Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 126738 dokumen yang sesuai dengan query
cover
cover
Lany Wijaya
"Modifikasi elektroda karbon dengan nanopartikel emas dilakukan dengan teknik self-assembly. Teknik ini didasarkan pada kemampuan nanopartikel emas terikat secara kovalen pada elektron bebas dari gugus ujung amina yang ada di permukaan elektroda karbon setelah proses modifikasi pada permukaannya. Kemampuan nanopartikel emas membentuk kompleks dengan arsen membuat elektroda karbon (glassy carbon dan boron-doped diamond) yang telah dimodifikasi dengan nanopartikel emas dapat diaplikasikan untuk sensor arsen (III). Deteksi terhadap arsen (III) dilakukan dengan menggunakan metode Anodic Stripping Voltammetry (ASV).
Hasil karakterisasi secara elektrokimia yang memperlihatkan adanya puncak arus oksidasi As3+ pada elektroda karbon yang telah di modifikasi dengan nanopartikel emas, dimana puncak arus oksidasi ini tidak ditemui pada elektroda karbon yang belum di modifikasi dengan nanopartikel emas.
Hasil optimasi kondisi pengukuran arsen (III) pada elektroda karbon yang telah dimodifikasi dengan nanopartikel emas (GC-AuNP dan BDDAuNP), mendapatkan kondisi optimum untuk waktu deposisi 180 detik, potensial deposisi -500 mV, dan scan rate 100 mV. Respon arus terhadap konsentrasi arsen (III) pada elektroda GC-AuNP linier pada rentang konsentrasi 0 - 10 ìM dengan nilai limit deteksi sebesar 13,128 ppb sedangkan untuk elektroda BDD-AuNP respon arus linier pada rentang konsentrasi 0 - 20 ìM dengan nilai limit deteksi sebesar 4,642 ppb. Presisi pengukuran respon arus terhadap larutan arsen (III) 10 ìM sebanyak 20 kali pengulangan adalah 4,54 % (RSD) untuk GC-AuNP dan 2,93 % (RSD) untuk BDD-AuNP.
Hasil pengujian kestabilan elektroda GCAuNP dan BDD-AuNP selama satu minggu menunjukkan bahwa GC-AuNP lebih stabil dibandingkan BDD-AuNP. Hal ini ditunjukkan oleh nilai persen penurunan arus yang lebih signifikan pada BDD-AuNP dibandingkan pada GC-AuNP."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Unversitas Indonesia, 2008
S30486
UI - Skripsi Open  Universitas Indonesia Library
cover
Afif Wardana
"Grafit dari biomassa sebagai elektroda alternatif untuk baterai sudah banyak dikembangkan untuk menghasilkan kapasitansi energi yang tinggi dan siklus penggunaan yang lama. Penelitian ini menentukan dan membandingkan jenis grafit NiO dan Non NiO terbaik untuk dijadikan katoda superkapasitor yang bersumber dari biomassa Tempurung Kelapa Sawit, Tempurung Kemiri, dan Tandan Kosong Kelapa Sawit (TKKS). Optimalisasi dilakukan dengan mengkombinasi proses aktivasi kimia (KOH) menggunakan konsentrasi  5 molar pada rasio 1 : 5 dan aktivasi fisika (Ar) menggunakan injeksi 0,2 L/min pada temperatur 950°C selama 45 menit. Modifikasi sampel dilakukan dengan impregnasi prekrusor Ni(NO2)3pada grafit, yang di ubah menjadi NiO melalui penguraian termal pada temperatur 300°C selama 90 menit. Dari hasil karakterisasi XRF ditemukan senyawa NiO dan menunjukan rendahnya persentase kehadiran logam alkali dan alkali tanah pada seluruh sampel grafit kecuali K+ dan Cl-. Hasil XRD menunjukan struktur yang masih didominasi grafit amorfus dengan chemical formula C16.00 (Orthorombik) yang ditemukan pada interval 25-27o . Hasil EIS menunjukan nilai Rp terendah dimiliki oleh superkapasitor AW 3 sebesar 79,62, nilai tersebut sesuai dengan hasil pengujian CV yang memiliki Kapasitansi Spesifik (Cp) tertinggi sebesar 7,39748, tetapi nilai Cp teringgi berbanding terbalik dengan hasil BET yang menunjukan luas permukaan terbesar dimiliki oleh TKKS Non-NiO sebesar 319,298 m2/g. Untuk memperdalam analisis dilakukan karakterisasi FTIR dengan tujuan mengetahui pengaruh kehadiran ikatan OH, C=C, dan C-O dan gugus fungsi lainnya terhadap peforma superkapasitor. Jadi, penggunaan grafit sebagai (katoda) dan LTO sebagai (anoda) sebagai bahan superkapsitor menjadi pilihan yang paling tepat jika penggunaan parameter scan rate (mV/s) optimal.

Graphite from biomass as an alternative electrode for batteries has been widely developed to produce high energy capacitance and long cycle usage. This research determines and compares the best types of NiO and Non-NiO graphite to be used as supercapacitor cathodes sourced from biomass such as Palm Kernel Shell, Candlenut Shell, and Empty Fruit Bunch (EFB). Optimization is done by combining chemical activation processes (KOH) using a 5 molar concentration at a 1:5 ratio and physical activation (Ar) using an injection of 0.2 L/min at a temperature of 950°C for 45 minutes. Sample modification is carried out by impregnating Ni(NO2)3 precursor on graphite, which is converted into NiO through thermal decomposition at a temperatur of 300°C for 90 minutes. From XRF characterization results, NiO compounds were found, indicating a low percentage of alkali and alkaline earth metal presence in all graphite samples except K+ and Cl-. The XRD results show a structure still dominated by amorphous graphite with a chemical formula of C16.00 (Orthorhombic) found in the 25-27o interval. The EIS results show the lowest Rp value is owned by supercapacitor AW 3 at 79.62, and this value corresponds to the CV testing results, which have the highest Specific Capacitance (Cp) at 7.39748. However, the highest Cp value is inversely proportional to the BET results, which show that the largest surface area is owned by Non-NiO EFB at 319.298 m2/g. To deepen the analysis, FTIR characterization is carried out to determine the influence of the presence of OH, C=C, and C-O bonds, and other functional groups on supercapacitor performance. So, the use of graphite as a cathode and LTO as an anode for supercapacitor material becomes the most appropriate choice with optimal scan rate parameters (mV/s)."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irma Kartika Sari
"Karbon aktif kulit buah pisang dapat digunakan sebagai prekursor CNT dikarenakan kandungan karbon pada kulit buah pisang sebesar 41,37%. Pada penelitian ini, campuran karbon aktif kulit buah pisang dan minyak mineral 2% disintesis menjadi CNT dengan melibatkan deposisi katalis Fe. Metode sintesis CNT yang digunakan adalah metode pirolisis yang difokuskan pada pengaruh suhu dan waktu reaksi. CNT dianalisis dengan menggunakan Fourier Transform Infra Red (FTIR), X-Ray Diffraction (XRD), dan Transmission Electron Microscopy (TEM). Suhu reaksi 1200°C menyebabkan minyak mineral tidak berfungsi dengan baik dan katalis teracuni. Waktu reaksi yang lebih dari 60 menit menyebabkan terjadinya deaktivasi katalis Fe. Hasil penelitian ini menunjukkan bahwa suhu dan waktu reaksi terbaik untuk sintesis CNT adalah 1100°C dan 60 menit.

Banana peel activated carbon can be used as CNT’s precursor because it has carbon content of 41, 37%. In this experiment, banana peel activated carbon mixed with 2% mineral oil is synthesized to produce CNT which involves Fe catalyst deposition. CNT were synthesized by pyrolysis method which focused on reaction temperature and time effect. CNT were analyzed by Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Mineral oil is not functioning properly and catalyst poisoning at 1200°C. Furthermore, especially under reaction time more than 60 minutes make Fe catalyst to deactivate. These results demonstrate that the best reaction temperature and time for CNT synthesis were 1100°C and 60 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54591
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wibowo Chandra Pawito
"Telah dilakukan proses sintesis metode hidrotermal untuk membuat katoda LiFePO4 dengan variasi penambahan unsur vanadium dan pelapisan dengan dua jenis sumber karbon. Pada penelitian ini, pembuatan material aktif LiFePO4 diawali dengan pencampuran bahan-bahan dasar LiOH, NH4H2PO4, dan FeSO4.7H2O sesuai stoikiometri. Setelah proses sintesis, dilakukan penambahan unsur vanadium yang berasal dari bubuk H4NO3V sebagai variasi dari material aktif katoda dan dua jenis sumber karbon, yaitu karbon aktif dari bambu dan karbon hitam masing-masing sebanyak 2 wt. Bahan-bahan tersebut dicampur dengan menggunakan ball-mill dan selanjutnya dilakukan karakterisasi analisis termal dengan STA untuk menentukan temperatur sintering. Hasilnya memperlihatkan bahwa temperatur pembentukan LiFePO4 adalah sekitar 639°C. Kemudian dilakukan proses sintering selama 4 jam dan setelahnya dilakukan karakterisasi dengan menggunakan difraksi sinar-X XRD dan mikroskop elektron SEM.
Hasil karakterisasi dengan XRD menunjukkan bahwa fasa LiFePO4/V/C terbentuk struktur olivin, sementara hasil SEM LiFePO4/V/C menunjukkan persebaran yang cukup merata serta ukuran partikel yang lebih kecil dan beberapa teraglomerat. Dilanjutkan dengan proses pembuatan baterai dari bahan sintesis dan diuji melalui spektroskopi impedansi EIS untuk menunjukkan konduktivitas. Hasilnya menunjukkan bahwa pelapisan karbon pada material aktif meningkatkan konduktivitas yang cukup tinggi, namun saat penambahan vanadium konduktivitas menurun drastis.

Synthesis of hydrothermal methods has been made to prepare LiFePO4 cathodes with variations in the addition of vanadium elements and coatings with two types of carbon sources. In this study, the preparation of LiFePO4 beguns with the precursor of LiOH, NH4H2PO4, and FeSO4.7H2O according to stoichiometry. After the synthesized, the addition of vanadium elements from H4NO3V powder as a variation of the cathode active material and two types of carbon sources, the activated carbon from bamboo and carbon black respectively 2 wt. The materials were mixed using a ball mill and subsequently characterized the thermal analysis with STA to determine the sintering temperature. The result shows that LiFePO4 formation temperature is at 639°C. Then sintering process is done for 4 hours and afterwards characterization is done by using X ray diffraction XRD and electron microscope SEM.
The result of characterization with XRD shows that LiFePO4 V C phase formed olivine structure, while the SEM result of LiFePO4 V C shows fairly even distribution and smaller particle size and some agglomerated microstructure. The batteries were prepared from the as synthesized materials and was tested using electrochemical impedance spectroscopy EIS to show the conductivity. The results show that carbon coating on the active material increases the high conductivity, while the addition of vanadium conductivity decreases dramatically.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68289
UI - Skripsi Membership  Universitas Indonesia Library
cover
His Muhammad Bintang
"Dengan tren perkembangan sumber energi baru terbarukan EBT dan mobil listrik, tuntutan akan piranti penyimpan energi PPE berperforma tinggi tidak dapat dihindari. Peningkatan yang signifikan telah dicapai melalui penelitian mengenai mekanisme penyimpanan energi dan penelitian material baru. Saat ini, PPE dengan kepadatan energi tinggi diwakilkan oleh baterai, dan PPE dengan kepadatan daya tinggi diwakilkan oleh superkapasitor. Namun beberapa aplikasi membutuhkan kepadatan energi dan daya yang tinggi. Solusinya adalah kapasitor ion lithium, yang menggabungkan mekanisme kerja dari baterai dan superkapasitor.
Pada penelitian ini, setengah sel kapasitor ion lithium disusun menggunakan elektroda berbahan karbon aktif yang telah tersedia secara komersial dan karbon aktif yang disintesis dari limbah tongkol jagung. Pengujian BET menunjukkan bahwa proses aktivasi dapat meningkatkan luas permukaan spesifik SSA dari karbon tongkol jagung lima kali lebih tinggi, yaitu mencapai 615,448 m /g. Sementara pengujian elektrokimia menunjukkan bahwa semakin tinggi SSA, maka kapasitas spesifik menjadi lebih besar. Dari tiga elektroda yang berbeda, elektroda berbahan karbon aktif komersial menunjukkan performa yang lebih unggul dengan kapasitas spesifik sebesar 91,85 mAh/g.

Nowadays, the development of renewable energy and electric carsmaking the demand for high performance energy storage devices unavoidable. Significant improvements have been achieved through research on energy storage mechanisms and investigation on new materials. At this time, the high energy density energy storage is represented by batteries, and high power density device is represented by supercapacitors. However, some applications require both of high energy and power density. The solution is combining the mechanism of the battery and the supercapacitor as lithium ion capacitor.
In this study, half cell lithium ion capacitor were assembled using commercially available activated carbon electrodes and activated carbon electrodes synthesized from corncob waste. The BET test shows that the activation process can increase the specific surface area SSA of corncob carbon up to five times higher, reaching 615,448 m g. While electrochemical characterization shows that the higher the SSA, the higher specific capacity achieved. From three different electrodes, commercial activated carbon electrodes show superior performance with a specific capacity of 91.85 mAh g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rini Riastuti
"ABSTRAK
Proses lapis listrik paduan merupakan salah satu pengembangan dari sistem lapis listrik yang sudah ada.
Prinsip dari lapis listrik paduan yaitu mengendapkan ion-ion atau unsur logam dari larutan elektrolitnya secara bersamaan di katoda.
Pada proses lapis listrik paduan Sn-Ni, kenaikan rapat arus pelapisan (0.10 ; 0.37 ; 0.64 A/dmz) pada dua konsentrasi SnC12.2H20 (35 dan 45 gpl} dalam larutan elektrolit menghasilkan penampakkan visual yang sama baik (mengkilap), tetapi masih terdapat goresan untuk rapat arus 0.10 A/dmz dan terbentuk sumuran pada kondisi 0,64 A/dmz untuk konsentrasi 45 gpl SnClz.2H2U.
Meningkatnya rapat arus pelapisan menjadikan persentase kandungan ion Sn menurun, sedangkan dengan meningkatnya konsentrasi SnCI2.2H20 dalam elektrolit menjadikan persentase kandungan Sn dalam lapisan meningkat. Kekerasan mikro lapisan meningkat seiring dengan meningkatnya rapat arus pelapisan dan konsentrasi Sn 02.2H2U."
Depok: Fakultas Teknik Universitas Indonesia, 1997
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Lintang Ayu Kencana
"Sel tunam merupakan salah satu energi alternatif yang potensial untuk dikembangkan mengingat potensi dan jenis sumber energi yang terbarukan. Salah satu jenis sel tunam adalah Polymer Electrolyte Membrane Fuel Cell (PEMFC). Pada PEMFC terdapat komponen penting yang disebut dengan pelat bipolar. Pelat bipolar memiliki prosentase terbesar dalam berat dan biaya pembuatan sel tunam. Pada penelitian ini dibuat pelat bipolar karbon komposit dengan 80%wt matriks dan penguat yang terdiri dari 90-100% wt grafit dapur busur listrik (EAF) dan 0-10% wt carbon black FEF 550 dan 20%wt polimer sebagai pengikat yang terdiri dari epoksi resin dan pengeras dengan perbandingan 1:1. Pembuatan pelat bipolar ini dengan variabel penambahan 0-10%wt carbon black FEF 550 yaitu 0;2,5;5;7,5 dan 10%wt carbon black FEF. Proses pencampuran menggunakan pengaduk berkecepatan tinggi dengan kecepatan 28.000 rpm dan dicetak menggunakan metode cetak kompresi dengan tekanan 55 MPa, suhu 100°C, selama 4 jam. Hasil penelitian menunjukkan bahwa komposisi optimum terdapat pada 10%wt carbon black FEF 550 dimana dihasilkan nilai densitas sebesar 2,34 gr/cm3, porositas 2,39%, kekuatan fleksural 30,06 MPa, dan konduktivitas listrik 6,52 S/cm.

Fuel cell is one of the potentially alternative energy to be developed due to its potential and kind as renewable energy sources. Fuel cell has many types and one of them is PEMFC (Polymer Electrolyte Membrane Fuel Cell). Bipolar plate is one of main components in PEMFC which have the largest percentage in fuel cell weight and production cost. In this study, the bipolar plate materials made from carbon composites. Constituent materials carbon composites are 80wt% matrix and reinforcement, consist of 95wt% Graphite EAF (Electric Arc Furnace) and 0-10%wt carbon black FEF 550 and 20% polymer as binder consist of epoxy resin and hardener with ratio 1:1. The addition variabels 0-10%wt of carbon black FEF 550 are 0;2,5;5;7,5 and 10%wt. The mixing process used high-speed mixer with mixing speeds 28.000 rpm and to form the plate used compression molding with pressure 55 MPa, 100°C, for 4 hours. The test results showed that the maximum composition was 10%wt carbon black FEF 550 which values are density 2,34 gr/cm3, porosity 2,39%, flexural strength 30,06 MPa and electric conductivity 5,52 S/cm."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53503
UI - Skripsi Membership  Universitas Indonesia Library
cover
Subkhan Alfaruq
"Telah dilakukan sintesis LiFePO4 melalui metode hidrotermal dengan penambahan variasi vanadium dan pelapisan karbon aktif dari bambu untuk katoda baterai litium ion. Pada sintesis LiFePO4, bahan dasar yang digunakan adalah serbuk LiOH, NH4H2PO4 dan FeSO4.7H2O yang diukur sesuai stokiometri dengan perbandingan molar 2:1:1. Setelah proses sintesis, dilakukan penambahan variasi vanadium yang berbahan dasar H4NO3V dan pelapisan karbon aktif yang berasal dari bambu sebanyak 4 wt. Pencampuran dilakukan menggunakan ball-mill lalu dikarakterisasi menggunakan analisis termal STA untuk menentukan temperatur sintering. Hasil STA menunjukkan bahwa transisi fasa mulai terjadi pada temperatur 639°C yang kemudian menjadi acuan untuk menentukan proses sintering. Hasil sintering selanjutnya dikarakterisasi menggunakan difraksi sinar-X XRD, mikroskop elektron SEM, dan spektroskopi impedansi EIS.
Hasil karakterisasi dengan XRD menunjukkan bahwa fasa LiFePO4 yang terbentuk memiliki struktur berbasis olivin dengan grup ruang ortorombik serta terjadi pergeseran puncak akibat penambahan vanadium. Hasil SEM menunjukan morfologi LiFePO4 yang teraglomerasi, meskipun berkurang seiring meningkatnya kadar vanadium. Hasil uji EIS menunjukan bahwa terjadi peningkatan konduktivitas dari 2.02x10-5 S/cm pada 0 menjadi 4.37x10-5 S/cm pada 5 vanadium. Hal yang sama juga terjadi dengan adanya karbon sintesis dari gula namun pelapisan karbon aktif dari bambu menghasilkan konduktivitas yang lebih baik.

LiFePO4 synthesis process has been carried out by hydrothermal method followed by vanadium doping and bamboo activated carbon coating for lithium ion battery cathode. In the LiFePO4 synthesis process, precursor of LiOH, NH4H2PO4 and FeSO4.7H2O was measured according to stoichiometry with 2 1 1 molar ratio. The synthesis process is produced powder LiFePO4 pure light gray.The as synthesized LiFePO4 was then mixed with H4NO3V powder and activated carbon from bamboo as much as 4 wt. Then characterized by thermal analysis STA to determine sintering temperature. The STA results show that the transition temperature starts to occur at 639°C which is then used as sintering process. The sintering results were further characterized using X ray diffraction XRD , electron microscopy SEM , and impedance spectroscopy EIS.
The results of characterization by XRD show that the LiFePO4 phase formed has an olivine based structure with orthorhombic groups and a peak shift due to the addition of vanadium. The SEM results show the agglomerated lithium morphology of LiFePO4, although it decreases with increasing levels of vanadium. The result of EIS test showed that there was an increase of conductivity from 2.02x10 5 S cm at 0 to 4.37x10 5 S cm in 5 vanadium. The same is true of the carbon synthesis of sugars but the activated carbon from bamboo as a coating produces better conductivity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68946
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yozi Bastian
"Katalis yang berbasis Ni cukup aktif untuk reaksi CO2 reforming, tetapi mudah terbentuk deposit karbon. Pembentukan deposit karbon pada reaksi reformasi metana menyebabkan kenaikan pressure drop dan katalis terdeaktivasi. Oleh karena itu perlu dilakukan analisis terhadap pembentukan deposit karbon dan mencari cara untuk mengurangi atau menghilangkannya.
Cara yang dipilih pada penelitian ini adalah dengan melakukan uji pembentukan deposit karbon pada katalis tanpa adanya udara dalam reaktan dengan mengamati kenaikan pressure drop yang terjadi. Katalis yang diuji adalah Ni/Al2O3 yang dipreparasi dengan metode pertukaran ion dan sebagai pembandingnya adalah katalis komersial (G-1-25) yang biasa digunakan pada reaktor primary reformer. Untuk membuktikan adanya deposit karbon pada katalis Ni/Al2O3 bekas hasil reaksi, maka ke dalam katalis tersebut dialirkan udara untuk mereduksi karbon yang terbentuk. Selain itu dilakukan juga uji aktivitas dan stabilitas katalis dengan menambahkan udara pada reaktan secara simultan pada waktu reaksi reformasi CO2/CH4 berlangsung.
Hasil penelitian menunjukkan bahwa udara terbukti cukup efektif menurunkan pressure drop dan aktivitas katalis menjadi lebih stabil. Penambahan udara sebesar 30 ml/min pada katalis Ni/Al2O3 dapat menurunkan pressure drop dari 0,9 sampai mendekati nol dan penambahan udara sebesar 40ml/min pada katalis komersial dapat menurunkan pressure drop dari 0,8 sampai mendekati nol. Metode ini juga dapat meningkatkan konversi metana dan rasio produk H2/CO. Pada penambahan laju alir udara 50 ml/min, konversi CH4 pada katalis Ni/Al2O3 menjngkat dari 72% sampai 88% dan rasio produk H2/CO-nya meningkat dari 1 sampai 1,22, sedangkan untuk katalis komersial konversi CH4-nya meningkat dari 78% sampai 90% dan rasio produk H2/CO-nya meningkat dari 1 sampai 1,18 pada laju alir udara yang sama.
Secara umum kinerja katalis Ni/Al2O3 lebih baik daripada katalis komersial, dimana stabilitas katalis Ni/Al2O3 lebih stabil daripada katalis komersial, meskipun konversi CH4 yang dihasilkan sedikit lebih rendah."
Fakultas Teknik Universitas Indonesia, 1999
S49200
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>