated the DW width based on FWHM from My magnetization and depended on the shape of the notch. From DW width, we also determined the DW mass with driven simple harmonic model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
D1956
UI - Disertasi Membership  Universitas Indonesia Library
cover
Sulaiman Hawibowo
"Pada penelitian ini telah dilakukan pengamatan dinamika domain-wall pada material feromagnet berbasis Co CoFe, CoFeB dan Fe FePt, FePd dalam bentuk nanowire. Analisis dilakukan dengan menggunakan simulasi mikromagnetik berdasarkan persamaan Landau-Lifshitz Gilbert LLG yang dimodifikasi menggunakan perangkat lunak mikromagnetik OOMMF Object Oriented Micromagnetic Framework Donahue and Porter, 1999. Ukuran dan geometri dari nanowire mempunyai panjang 2000 nm, dengan variasi lebar 50 nm, 100 nm, 150 nm dengan tebal 2,5 nm dan 5 nm. Faktor damping 0,05 dan ukuran sel 5 x 5 x t nm3 dengan t adalah ketebalan nanowire. Simulasi dinamika domain-wall ini menggunakan pulsa medan magnet aktif dengan durasi 0,5 ns serta variasi pemberain medan magnet luar menyatakan amplitudo pulsa.
Hasil simulasi memperlihatkan kecepatan domain-wall meningkat dengan bertambahnya medan magnet luar sampai medan magnet luar maksimum atau yang dikenal dengan medan Walker Breakdown WB . Kemudian, kecepatan domain-wall akan menurun drastis. Menariknya, kondisi sebelum medan WB menunjukan struktur transverse-wall sedangkan struktur vortex/antivortex-wall muncul setalah medan WB. Jika pemberian variasi tebal dan lebar pada geometri nanowire semakin besar maka hasil menunjukkan bahwa medan WB akan semakin menurun. Hasil pengamatan juga melibatkan energi demagnetisasi yang meningkat dengan bertambahnya medan magnet luar sebelum medan WB dan energi exchange yang meningkat ketika struktur vortex/antivortex-wall muncul setelah medan WB.

In this study we have observed the propagation of domain wall in Co based ferromagnetic materials CoFe, CoFeB and Fe FePt, FePd in the form of nanowire. The analysis was performed using a micromagnetic simulation based on the Landau Lifshitz Gilbert LLG equation modified using the OOMMF Object Oriented Micromagnetic Framework micromagnetic software Donahue and Porter, 1999. The size and geometry of nanowire has a length of 2000 nm, with variations in width 50 nm, 100 nm, 150 nm with 2.5 nm and 5 nm thickness. Damping factor 0.05 and cell size 5 x 5 x t nm3 with t is nanowire thickness. This domain wall dynamics simulation uses active magnetic field pulses with a duration of 0.5 ns and an external magnetic field variation represents pulse amplitudes.
The simulation results show that the domain wall velocity increases with the increase of the external magnetic field to the maximum outer magnetic field known as the Walker Breakdown WB field. Then, the domain wall speed will decrease dramatically. Interestingly, the condition before the WB field shows the transverse wall structure whereas the vortex antivortex wall structure appears after the WB field. If the variation of thickness and width in nanowire geometry is greater then the result indicates that the WB field will decrease further. The observations also involve increased demagnetization energy by increasing the external magnetic field before the WB field and increasing energy exchange when the vortex antivortex wall structure appears after the WB field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Candra Kurniawan
"Penelitian spintronika memiliki ide untuk memanipulasi spin elektron pada suatu sistem zat padat dengan tujuan untuk menghasilkan divais masa depan, seperti divais logika terintegrasi dan sistem penyimpan data non-volatile. Salah satunya adalah pengembangan divais racetrack memory yang berbasis domain wall (DW) magnetik dalam sistem kawat nano (nanowire) sebagai media penyimpanan data yang diusulkan oleh S. Parkin, dkk. pada tahun 2008. Perhatian penting pengembangan racetrack memory adalah karakteristik DW pada material magnetik dengan orientasi magnetisasi anisotropik sejajar bidang (in-plane anisotropy, IMA) dan tegak lurus bidang (perpendicular magnetic anisotropy, PMA). Kelebihan dari material PMA adalah mampu mengurangi besarnya arus ambang (threshold) hingga satu orde (~ 1011 Am-2) untuk menggerakkan DW sepanjang kawat nano dan mengurangi dampak pemanasan Joule. Dalam penelitian ini, dilakukan studi dinamika pegerakan DW dalam kawat nano berorientasi magnetisasi sejajar (IMA) dan tegak lurus (PMA) berbasis material feromagnetik menggunakan pendekatan simulasi mikromagnetik. Dari hasil penelitian ini diketahui bahwa pada material CoFeB yang bertipe PMA, DW memiliki kecenderungan orientasi perputaran magnetisasi secara natural (groundstate) yang bergantung pada geometri kawat nano sehingga memunculkan tipe Bloch Wall atau Néel Wall. Dengan demikian dapat didefinisikan suatu ukuran kritis (tc) transisi Bloch Wall menjadi Néel Wall sebanding dengan perubahan ukuran kawat nano melalui kalkulasi sederhana berdasarkan profil magnetisasi Mx dan My. Pada nanowire CoFeB, diketahui bahwa perubahan durasi pulsa magnetik eksternal mempengaruhi besaran medan Walker breakdown (HWB). Semakin pendek durasi pulsa magnetik, maka nilai HWB akan semakin besar. Pergeseran nilai HWB pada durasi pulsa magnetik yang lebih singkat disebabkan adanya kebutuhan energi DW untuk bergerak sepanjang kawat nano yang lebih dominan. Pada material IMA, seperti Permalloy, ditunjukkan bahwa ukuran kedalaman notch yang semakin besar sebanding dengan peningkatan arus depinning (Jd) untuk menggerakkan DW keluar dari area notch. Stuktur internal DW juga mengalami transformasi bentuk dari transversal menjadi anti-vortex dalam proses depinning. Pada material PMA CoFeB, ditunjukkan juga bahwa kedalaman ukuran notch memiliki korelasi berbanding lurus terhadap besarnya Jd. Namun demikian, pada kedalaman notch yang semakin besar terjadi peningkatan nilai Jd yang signifikan, terutama pada ukuran > 20 nm. Selain itu, nilai Jd tersebut lebih dipengaruhi oleh ketebalan kawat nano pada ukuran yang lebih tipis. Karakteristik ini dipengaruhi oleh peningkatan luas ukuran melintang (cross-sectional area), sehingga meningkatkan dominasi energi demagnetisasi untuk menahan DW pada kondisi pinning. Dipahami bahwa peningkatan energi DW saat depinning dapat disebabkan oleh perubahan ukuran struktur DW yang terjadi pada ukuran kawat nano yang lebih besar.

The spintronics research had an idea to manipulate the electron spin in the solid state system with the purpose to obtain future devices, such as the integrated logic and the non-volatile memory. One of the important topics was the development of racetrack memory, based on the magnetic domain wall (DW) on the nanowire system as proposed by S. Parkin et al. in 2008. The interesting part of racetrack memory was the DW characteristics in the magnetic materials with in-plane anisotropy (IMA) and perpendicular magnetic anisotropy (PMA). The advantages of the PMA materials are the lower threshold current (~1011 Am-2) to move DW along the nanowire and reduce the impact of Joule heating. In this work, the DW dynamics on the ferromagnetic nanowire with IMA and PMA orientation have been studied utilizing micromagnetic simulation. The results showed that on the PMA CoFeB material, the DW magnetization tends to change gradually in the groundstate condition depending on nanowire geometries to obtain the Bloch Wall or the Néel Wall. Therefore, a critical transition size (tc) of the Bloch Wall to Néel Wall can be defined as the increasing nanowire size by performing a simple calculation based on the Mx and My magnetization profile. In the CoFeB nanowire, it is understood that the decreasing of external magnetic pulse duration influenced the value of the Walker breakdown field (HWB). The HWB increased as the decreasing of pulse duration decreased. The shifted HWB values in the shorter pulse duration were caused by the dominant energy needed to move DW along the nanowire. The IMA material, such as Permalloy, showed that the increasing of notch dept related to the increasing of depinning current (Jd) to move the DW out from the notch area. The DW internal structure was also transformed from transverse to anti-vortex in the depinning process. The PMA CoFeB materials also showed that the notch dept size was related proportionally to the increased Jd. However, the Jd value increased significantly in the notch dept size larger than 20 nm. Furthermore, the Jd values are more influenced by the decreasing nanowire thickness. This characteristic was related to the increase of the cross-sectional area, so the demagnetization energy was dominated on the DW in the pinning condition. It is understood that the increase of DW depinning energy is caused by the DW structural change in the larger nanowire."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Mardona
"Dalam penelitian ini telah dilakukan pengamatan dinamika domain-wall dan efek anisotropi pada material ferromagnet Co dan Ni dalam bentuk nanowire. Pengamatan dinamika domain-wall dan efek anisotropi dilakukan dengan menggunakan simulasi micromagnetic berdasarkan persamaan Landau-Lifshitz-Gilbert (LLG) menggunakan perangkat lunak micromagnetic OOMMF. Ukuran dan geometri nanowire simulasi micromagnetic mempunyai panjang 2000 nm dengan variasi lebar 100 nm, 150 nm, dan 200 nm dan tebal 2,5 nm dan 5,0 nm. Faktor damping 0,01 dan ukuran sel dengan t adalah ketebalan nanowire. Simulasi micromagnetic dilakukan secara sistematis dengan memberikan medan magnet luar dalam bentuk pulsa dengan waktu pulsa 1 ns dan variasi amplitudo sebagai besarnya medan magnet luar. Hasil pengamatan memperlihatkan kecepatan domain-wall meningkat dengan bertambahnya medan magnet luar sampai mencapai medan magnet luar maksimum yang dikenal dengan medan Walker breakdown. Kemudian kecepatan domain-wall menurun dengan bertambahnya medan magnet luar setelah medan Walker breakdown. Hal yang sangat menarik dari hasil pengamatan bahwa struktur domain-wall memperlihatkan struktur berbentuk transverse sebelum Walker breakdown dan timbul struktur vortex/anti-vortex wall sesudah Walker breakdown. Selanjutnya, analisis energi sistem juga dilakukan yaitu energi total, energi Zeeman, energi exchange, energi anisotropi, dan energi demagnetisasi. Hasil analisis menunjukkan energi demagnetisasi meningkat dengan bertambahnya medan magnet luar sebelum Walker breakdown dan menurun ketika struktur vortex/antivortex wall terbentuk sesudah Walker breakdown. Efek anisotropi dari material Co dan Ni diperlihatkan pada profil kecepatan domain-wall dan kerapatan energi total nanowire. Profil kecepatan domain-wall memperlihatkan kecepatan menurun secara landai di sekitar Walker breakdown dibandingkan material Py yang menurun cukup curam. Kerapatan energi total untuk material Co lebih besar dari material Py karena pengaruh nilai kontansta anisotropi bernilai positif dan material Ni yang lebih kecil dibandingkan material Py karena nilai konstanta anisotropi bernilai negatif. Hasil ini memperlihatkan efek anisotropi mempengaruhi dinamika domain-wall dalam nanowire dan harus dipertimbangkan dalam merealisasikan devais-devais berbasis magnet di masa depan.

In this work, we have investigated the domain wall dynamic and anisotropy effect of materials Co and Ni in ferromagnetic nanowires by means of micromagnetic simulation. The simulation is carried out by the public micromagnetic software based on Landau-Lifshitz-Gilbert (LLG) equation. The length of ferromagnetic nanowire is set to be 2000 nm corresponds to width variation from 100 nm to 200 nm and the thickness variation are 2.5 nm and 5.0 nm. The damping factor is 0.01 and the cell size is with t is the thickness. The simulation is applied by the external magnetic pulsed with length of 1 ns and the variation the external magnetic field strength. The calculation showed the domain wall velocity increases as the external magnetic field increases and reach the maximum the external field as known the Walker breakdown. Then the domain wall velocity abruptly decreases after the Walker breakdown. Very interestingly, before the Walker breakdown, the domain wall exhibits the transverse wall while the vortex/anti-vortex wall after the Walker breakdown. We have also investigated the energy system that consists of the total energy, Zeeman energy, the exchange energy, the demagnetization, and the anisotropy energy. The analyzed showed that the demagnetization increases as the external field increases before the Walker breakdown and decreases as the vortex/anti-vortex formed after the Walker breakdown. The anisotropy effect of Co and Ni ferromagnetic is shown by the domain wall velocity and the total energy density profile. The velocity shows slightly decreasing around the Walker breakdown compare with the material Py. The total energy density of Co shows large than Py since the anistropy contant is positive (K > 0) and Ni shows small that Py since the anisotropy is negative (K < 0). This means that the effect anisotropy also contributes the domain wall motion in ferromagnetic nanowire and must be considered in the realization magnetic devices in the future."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T29862
UI - Tesis Open  Universitas Indonesia Library
cover
Annamaria Bupu
"Studi ini mempelajari pembentukan momen magnet dan keteraturan ferromagnetik pada sistem Ta:TiO2. Berdasarkan hasil eksperimen yang dilakukan oleh Rusydi et al., kami membuat hipotesis bahwa adanya vakansi Ti pada satu unit sel sistem akan menyebabkan empat elektron dari atom oksigen yang berada di sekitarnya menjadi tidak berpasangan. Elektron yang tidak berpasangan tersebut akan membentuk momen magnet yang tidak bernilai nol. Selanjunya, momen magnet yang telah terbentuk akan beriteraksi dengan momen magnet lain dengan dimediasikan oleh elektron. Untuk membuktikan hipotesis tersebut, kami melakukan perhitungan dari elektron-elektron yang tidak berpasangan dengan terlebih dahulu mengkonstruksi Hamiltonian yang menjelaskan keempat elektron tersebut dan melakukan perhitungan konstanta kopling RKKY sebagai fungsi jarak dua momen magnet pada berbagai temperatur untuk mempelajari interaksi magnetik yang terjadi.
Hasil perhitungan menunjukkan bahwa pada keadaan dasar, keempat elektron cenderung memiliki spin yang searah dan kesearahan dari spin elektron-elektron tersebut tidak dipengaruhi oleh temperatur. Selain itu, perhitungan konstanta kopling RKKY menunjukkan bahwa kopling ferromagnetik terjadi hingga jarak 5 unit sel dan sedikit bertambah seiring dengan pertambahan temperatur. Hasil ini menunjukkan bahwa vakansi Ti pada Ta:TiO2 akan membentuk momen magnet dan ferromagnetik yang terjadi disebabkan oleh mekanisme RKKY.

Based on a previous experimental study that reported a RTFM induced by Ti vacancies in Ta-doped TiO2, here we present a theoretical study on the formation of magnetic moments and the ferromagnetic ordering in that system. We hypothesize that Ti-vacancy in one unit cell of the system has caused four electrons from the surrounding oxygen atoms to become unpaired with a non-zero net magnetic moment. Further, the magnetic moments interact with one another mediated by conduction electrons leading to a ferromagnetic order. To examine our hypothesis, first we calculate the by constructing a Hamiltonian for the four interacting electrons. We restrict our Hilbert space by expanding the eigenstates (all possible configurations of the four electrons among the four p orbitals of the oxygen atoms surrounding the Ti vacancy).
Our results confirm that the ground state of the system prefers to be in almost perfect alignment, and this alignment is robust upto far above room temperature. Next, we calculate the RKKY coupling constant as a function of distance between two local magnetic moments at various temperatures. Our calculations show that the ferromagnetic coupling extends up to 5 unit cells and enhances slightly as temperature is increased. These results support our hypothesis that the Ti vacancies in anatase TiO2 form magnetic moments and the ferromagnetism of this system is driven by RKKY mechanism.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63794
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sormin, Gabriela C.M.
"Material BaFe12O19 dan material paduan Ba1 xBixFe12O19 dengan nilai x 0 2 telah berhasil dibuat melalui metode sol gel Prekursor ferit diperoleh dari campuran larutan barium nitrat ferit nitrat dan bismut nitrat. Prekursor ini disinter pada temperatur 925 C dengan variasi waktu 6 8 dan 10 jam pada tekanan udara 1 atm. Pengaruh dari temperatur sintering pada kristalografi dan sifat magnetik. Material BaFe12O19 dan material paduan Ba1 xBixFe12O19 menjadi fokus yang akan dipelajari. Material-material ini akan dikarakterisasi dengan menggunakan X ray diffraction XRD scanning electron microscope SEM and Permagraph.
Hasil karakterisasi XRD menunjukkan bahwa material BaFe12O19 dan Ba1 xBixFe12O19 memiliki struktur kristal hexagonal. Secara umum hasil pengujian Permagraph pada suhu ruang menunjukkan kedua material tersebut bersifat feromagnetik dengan nilai medan magnet saturasi medan koersif dan magnetisasi remanen yang berbeda. Akan tetapi persamaan yang dimiliki kedua material ini adalah dengan semakin meningkatnya temperatur sintering dan waktu penahanan sintering maka nilai medan magnet saturasi medan koersif dan magnetisasi remanen juga semakin meningkat.

BaFe12O19 compounds and Ba1 xBixFe12O19 compounds which is x 0 2 have been made by sol gel methode. The ferrite precursors were obtained from aqueous mixtures of Barium nitrate Bismuth nitrate and Ferric nitrate. These precursors were sintered at temperature 925 C with time variation 6 8 and 10 in a static air atmosphere. Effects of sintering temperature on the crystallography and magnetic properties to BaFe12O19 compounds and Ba1 xBixFe12O19 compounds were systematically studied. The powders formed were investigated using X ray diffraction XRD scanning electron microscope SEM and Permagraph.
The XRD characterization showed that the BaFe12O19 and Ba1 xBixFe12O19 compounds rsquo crystal structure are hexagonal. The main finding of permagraph characterization at the room temperature showed that the coumpounds are ferromagnetic matter which are the magnetic saturation koersif field and remanence magnetization are different. With increasing of temperature sintering coercivity magnetic saturation and remanence magnetization value tends to rising.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S44859
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rani Kumalasari Adita Putri
"Interaksi Dzyaloshinskii-Moriya (DMI) yang terkenal sering ditemukan pada sistem multilayer merupakan interaksi pertukaran antisimetrik yang telah berperan besar dalam bidang spintronik. Disini kami meneliti interaksi spin pada antarmuka sistem multilayer yang terdiri dari sebuah lapisan paramagnetik yang terbuat dari logam transisi berat pita pengisian 5d (5d3-5d10) dan lapisan-lapisan feromagnetik yang terbuat dari (CoFeB, Co). Kami menggunakan teori respons linier untuk mengkomputasikan kekuatan DMI dan menentukan tekstur spin secara numerik menggunakan koefisien DM dan suseptibilitas magnetik yang diperoleh untuk memenuhi tujuan kami. Hasil yang kami peroleh menunjukkan tekstur spin DMI memiliki arah spin yang mengarah sejajar dengan magnetisasi dan kopling spin-orbit Rashba (RSOC) akan sejajar dengan permukaan. Dengan merekayasa antarmuka, sistem dapat menunjukkan sifat magnetik yang menarik dan dapat menginspirasikan gagasan baru dan kreatif dalam bidang spintronik.

The famous Dzyaloshinskii-Moriya Interaction (DMI), which is frequently seen in multilayer systems, is an antisymmetric exchange interaction that has played a major part in the field of spintronics. In this study, we examine the spin interactions in the multilayer system that consists of paramagnetic layer using heavy 5d band filling (5d3-5d10) transition metal and ferromagnetic layer comprised of (CoFeB, Co). We use linear response theory to compute the strength of DMI and numerically depict the spin texture using the recorded DM coefficient and magnetic susceptibility to accomplish our goals. Our results show that the DMI spin texture has a preferred spin direction parallel to the magnetization and the RSOC parallel to the surface. By interface engineering, the system could exhibit intriguing magnetic properties that inspire new and creative spintronics notions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdan Akbar Notonegoro
"

Bismuth Ferrite, BiFeO3 (BFO) merupakan material yang memperlihatkan sifat ferroelektrik yang baik dan sifat ferromagnetik yang lemah. Lemahnya sifat ferromagnetik material BFO ini disebabkan adanya sifat antiferromagnetik sikloid tipe G. Salah satu upaya meningkatkan sifat ferromagnetik BFO ini adalah dengan mendoping atom Bi yang berada pada posisi A didalam senyawa ABO3 menggunakan Li (Bi1-xLixFeO3, x= 0,02, 0,04, 0,06) dan Zn (Bi1-zZnzO3, z= 0,05, 0,1, 0,15). Proses sintesis doping BFO tersebut dilakukan menggunakan metode sol-gel. Dari sampel hasil doping tersebut diketahui bahwa keberadaan Li dan Zn telah memicu terjadinya kenaikan saturasi magnetik didalam BFO. Kenaikan sifat magnetik ini diakibatkan oleh pengecilan sudut Fe–O–Fe. Pengecilan sudut ini disebabkan oleh perubahan rasio kisi c/a kristal BFO didalam struktur rombohedral dengan spacegroup (s.g.) R3c. Kenaikan sifat magnetik didalam sampel BFO hasil doping tersebut disertai munculnya Fe2+ dan terbentuknya vakansi oksigen sebagai kompensasi atas keberadaan Li1+ dan Zn2+ yang menggantikan posisi Bi3+. Keberadaan Li didalam BFO teridentifikasi pada energi ikat sebesar 56,7 eV menggunakan XPS. Penggunaan metode sol-gel didalam proses preparasi sampel diketahui efektif untuk menghasilkan bubuk sampel berskala nano (<200 nm).


Bismuth Ferrite, BiFeO3 (BFO) is a material that shows excellent ferroelectric properties and weak ferromagnetic properties. The weak ferromagnetic properties of BFO material are due to the antiferromagnetic nature of cycloid type G. One effort to improve the ferromagnetic properties of BFO is to dope Bi atoms in position A in the compound ABO3 using Li (Bi1-xLixFeO3, x= 0,02, 0,04, 0,06) and Zn (Bi1-zZnzO3, z= 0,05, 0,1, 0,15). The BFO doping synthesis process was carried out using the sol-gel method. From the doping sample, it is known that the presence of Li and Zn has triggered an increase in magnetic saturation in BFO. This increase in magnetic properties was caused by the reduction of Fe – O – Fe angle. This reduction in angle is caused by changes in the lattice ratio of c / a BFO crystals in the rhombohedral structure to the spacegroup (s.g.) R3c. The increase in magnetic properties in the doped BFO sample is accompanied by the appearance of Fe2+ and the formation of oxygen vacancy as compensation for the presence of Li1+ and Zn2+ which replace the position of Bi3+. Li's presence in BFO was identified in the binding energy of 56.7 eV using XPS. The use of the sol-gel method in the sample preparation process is known to be effective for producing nanoscale sample powders (<200 nm). 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Qoimatul Mustaghfiroh
"Telah dilakukan pengamatan terhadap kurva histeresis dan struktur domain pada lapisan tipis CoFe dan CoFeB model disk dan square yang diberi medan magnetik eksternal pada arah in-plane dan arah out-plane menggunakan pendekatan simulasi mikromagnetik. Simulasi mikromagnetik menggunakan perangkat lunak OOMMF berbasis Landau-Lifshitz-Gilbert LLG. Variasi ukuran model material CoFe dan CoFeB dilakukan pada rentang diameter 50 nm 500 nm dan ketebalan 5 nm dan 10 nm. Parameter simulasi menggunakan ukuran sel 2,5 x 2,5 x 2,5 nm3 dan faktor redaman = 0,05. Lapisan tipis CoFe model disk dan square menunjukkan sifat Perpendicular Magnetic Anisotropy PMA dengan menghasilkan koersivitas yang rendah ketika diberi medan eksternal arah out-plane. Hal menarik ditunjukkan pada lapisan tipis CoFeB model disk dan square dengan pemberian medan arah in-plane dan out-plane yang mengindikasikan pengaruh Boron mengubah nilai koersivitas CoFe menjadi lebih tinggi. CoFeB bersifat Perpendicular Magnetic Anisotropy PMA. Analisis terhadap besarnya medan nukleasi, koersivitas, dan waktu pembalikan menunjukkan adanya pengaruh perubahan ukuran size-dependent terhadap perubahan kurva histerisis lapisan tipis CoFe dan CoFeB. Pengamatan terhadap struktur domain CoFeB memperlihatkan terjadi perubahan struktur domain dari keadaan single domain SD menjadi multi domain MD dengan menunjukkan tipikal mekanisme pembalikan Neel wall.

Hysteresis loop and domain structure in thin film CoFe and CoFeB model disk and square are applied external field in two ways parallel and perpendicular has been investigate by using micromagnetic simulation. Micromagnetic simulation software OOMMF based on magnetization dynamic Landau Lifshitz Gilbert. Thin film CoFe and CoFeB size diameter ranging from 50 nm to 500 nm and variation thickness 5 nm and 10 nm. Size of cell size 2,5 x 2,5 x 2,5 nm3 and damping factor 0,05. Hysteresis loop of thin film CoFe disk applied parallel external field showed square loop hysteresis which showed typical in easy axis. In otherwise when applied perpendicular external magnetic field showed typical hysteresis loop in hard axis with low coercivity. Therefore, thin film CoFe disk and square has characteristic Perpendicular Magnetic Anisotropy PMA. Interestingly, thin film CoFeB disk and square applied by parallel and perpendicular magnetic field showed hysteresis loop which indicate that Boron changed coercivity from low 40 mT to high 780 mT. CoFeB showed Perpendicular Magnetic Anisotropy PMA. Moreover, coercivity, switching time, and nucleation field were shifted as the CoFe and CoFeB size varied size dependent. Observation domain structure of CoFeB showed change of domain structure from single domain to multi domain with switching mechanism in multi domain structure showed Neel wall typical."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ummaira Fadhilah
"Salah satu material feromagnetik yang memiliki magnetik anisotropi yang tinggi yaitu FePt dan FePd telah diamati dalam bentuk lapisan tipis disk dan square dengan menggunakan perangkat lunak simulasi mikromagnetik bersifat publik OOMMF berdasarkan persamaan Landau-Lifshitz-Gilbert LLG. Variasi diameter yang digunakan mulai dari ukuran 50 nm hingga 500 nm, dua variasi ketebalan 5 dan 10 nm, dan konstanta redaman ?=0.05 dengan ukuran sel 2.5 2.5 2.5 ? nm ?^ 3 disimulasi dengan pemberian medan magnet arah in-plane dan out-plane. Pengamatan kurva histeresis dan dinamika struktur domain difokuskan untuk memperoleh karakteristik sifat magnet berupa pengaruh bentuk dan ukuran terhadap kurva histeresis, struktur domain yang dibentuk, medan koersivitas, medan nukleasi, waktu pembalikan dan mekanisme pembalikan yang terjadi. Hasil pengamatan memperlihatkan kurva histeresis yang diperoleh memiliki nilai koersivitas yang besar pada saat pemberian medan arah inplane namun pada saat pemberian medan arah outplane koersivitas yang diperoleh mendekati nol sebagaimana tipikal kurva histeresis material yang diberikan medan ke arah hard-axisnya. Namun, menariknya pada ukuran dibawah le; 100 nm masih ditemukan nilai koersivitas dengan nilai berkisar antara 20 80 mT. Nilai koersivitas ini mengindikasikan material FePt dan FePd sebagai material PMA. Selain itu, teramati nilai medan koersivitas yang meningkat seiring dengan berkurangnysa ukuran diameter yang ditunjukkan di daerah meso nilai koersivitas yang diperoleh kecil dan cenderung konstan. Medan Nukleasi menunjukkan adanya pergeseran nilai seiring dengan berubahnya ukuran material. Hal ini menunjukkan bahwa ukuran berpengaruh pada sifat magnetik lapisan tipis FePt dan FePd. Struktur domain sebagian besar pada model square ditemukan dalam keadaan vortex dengan mode pembalikan curling, namun pada model disk, ditemukan struktur single domain di bawah diameter 200 nm untuk material FePt dan di bawah 80 nm untuk material FePd yang selanjutnya dijelaskan dengan profil energi sistem mikromagnetik.

One of the highly anisotropic ferromagnetic materials FePt and FePd has been observed by using public micromagnetic simulation software, OOMMF based on the Landau Lifshitz Gilbert LLG equation. In this study, we used disk and square shaped model with size from 50 nm to 500 nm, two variations in thicknesses are 5 and 10 nm, and damping constant 0.05 with cell size 2.5 2.5 2.5 nm 3 were simulated by in plane and out plane applied field. We focused to find magnetic properties such as hysteresis loops, domain structure, coercivity field, nucleation field, and switching time.The results showed the hysteresis loops has a large coercivity when the external inplane field was applied and zero coercivity when the external outplane field was applied as typical of the material 39 s hysteresis loops given the field toward the hard axis. Interestingly, coercivity still found in materials with size below le 100 nm with ranging between 20 80 mT. From this result, a certain value of the coercivity field appeared in out plane applied field indicated a perpendicular magnetic anisotropy PMA behaviour in FePt and FePd ferromagnets. We found that the coercivity tended decreasing as the length and thickness of disk and square ferromagnets increased, however in the mesoscopic region showed small coercivity and tended to be constant. Moreover, nucleation fields was shifted as the material rsquo s size varied. The results showed that the size effected in the magnetic properties of the FePt and FePd thin layers. The domain structure in the square shaped is mostly found in the state of vortex with curling reversal mode, but in the disk shaped with size below 200 nm formed single domain structure for FePt and size below 80 nm for FePd. Furthermore, these results could be explained by its energy profiles."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>