Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 89619 dokumen yang sesuai dengan query
cover
Sutrisno
"ABSTRAK
Pengerasan permukaan baja karbon rendah St41 telah dilakukan melalui proses boronisasi padat dengan tekanan mekanik. Sampel baja St41 dimasukkan kedalam wadah, ditimbun dengan serbuk boronisasi dalam bentuk campuran 5% boron karbida (B4C), 90% silicon karbida (SiC), 5% kalium borofluoride (KBF4), dan diberi tekanan 10 kN. Sampel yang telah dimasukkan dalam wadah, dipanaskan pada temperature 600, 700, 800, 900,dan 10000C selama 2, 4, 6, dan 8 jam pada masing-masing temperature. Pendinginan sampel dilakukan secara alamiah pada suhu kamar. Setelah dipanaskan, sampel dikarakterisasi dengan mikroskop optic, uji kekerasan mikro, X-RD, dan ketahanan aus. Morfologi dan ketebalan lapisan boride yang terjadi diamati dan diukur pada potongan melintang sampel. Untuk menentukan fase yang terjadi dilakukan pencocokan kurva dengan software Match berdasarkan data kristalografi. Untuk menganalisis fase secara kuantitatif digunakan software GSAS untuk menentukan ukuran kristalit rata-rata, dan parameter kisi, pada masing-masing fase yang terbentuk. Hasil penelitian menunjukkan bahwa dengan menambahkan tekanan mekanik untuk mencegah terjadinya oksidasi pada proses boronisasi padat dapat membentuk larutan padat intertisi lapisan besi boride pada permukaan baja St41. Dari hasil pengujian diperoleh kekerasan mikro pada permukaan lapisan besi boride sebesar 1703 HV dengan ketebalan 309 μm, dan ketahanan aus 36 kali ketahanan aus sampel semula. Harga kekerasan mikro dan ketebalan tersebut lebih besar jika dibandingkan dengan hasil-hasil penelitian terdahulu dan meningkat menjadi lebih dari 10 kali lipat harga kekerasan sampel semula. Dari hasil perhitungan diperoleh persamaan difusi D = D0 exp (-168,25 kJ/RT) dengan energi aktivasi sebesar 168,25 kJ.

ABSTRACT
Surface hardening of low carbon steel St41 has been done through the pack boronizing combining with mechanical pressure. The sample of St41 steel was inserted into the container, containing boronizing powder with a mixture of 5% in the form of boron carbide (B4C), 90% silicon carbide (SiC), 5% potassium borofluoride (KBF4), and given the mechanical pressure of 10 kN. Samples were heated at temperatures of 600, 700, 800, 900, and 10000C for 2, 4, 6, and 8 hours at each temperature. After heating, the samples were characterized by optical microscop, micro-hardness, X-RD, and wear resistance. Morphology and boride layer thicknes is observed and measured on a cross section of the sample. Quantitative phase analysis software GSAS used to determine phase, the average crystallite size, and lattice parameters of each phase formed. It is also obtained the surface layer hardness of iron boride was 1703 HV with a thickness of 309 μm, and wear resistance about 36 times than the wear resistance of the untreated sample. The hardness and the thickness is greater when compared with the results of previous studies 10 times to the hardness of untreated sample. Energy activation and diffusion equation have value 168,255 kJ and D = D0 exp (-168.25 kJ/RT).
"
2014
D1921
UI - Disertasi Membership  Universitas Indonesia Library
cover
Jordy Herfandi
"Lambung kapal perang membutuhkan material dengan spesifikasi ketangguhan yang baik agar dapat menahan beban kejut Biasanya lambung kapal terbuat dari baja jenis HSLA High Strength Low Alloy Baja jenis ini sangat berpotensi untuk ditingkatkan sifat mekanisnya agar sesuai digunakan sebagai material lambung kapal perang khususnya ketangguhan Oleh karena itu penelitian ini mempelajari proses perlakuan panas untuk meningkatkan sifat mekanis baha HSLA grade EH36 khususnya ketangguhan Proses perlakuan panas yang dilakukan adalah Austenisasi pada temperatur 850 900 dan 950 oC selama 20 menit diikuti dengan pendinginan cepat menggunakan media air oli dan oli panas Perlakuan panas selanjutnya adalah Tempering pada temperatur 600 oC selama 30 menit Karakterisasi yang dilakukan meliputi uji kekerasan mikro dan pengujian impak serta pengamatan struktur mikro dengan menggunakan mikroskop optik Hasil dari perlakuan panas berhasil meningkatkan ketangguhan baja HSLA grade EH36 dari 6 80 Joule cm2 menjadi 37 90 Joule cm2 atau 325 lebih tinggi dari ketangguhan kondisi awal Perlakuan panas berhasil mendapatkan fasa ferit acicular yang fraksi volumenya menurun seiring dengan peningkatan temperatur austenisasi yaitu 50 5 pada 850°C 18 pada 900°C dan 9 pada 950°C

Ship hull requires material with specification of good toughness to be able to stand for impact load Usually ship hull is made of HSLA Steel High Strength Low Alloy This type of steel is very potential to be improved on mechanic properties to suit the use in warship hull particularly its toughness Therefore this research studied heat treatment process to improve mechanic properties of HSLA Steel grade EH36 Heat treatment was Austenisation at 850 900 dan 950 oC for 20 minutes followed by quenching in water oil and hot oil Further heat treatment was tempering performed at 600 oC for 30 minutes Characterisation including hardness testing and impact testing as well as microstructure observation by using optical microscope Heat treatment succeed to improve toughness of HSLA steel grade EH36 from 6 80 Joule cm2 to 37 90 Joule cm2 or as much as 325 higher than as rolled condition Heat treatment successfully obtained acicular ferrite which decreases with increasing temperature 50 5 at austenisation 850°C 18 at austenisation 900°C and 9 at austenisation 950°C
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S58353
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nasution, Ichwanul Muslimin Alfattah
"Penelitian ini didasari oleh terjadinya fenomena crack pada komponen bucket tooth, yang yang menggunakan material baja HSLA, setelah 1 bulan diproduksi, yang disebut dengan delayed crack. Penelitian ini akan berfokus terhadap proses perlakuan panas, khususnya tempering setelah normalisasi. Tempering dilakukan selama 1 jam dengan variabel temperatur tempering pada temperatur 527, 577, 627, dan 677°C. Sampel pengujian awalnya berupa keel block hasil normalisasi, yang kemudian dipotong menjadi balok dengan dimensi 4 x 1 x 4 cm. Karakterisasi dilakukan pada sampel as-normalize dan setelah ditempering, dimulai dari pengamatan struktur mikro menggunakan mikroskop optik, Scanning Electron Microscope (SEM), dan pengujian kekerasan mikro dan makro. Didapatkan bahwa tempering setelah normalisasi tidak hanya menghomogenisasi struktur mikro, tetapi juga mentransformasi fasa dari upper bainite menjadi granular bainite. Semua variabel temperatur tempering menghasilkan bentuk struktur mikro yang sama, berupa granular bainite. Seiring meningkatnya temperatur tempering setelah normalisasi, struktur mikro akan semakin membulat, ketajamannya akan semakin berkurang, kekerasan makro akan menurun dari 389 HVN menjadi 257 HVN, dan kekerasan mikro akan menurun dari 371 HVN menjadi 247 HVN.

This study is based on the occurrence of a phenomenon of crack on a bucket tooth component that used HSLA steel as a material after 1 month being produced, which is called delayed crack. This study will be focusing on its heat treatment process, especially tempering after normalizing. Tempering was carried out for 1 hour with variable tempering temperatures at 527, 577, 627, and 677°C. Initially, the sample was a normalized keel block, which was then cut into blocks with dimensions of 4 x 1 x 4 cm. Characterization was carried out on as normalize and after tempering samples, such as observing microstructure using Optical Microscopy (OM), Scanning Electron Microscope (SEM), microhardness and macro hardness testing. It was found that tempering after normalizing not only homogenized the microstructure, but also transformed the phase from upper bainite to granular bainite. All tempering temperature variables produced the same microstructure, that is granular bainite. As the tempering temperature after normalizing increases, the microstructure will be increasingly rounded, the sharpness will be decreased, macro hardness decreased from 389 HVN to 257 HVN, and microhardness decreased from 371 HVN to 247 HVN."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Nugroho
"Salah satu sasaran dari penelitian ini adalah meningkatkan ketebalan coating Fe-Al agar dapat memperbaiki ketahanan terhadap sulfidisasi dari material ini. Senyawa intermetalik Fe-Al seperti diketahui memiliki sifat tahan terhadap oksidasi temperatur tinggi. Untuk meningkatkan ketahanan terhadap oksidasi temperatur tinggi dari stainless steel 410, lapisan intermetalik Fe-Al dibuat pada permukaan substrate yang mengandung Fe yang tinggi dengan menggunakan metode pack cementation aluminizing. Parameter percobaan pack cementation aluminizing antara lain : waktu proses dan kandungan alumunium dalam material pack akan membentuk lapisan intermetalik Fe-Al dengan ketebalan dan komposisi yang sesuai. Hasil penelitian menunjukkan, meningkatnya waktu proses akan meningkatkan ketebalan coating dari 3,95 ?m menjadi 11,66 ?m. Peningkatan kandungan alumunium dalam material pack juga akan meningkatkan ketebalan coating dari 9,68 menjadi 12,64. Coating terdiri dari larutan padat Fe-Al. Berdasarkan hasil tersebut, komposisi yang diteliti belum dapat membentuk lapisan intermetalik Fe-Al. Untuk membentuk lapisan intermetalik Fe-Al kandungan alumunium dalam material pack perlu ditingkatkan.

One of the specific goals of the present research is to increase the thickness of the outer aluminide layer of Fe-Al coatings to improve sulfidation resistance of these alloys. Iron aluminide (Fe-Al) intermetallic compounds are well known for their high temperature oxidation resistance. In an effort to increase high temperature oxidation resistance of stainless steel 410, iron-aluminum (Fe-Al) intermetallic coatings with high iron content were grown on the substrate by the pack cementation aluminizing method. Pack cementation aluminizing parameters such as time and aluminum content were varied to fabricate an iron aluminide (Fe-Al) with suitable thickness and composition. The result revealed that the increase of time process will raise the coating thickness, 3.95?m to 11.66 ?m. The Increase of alumimum content in material pack will increase the coating thickness from 9.68?m to 12.64 ?m. The coating consisted of a Fe-Al solid solution. Based on the result, the researched composition cannot form Fe-Al intermetallic layer. To form the Fe-Al intermetallic layer, the contented of aluminum in material pack needs to be increase.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51514
UI - Skripsi Open  Universitas Indonesia Library
cover
Rachmadiosi Muhammad
"Terjadi fenomena retak tertunda (delayed crack) pada produk bucket tooth PT. X yang merupakan salah satu komponen pada excavator. Proses pembuatan produk bucket tooth melalui beberapa tahapan proses perlakuan panas mulai dari tahap pengecoran, normalisasi, lalu dilanjutkan dengan tempering. Kemudian austenisasi dan quenching dengan medium polialkilen glikol (PAG) dan terakhir adalah proses double tempering. Hasil pengamatan mikrostruktur menunjukkan terjadinya fenomena dekarburisasi pada bagian permukaan material baja HSLA yang terlihat dari semua sampel produk mulai dari hasil pengecoran hingga double tempering. Kemudian terlihat pula adanya struktur dendritik dan/atau zona transformasi yang tidak hilang dari tahap awal perlakuan panas hingga sampel produk hasil double tempering walaupun telah melalui poses perlakuan panas normalisasi. Ini mengindikasikan proses normalisasi yang dilakukan belum optimal untuk menyeragamkan mikrostruktur produk bucket tooth. Selain itu juga teridentifikasi adanya austenit sisa sebesar 2,8% pada mikrostruktur sampel produk hasil double tempering yang merupakan tahap akhir proses perlakuan panas pada pembuatan produk bucket tooth. Hal ini berisiko untuk memicu terjadinya delayed crack pada produk bucket tooth. Temuan tersebut juga didukung oleh hasil pengujian kekerasan microvickers yang menunjukkan nilai kekerasan sebesar 296 VHN pada area terang pengamatan mikrostruktur produk hasil double tempering yang berada dalam rentang nilai kekerasan austenit.

Delayed cracking phenomenon occurs in the bucket tooth products of PT. X, which are one component of excavators. The bucket tooth productss making process goes through several stages of the heat treatment process starting from the casting, normalization, then proceed with tempering process. Then austenisation and quenching with polyalkylene glycol (PAG) medium and finally the double tempering process. Microstructure observation results show the phenomenon of decarburization on the surface of HSLA steel material which is seen from all product samples ranging from casting to double tempering. Then it also shows the dendritic structure and/or transformation zone that does not disappear from the initial stage of heat treatment to the sample of the double tempering product even though it has been through the normalized heat treatment process. This indicates that the normalization process is not optimal to uniform the bucket tooth product microstructure. In addition, 2,8% of the retained austenite was identified in the microstructure of the double tempering product sample which is the final stage of the heat treatment process in the production of bucket tooth products. This is a risk to trigger delayed cracks in bucket tooth products. This finding was also supported by the results of microvickers hardness testing which showed a hardness value of 296 VHN in the bright area of ​​of microstructure observation on double tempering product where in the range of the austenite hardness value."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifka Maulidya
"Austenit sisa bersifat metastabil pada suhu ruang sehingga dapat bertransformasi menjadi martensit sehingga menyebabkan delayed crack, yang terjadi setelah beberapa lama proses produksi, pada bucket tooth excavator dengan material baja HSLA. Penelitian ini berfokus pada proses perlakuan panas yang dilakukan, yaitu pada tahapan austenisasi. Austenisasi dilakukan pada temperature 926°C dengan variable waktu tahan 28 menit, 43 menit, 58 menit, dan 73 menit. Sampel pengujian awalnya berupa keel block hasil normalisasi temper, yang kemudian dipotong menjadi balok dengan dimensi 4x1x4 cm. Karakterisasi dilakukan pada sampel as-QTT dan setelah ditempering, dimulai dari pengamatan struktur mikro menggunakan mikroskop optic dan Scanning Electron Microscope (SEM), serta pengujian kekerasan mikro (microvickers) dan kekerasan makro (Rockwell C). Setelah diamati, diperoleh bahwa sampel baja as-QTT memiliki struktur mikro yang didominasi oleh tempered martensit, namun ditemukan juga keberadaan lower bainite dan sejumlah kecil austenite sisa. Semua variabel temperatur tempering menghasilkan bentuk struktur mikro yang sama, namun memiliki presentase austenite sisa yang berbeda-beda. Seiring bertambahnya waktu tahan austenisasi, ukuran butir dan martensite menjadi semakin kasar. Kekerasan baja mengalami peningkatan seiring bertambahnya waktu austenisasi yaitu dari 486 HV menjadi 522 HV pada waktu tahan 58 menit, lalu menurun menjadi 450 pada waktu tahan 73 menit.

ABSTRACT
Retained Austenite is metastable at room temperature so that it can be transformed into martensite, causing delayed cracks, which occur after a long time of the production process, on bucket tooth excavators with HSLA steel material. This research focus on the heat treatment process carried out, especially in the austenitizing stage. Austenitizing was carried out at a temperature of 926°C with a variable holding time of 28 minutes, 43 minutes, 58 minutes, and 73 minutes. Initially the test sample was a tempered normalized keel block, which was then cut into blocks with dimensions of 4x1x4 cm. Characterization is carried out on as-QTT samples and after tempering, starting from observing microstructure using optical microscopy and Scanning Electron Microscope (SEM), as well as testing micro hardness (microvickers) and macro hardness (Rockwell C). After observing, it was found that the as-QTT steel sample had a micro structure dominated by tempered martensite, but the presence of lower bainite and a small amount of remaining austenite was also found. All tempering temperature variables produce the same microstructure, but have different residual austenite percentages. As the austenisation holding time increases, grain size and martensite become increasingly coarse. The hardness of steel has increased with increasing austenisation time from 486 HV to 522 HV at 58 minutes holding time, then decreased to 450 at 73 minutes holding time.
"
2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Penelitian ini merupakan penelitian lanjutan dalam rangka penengembangan peralatan flame hardening multi fungsi. Prototype alat flame hardening dimodifikasi diuji kemampuan mengeraskan permukaannya dengan menggunakan benda uji baja poros AISI 1045.
Pengujian alat dilakukan dengan menggunakan variabel diameter benda uji poros yaitu diameter 32 mm, 26 mm, dan 16 mm (kecepatan translasi 7.4 mm/detik) dan variable kecepatan translasi benda uji yaitu 4.l mm/detik, 7.4 mm/detik, dan 8.7 mm/detik (diameter benda uji 16 mm).
Hasil penelitian menunjukkan bahwa pada variabel perbedaan diameter benda uji, nilai kekerasan permukaan rata-rata benda uji meningkat hingga 184 VHN (benda uji berdiameter 32 mm), 221 VHN (benda uji berdiameter 25 mm), dan 417 VHN (benda uji berdiameter 16 mm) dengan distribusi nilai kekerasan permukaan dalam rentang 0-100 VHN, kedalaman pengerasan total sejauh 0,770 mm dari permukaan (benda uji 32 mm dan 25 mm) dan hingga ke bagian tengah (benda uji 16 mm). Pada variabel perbedaan kecepatan translasi nilai kekerasan yang di dapat adalah 448 VH N (4.1 mm/detik), 41 7 VHN (7.4 mm/detik), dan 463 VHN (8.7 mm/detik) dengan distribusi nilai kekerasan permukaan dalam rentang 100-200 VHN dan kedalaman pengerasan toral terjadi hingga ke bagian tengah. Pada benda uji dengan kecepatan translasi 4.1 mm/detik terjadi peleburan disebagian permukaan yang menandakan adanya over healing.
"
Fakultas Teknik Universitas Indonesia, 2003
S41306
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cepi Abdul Rohman
"Stainless steel AISI 410 merupakan material yang memiliki kombinasi yang baik dalam hal sifat mekanis dan ketahanan korosi pada temperatur tinggi. Material ini banyak digunakan untuk komponen turbin gas pesawat terbang maupun pembangkit listrik. Ketahanan oksidasi dan korosi temperatur tingginya diperoleh dari Al dan Cr yang membentuk kerak protektif Al2O3 dan Cr2O3. Coating dengan material dasar Al pada digunakan untuk meningkatkan ketahanan korosi temperatur tinggi melalui diffusion coating atau overlay coating.
Proses untuk diffusion coating yang paling banyak digunakan adalah pack cementation, karena relative sederhana. Parameter pack cementation aluminizing seperti temperatur 1000 C dihasilkan lapisan yang optimal dan kandungan 4% NH4Cl dalam material pack divariasikan untuk membentuk lapisan intermetalik Fe-Al dengan ketebalan lapisan terluar 13.44 microns dan lapisan dalam 13.83 microns. Selain itu dengan proses ini dapat dihasilkan berbagai jenis aluminide coating yang dapat digunakan untuk melindungi komponen dari serangan korosi temperatur tinggi.

Stainless steel AISI 410 is a material, which have good combination of mechanical properties and corrosion resistance at relatively high temperatures. This material is widely found in the hot section components of aircraft and land based turbine engines. The resistance of the materials to high-temperature oxidation and hot corrosion is provided primarily by Al and Cr to form Al2O3 and Cr2O2 protective scales. Coatings based on Al have been applied to stainless steel as both diffusion coatings and overlay coatings to enhance their high temperature corrosion resistance.
The most extensively used diffusion-coating process is pack cementation. The pack cementation process is much simpler compared to those processes to produce overlay coating. Pack cementation aluminizing parameters such as temperatures 1000 C have a optimal coating and 4% NH4Cl content were varied to fabricate an iron aluminide (Fe-Al) with 13.44 microns for outermost layer and 13.83 microns for inner layer thickness. Moreover, this process is able to produce variety of aluminide coatings applicable to protect components from high temperature corrosion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51518
UI - Skripsi Open  Universitas Indonesia Library
cover
Farid Surya Farista
"Stainless steel memiliki struktur mikro yang lengkap dan stabil dan banyak digunakan dalam industri modern seperti pembuatan kapal uap, produksi kimia dan reaktor nuklir karena ketahanan terhadap korosi dan kemampuan mekanik yang baik terhadap suhu tinggi, perlakuan panas tidak akan mempengaruhi kekerasan permukaan, perlu ditempa untuk mengurangi ukuran butir sehingga dapat mengeraskan permukaan menggunakan variasi beban 1 kg, 2 kg, 3 kg, mengkarakterisasi bahan menggunakan teknik difraksi sinar-X (XRD), dan sifat elektrokimia menggunakan teknik Linear Sweep Voltammetry (LSV), Open Circuit Potentiometry Technique (OCP) dan Cyclic Voltammetry (CV) dalam NaCl 3,5% wt. Terdapat pengecilan ukuran bulir pada sampel yang telah di beri penempaan dari 21 nm menjadi 10 nm pada 1 kg, 34 nm pada 2 kg, 10 nm pada 3 kg dan 4 nm pada 4 kg, karena penempaan juga menambah banyak nya grain menyebabkan potensi korosi semakin timggi yaitu laju korosi pada sampel dari 1,45 μm/tahun, menjadi 1,19 μm/tahun pada 1 kg, 1, 91 μm/tahun pada 2 kg dan 2,62 μm/tahun pada 3 kg dengan suhu uji 25 ̊C menggunakan larutan NaCl 3,5% wt
Stainless steel has a complete and stable microstructure and is widely used in modern industries such as steamship making, chemical production, and nuclear reactors because of its corrosion resistance and good mechanical ability to high temperature, heat treatment will not affect the surface hardness, need to be forged to reduce grain size so that it can harden the surface using variations in the load of 1 kg, 2 kg, and 3 kg, characterize material using X-ray diffraction technique, and the electrochemical properties using linear sweep voltammetry technique (LSV), open circuit potentiometry technique (OCP) and Cyclic Voltammetry (CV) in NaCl 3.5% wt. There is a reduction in grain size in the sample which has been forged from 21 nm to 10 nm at 1 kg, 34 nm at 2 kg, 10 nm at 3 kg and 4 nm at 4 kg because forging also adds much grain causing more corrosion potential lead is the corrosion rate in the sample from 1.45 μm / year, to 1.19 μm / year at 1 kg, 1, 91 μm / year at 2 kg and 2.62 μm / year at 3 kg with a test temperature of 25 ̊C using a solution of NaCl 3.5% wt"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trecy Kartika
"Penelitian ini dilakukan untuk mempelajari laju korosi pada mild steel ST41 didalam larutan 0,5 M HCl dengan pemberian ekstrak buah Melastoma malabathricum L sebagai green corrosion inhibitor dengan variasi konsentrasi 0, 1000, 2000, 5000, dan 8000 ppm. Metode weight loss, polarisasi dan EIS (Electrochemical Impedance Spectroscopy) digunakan untuk mengukur laju korosi dan efisiensi inhibisi ekstrak Melastoma malabathricum L ini. Dari pengujian dengan infra merah (FTIR) dan scanning electron microscopy (SEM) terhadap sampel baja yang direndam didalam ekstrak melastoma malabathricum, diketahui bahwa lapisan inhibisi terbentuk pada permukaan sampel baja.
Dari hasil pengujian polarisasi diketahui bahwa ekstrak melastoma malabathricum bersifat mixed-type inhibitor. Berdasarkan hasil dari weight loss, polarisasi, dan EIS, kemampuan inhibisi ekstrak buah melastoma malabathricum pada baja karbon dalam lingkungan 0,5 M HCl mengalami peningkatan yang ditunjukkan dengan menurunnya laju korosi, namun penurunan laju korosi dan efisiensi semakin berkurang dengan bertambahnya konsentrasi tertentu inhibitor. Efisiensi inhibisi terbaik adalah 88,071% pada 8000 ppm.

This work was carried out to study the corrosion rate of mild steel ST41 in 0.5 M HCl solution using Melastoma malabathricum L fruit extract as green corrosion inhibitor at various extract concentrations of 0, 1000, 2000, 5000, and 8000 ppm. Weight loss, polarization and electrochemical impedance spectroscopy (EIS) were used to measure the corrosion rate and inhibition efficiency of this Melastoma malabathricum extract. The results from Fourier transform infra red (FTIR) and scanning electron microscopy (SEM) of steel samples immersed in the extract of melastoma malabathricum showed that an inhibitory layer was formed on the surface of the steel sample. The results of the polarization test revealed that the extract of melastoma malabathricum is a mixed-type inhibitor. Based on the results of weight loss, polarization, and EIS, the inhibitory ability of melastoma malabathricum fruit extract on medium carbon steel in an environment of 0.5 M HCl has increased as indicated by a decrease in the corrosion rate, but the decrease in the corrosion rate and the efficiency is reduced with the increase in certain inhibitor concentrations.The best inhibition efficiency was 88.071% at 8000 ppm."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>