Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 36532 dokumen yang sesuai dengan query
cover
Fajar Alya RahmanFajar Alya Rahman
"[ABSTRAK
Peramalan beban listrik memegang peranan yang sangat penting bagi efisiensi dan
kinerja dari PLN. Berbagai jenis metode dipakai untuk mendapatkan hasil peramalan beban yang akurat agar daya yang dikirimkan sesuai dengan kebutuhan
listrik dari konsumen. Skripsi ini membahas peramalan beban jangka pendek satu minggu ke depan dengan menggunakan Jaringan Syaraf Tiruan (JST). Peramalan
beban jangka pendek sangat dipengaruhi oleh faktor-faktor cuaca, yang dalam hal ini menjadi masukan JST, yaitu : Suhu, Kelembaban, Tekanan udara, dan
Kecepatan angin. Data yang digunakan untuk pembelajaran adalah data sebenarnya sepanjang tahun 2011. Arsitektur yang digunakan adalah feed-forward
dan algoritma yang dipakai adalah algoritma backpropagation. Berdasarkan hasil
didapatkan nilai MAPE terbaik sebesar 1.8 % dan untuk 10 kali running sebesar 2.65 % sehingga berada di bawah ambang kesalahan peramalan.
ABSTRAK
Electrical load forecasting has an important role for efficiency and performance
from PLN.Various types of methods have been used to provide an accurate load
forecasting on purpose that the transmitted power appropriates the demand of
consumers. This research will discuss short term load forecasting using Artificial
Neural Network (ANN). Short term load is influenced by weather factors, those
will become input of ANN, i.e. : Temperature, Humidity, Pressure, Wind speed,
Data used for study are actual data in 2011. Architecture used for this research is
feed-forward and Algorithm that is used is backpropagation . The final result
shows that the best MAPE is 1.8 % and for 2.65 % for 10 iterations which are
below the forecasting error limit., Electrical load forecasting has an important role for efficiency and performance
from PLN.Various types of methods have been used to provide an accurate load
forecasting on purpose that the transmitted power appropriates the demand of
consumers. This research will discuss short term load forecasting using Artificial
Neural Network (ANN). Short term load is influenced by weather factors, those
will become input of ANN, i.e. : Temperature, Humidity, Pressure, Wind speed,
Data used for study are actual data in 2011. Architecture used for this research is
feed-forward and Algorithm that is used is backpropagation . The final result
shows that the best MAPE is 1.8 % and for 2.65 % for 10 iterations which are
below the forecasting error limit.]"
Fakultas Teknik Universitas Indonesia, 2012
S54227
UI - Skripsi Open  Universitas Indonesia Library
cover
Adek Purnama
"ABSTRAK
Peramalan kecepatan angin menggunakan jaringan saraf tiruan propagasi
balik merupakan salah satu metoda peramalan kecepatan angin jangka pendek
(dalam orde jam) yang cukup efektif untuk diterapkan. Metoda ini mampu
memberikan hasil peramalan kecepatan angin yang baik dengan error peramalan
terkecil adalah 0.0017. Parameter output dari peramalan kecepatan angin sangat
adaptif terhadap perubahan-perubahan yang terjadi pada parameter inputnya,
sehingga hasil peramalan akan lebih mendekati kondisi sebenarnya. Parameter
input yang digunakan meliputi temperatur udara, kelembaban udara, arah angin
dan curah hujan

Abstract
Wind speed forecasting using backpropagation artificial
neural network is one of the short-term wind speed forecasting method (in the
ordre of hours) which is quite effective to be applied. This method provides the
good wind speeds forecasting result with the smallest error is 0.0017. The output
parameters of wind speed forecast is very adaptive to the changes of the input
parameters, so the forecast results will be closer to the real conditions. The input
parameters that being used are air temperature, air humadity, wind direction and
rainfall."
2011
T30342
UI - Tesis Open  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
cover
Ibrahim Ali Marwan
"Dalam perencanaan operasi harian, diperlukan perkiraan beban beberapa waktu kedepan sebagai dasar penentuan strategi pembangkit. Saat ini belum dibentuk suatu model matematis yang dapat digunakan untuk melakukan perkiraan beban listrik secara akurat. Untuk itu pada penelitian kali ini akan disusun model matematis yang dapat melakukan peramalan beban secara akurat. Metode yang digunakan pada penelitian ini untuk melakukan peramalan beban listrik di Jawa-Bali adalah dengan menggunakan Feed Forward Neural Networks dan Bayesian Neural Networks. Hasil dari pengolahan data yang telah dilakukan diperoleh hasil bahwa peramalan dengan Feed Forward Neural Networks memberikan hasil peramalan yang lebih baik untuk rentang waktu 1 minggu kedepan, sedangkan untuk melakukan ramalan 1 ? 2 hari kedepan Bayesian Neural Networks memberikan hasil yang lebih akurat.

In the daily operations planning, required load estimates as a basis for determining the generating strategy. Currently a mathematical model that can be used to perform accurately estimate the electric load has not been established. Therefore in the present study will be developed a mathematical model that can perform load forecasting accurately. The method used in this study to to forecast electricity load in Java-Bali is by using Feed Forward Neural Networks and Bayesian Neural Networks. The results shows forecasting with Feed Forward Neural Networks provide better forecasting results for a span of 1 week ahead, while to do a forecast 1-2 days ahead of Bayesian Neural Networks provide more accurate results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41691
UI - Tesis Membership  Universitas Indonesia Library
cover
Dawud Gede Wicaksono D.
"Skripsi ini dibuat untuk merancang perangkat lunak yang mampu mengenali nilai nominal uang kertas rupiah beserta keasliannya melalui proses pengolahan citra berbasiskan metode jaringan syaraf tiruan dengan algoritma backpropagation. Sistem pengenalan citra (image recognition) ini memperoleh kemampuan deteksi dengan cara belajar dari contoh (learning by examples).
Pola dari tiap uang kertas rupiah memiliki ciri yang unik yang membedakannya satu dengan yang lainnya, baik bentuk angka, jumlah angka nol, serta gambar latar belakangnya. Pola khas dari tiap jenis uang kertas inilah yang dikenali oleh perangkat lunak ini, sehingga mampu membedakan tidak hanya uang kertas rupiah (valid data) tapi juga uang kertas pecahan lain (unknown data).
Pencitraan uang kertas berasal dari dua sumber yakni citra tampak (visible image), yang berasal dari scanner 300 dpi, dan tak tampak (invisible image), yang menggunakan sinar ultraviolet (UV). Beberapa area tertentu diambil dari citra sebagai masukan identifikasi yang akan diolah melalui proses dijitalisasi sehingga dihasilkan reduksi citra hitam-putih (gray-scale) sebesar 8x7 pixel. Hal ini bertujuan selain mengurangi besar data pelatihan jaringan syaraf tiruan (JST) juga meningkatkan kemampuan identifikasi.
Metode backpropagation dipilih didasarkan atas masukan data relatif kecil dengan harapan waktu pendeteksian dapat dipersingkat. Hasil identifikasi mungkin tidak akan mendekati klasifikasi, tetapi akan didekati dengan persentase kesalahan sekecil mungkin. Jumlah total data sebanyak 76 set, dimana 25 diantaranya digunakan untuk melatih JST, dan sisanya sebanyak 51 set digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali dengan tingkat akurasi hingga sebesar 92% bervariasi tergantung dari jumlah set data pelatihan yang dilakukan. Metode yang diterapkan dapat digunakan untuk mengenali uang kertas pecahan rupiah.

This paper is written to design a software that capable to recognize the nominal value of rupiah banknote with its authenticity by means of image-processing technic based on artificial neural network with backpropagation algorithm. This image-processing technic has its recognition ability from learning-by-examples process.
Each rupiah banknote has its unique characteristic which distinguish the banknote with one another, such as numeral shape, amount of zeroes, and its background image. The software then uses this banknote’s unique pattern to recognize not only for valid currency, but also for unknown currency.
The banknote imaging process itself came from two sources, visible image—taken from a 300dpis scanner, and unvisible image—taken from a UV. Some certain areas are taken from the image as identification source that will be processed by some digitalization until these areas become an 8x7 pixels gray-scale image. This is intented to reduce the data size for the artificial neural network training process, thus increase the identification ability.
Backpropagation method is chosen based on its input data which is relatively small, hoping that the detection time can be decreased. The identification result might not get closer with the classification result, but will get approached with as small error as possible. The total amount of data are 76 sets, where 25 of them are used to train the artificial neural network, and the rest of them are used to test the neural network. Simulation result shows that the sistem is capable to identify up to 92% of accuracy, depends on amount of train-sets data. This method can be used to identify the rupiahs banknote authenticity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40552
UI - Skripsi Open  Universitas Indonesia Library
cover
Indira Untari
"Perkembangan teknologi yang sangat pesat di bidang kelistrikan saat ini adalah pemanfaatan distributed generation khususnya PLTS Atap atau dikenal dengan PV Rooftop. Pelanggan memanfaatkan energi listrik dari PV Rooftop untuk kebutuhan listriknya dan juga dapat mentransfer energinya (eksport) ke system kelistrikan PLN jika energi dari PV Rooftop berlebih. Sedangkan PLN tetap mengirimkan energi ke pelanggan jika energi dari PV tidak memenuhi konsumsi listriknya (import). Dengan ketersediaan data smart-meter orde jam beban pelanggan PV Rooftop, maka optimalisasi data untuk keperluan data scientist, data analyst, dan data engineer sehingga informasi data ini dapat dignakan untuk manajemen energi yang efisien dan andal. Peralaman beban untuk pelanggan PV menjadi masalah yang sulit dipecahkan dikarenakan beragamnya tipe penggunaan listrik (konsumsi listrik) dan ketidakpastian faktor eksternal (cuaca) karena penggunaan sumber energi terbarukan (energi matahari) sehingga menimbulkan celah dalam akurasinya. Untuk memecahkan masalah tersebut, penelitian ini menggunakan pendekatan machine-learning yaitu Jaringan Syaraf Tiruan (Artificial Neural Network-ANN) pada MATLAB® dengan algoritma pembelajaran backpropagation dan fungsi aktivasi sigmoid untuk menghasilkan model peramalan beban  orde jam meliputi hari kerja dan hari libur pada pelanggan PV per segment tarif (Pelanggan Rumah Tangga, Pelanggan Bisnis, Pelanggan Industri, Pelanggan Sosial dan Pelanggan Pemerintah). dengan mempertimbangkan variasi konsumsi listrik dan temperatur. Lingkup pengambilan data penelitian dibatasi beban listrik pada pelanggan di Jakarta dan sampling dilakukan selama bulan Juli s/d Oktober 2019. Hasil penelitian ini memperlihatkan bahwa prediksi ANN menghasilkan kinerja dengan Mean Square Error (MSE) sebesar 2%. Prediksi beban listrik tanggal 21 s/d 27 Oktober 2019 memperlihatkan rata-rata error ANN adalah 21%, sedangkan rata-rata error metode regresi adalah 39%. Dengan demikian dapat disimpulkan bahwa prediksi beban listrik menggunakan ANN lebih akurat sebesar 20% dibandingkan dengan metode regresi oleh PLN. Berdasarkan analisis keekonomian, pelanggan mendapatkan efisiensi biaya listrik sebesar 21%, sedangkan PLN berkurang pendapatan sebesar ± Rp. 300 juta/bulan. Strategi manajemen yang diusulkan dengan mempertimbangkan benefit kedua pihak (PLN dan Konsumen) adalah dengan keterlibatan PLN sebagai integrator (sisi hulu dan sales), ketelibatan Pemerintah dan keterlibatan dukungan Bank sebagai

The very rapid technological development in the electricity sector at present is the use of special distributed PLTS known as PV Rooftop. Customers use energy from the PV for their electricity needs and can also transfer their energy (export) to the PLN electricity system if the energy from their PV is excessive. While PLN continues to send energy to customers if using energy from PV does not meet its electricity consumption (imports). While the avaibility of fine-grained smart meter data for PV customers load, optimization could be done for the needs of data scientists, data analysts and data engineers makes this data information usable for efficient and reliable energy management. Forecasting the PV Customer load, however, can be an intractable problem. These loads are characterized by uncertainty and variations due to the use of renewable energy sources (solar energy), leaving much room to improve accuracy. To improve the PV customer load forecast accuracy, this paper advocates a machine-learning tool called Artificial Neural Network (ANN) on MATLAB® with backpropagation learning algorithm and sigmoid activation, include load forecasting per tariff segment (Household Customers, Business Customers, Industrial Customers, Social Customers and Government Customers). The scope of the study took data on electricity loads to customers in Jakarta and sampling was conducted from July to October 2019. The test results show that ANN deterministic load forecasting model can achieve satisfactory performance with the mean square error (MSE) of 2% . Electricity load predictions from 21 to 27 October 2019 have an average error of ANN is 21%, while the average error of the regression method is 39%. Thus it can be concluded that the estimated cost of using ANN electricity is more accurate by 20% compared to the regression method by PLN. Based on economic analysis, customers get electricity cost efficiencies of  21%, while PLN reduces revenue by ±Rp. 300 million/month. The proposed management strategy by considering the benefits of both parties (PLN and Consumers) is to involve PLN as an integrator (upstream and sales side), Government involvement and involvement of Bank supporters as lenders."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T54037
UI - Tesis Membership  Universitas Indonesia Library
cover
Geraldi Oktio Dela Rosa
"Secara teoritis, biometrik dapat digunakan untuk mengidentifikasi dan memverifikasi suatu individu. Iris mata merupakan salah satu instrumen biometric yang handal, karena keunikan dari dan kompleksitasnya.
Di dalam penelitian ini dirancang bangun program identifikasi iris mata menggunakan metode Jaringan Syaraf Tiruan (JST). Citra mata dijital yang akan diidentifikasi pertama-tama dilakukan pra-pengolahan terlebih dahulu. Proses ini memisahkan bagian iris dari citra mata menggunakan metode morphologi, yaitu close, erosi dan dilasi. Selanjutnya, citra disegmentasi untuk memisahkan citra iris berbentuk lingkaran dalam koordinat x-y menjadi format polar r-θ berbentuk persegi panjang. Citra polar kemudian diekstrasi untuk mendapatkan nilai karakteristik rata-ratanya dalam bentuk matriks 40 x 1. Nilai karakteristik dilatih dan dimasukkan ke dalam database sebagai input pembanding untuk proses identifikasi. JST terdiri dari 10 layer tersembunyi, 1 layer keluaran, dengan fungsi aktifasi tansig dan purelin.
Setelah dilakukan pelatihan untuk 80 citra iris, baik mata kiri maupun kanan, proses identifikasi mencapai tingkat akurasi rata-rata sebesar 87% untuk 5 buah input citra dengan 20 kali uji coba.

Theorically, biometric can be used to identify dan verify an individu. Iris is one of biometric identifier that highly acceptable because of its uniqueness and complexity.
The objective of this research is to identifiy an iris using Artificial Neural Network (ANN) method. First, the digital infrared image of eye will be preprocessed which separate the iris from the eye using morphology technique, such as closing, erosion, and dilation. The iris is then transformed from x-y dimension into r-θ polar image, which convert the circle shape into rectangle one. The image was then extracted in order to get the average value of its intensities and saved in 40 x 1 matrix size. These values will be trained in the ANN and inserted into a database to be used as a comparator in identification process. The ANN consisted of 10 hidden layer, 1 output layer, and activation functions of tansig and purelin, respectively.
Using 80 images as training data, the identification accuracy reached 87 % for 5 images and 20 times of test for left side and right side eyes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52158
UI - Skripsi Open  Universitas Indonesia Library
cover
Rina Agustina
"Untuk mengindentifikasi kondisi janin di dalam kandungan, dewasa ini masih dilakukan tindakan konvensional yang dapat menyakiti janin dalam kandungan dan si ibu.
Di dalam penelitian ini dirancang bangun program identifikasi kondisi janin dengan near infrared spectroscopy yang dikenal melalui metode Jaringan Syaraf Tiruan (JST). Gelombang cahaya yang diterima dari proses penyinaran NIRS ke jaringan otak dikonversi ke gelombang audio, selanjutnya gelombang audio tersebut dihubungkan ke komputer melalui input audio. Pada tahap awal pendeteksian gelombang, pertama-tama dilakukan pra-pengolahan terlebih dahulu. Gelombang spektroskopi diperbesar untuk mendapatkan bentuk gelombang yang baik, dan selanjutnya gelombang ini dipotong- potong hingga didapat spektrum yang dapat mewakili karakteristik gelombang dalam bentuk matriks 75x1. Nilai karakteristik dilatih dan dimasukkan ke dalam database sebagai input pembanding untuk proses identifikasi. JST terdiri dari 100 layer tersembunyi dan 1 layer keluaran, dengan fungsi aktifasi tansig dan purelin.
Setelah dilakukan pelatihan untuk 30 gelombang audio yang masing?masing terdiri dari 10 gelombang audio kondisi janin normal, 10 gelombang audio kondisi janin asfiksia dan 10 gelombang audio janin preasfiksia, identifikasi kondisi janin ini mencapai tingkat akurasi rata-rata sebesar 66,67% dengan 4 kali pengukuran pada 15 sampel input.

To identifying fetal condition on the womb nowadays, some people still using conventional method that can harm the fetal it self and the mother.
The objective of this research, we try to build up a program to identify fetal condition through spectroscopy that also known as Artificial Neural Network method. Light wave that collected from NIRS to the fetal's brain cell converted to be audio wave, then we connect this audio wave to the computer with the audio input tools. In the first step of the wave detection, we should do the pre-processing of the wave. The signal wave from spectroscopy are zoomed out to get a good specific wave. And then we broke it down to get specific charasteristic spectrum of the wave in the form of matrix 75x1. The value of its charasteristic is trained and input on the database as the input comparator for the identify process. ANN is contain of 100 layer as the hidden layer and 1 layer as the output layer, with tansig function and purelin function as the activation function.
After training for 30 spectroscopy wave, that contains of 10 audio wave of the fetal condition in normal, 10 audio wave in asphyxia and 10 audio wave in pre-asphyxia condition, identification of the fetal condition reach average of the accuracy in 66,67% with 4 times measuring for 15 input sample.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42652
UI - Skripsi Open  Universitas Indonesia Library
cover
Barqi Azmi
"Sebagai dasar dalam perencanaan operasi, dibutuhkan prakiraan yang tepat untuk mengetahui kebutuhan tenaga listrik dalam periode waktu tertentu. Prakiraan biasanya berupa prakiraan beban load forecasting meliputi beban puncak MW, dan prakiraan kebutuhan energi listrik MWh. Dalam melakukan prakiraan telah berkembang berbagai macam metode, salah satunya metode koefisien yang digunakan oleh PT PLN Persero- P2B untuk memprakirakan beban harian dan mingguan dengan data realisasi 3 tahun sebagai pengembangan dari metode autoregresi. Metode prakiraan ini merupakan metode yang relatif akurat dengan tingkat kesalahan terhadap nilai-nilai beban aktual berkisar 5 - 10.

A basis for operations planning, precise forecasts are needed to determine the demand for electricity over a period of time. Forecasts usually includes load forecasting including peak load MW, and forecasts for electrical energy MWh. In doing the work has evolved a variety of methods, one of which is the coefficient method used by PT PLN Persero P2B to forecast daily and weekly loads with 3 years realization data as the development of the autoregression method. This forecasting method is a relatively accurate method with an error rate against actual load values ranging from 5 10."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67179
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luqman Arif Farizqi
"Suatu sistem tenaga listrik. Pada saat generator terkena gangguan yang besar dan tiba-tiba maka generator akan mengalami ayunan dan masuk ke kondisi peralihan. Apabila generator dapat kembali ke kondisi setimbangnya maka generator dapat dikatakan stabil. Untuk menjaga agar generator tetap stabil maka diperlukan suatu metode untuk memperbaiki kestabilan generator. Salah satu metode dapat digunakan adalah menggunakan dynamic braking resistorreactor.
Skripsi ini membahas mengenai penerapan pengendali jaringan syaraf tiruan untuk koordinasi pensaklaran braking resistor-reactor pada stabilitas peralihan sistem tenaga listrik. Ketika terjadi gangguan, simpangan kecepatan rotor akan diukur besarnya kemudian sudut penyalaan tiristornya akan ditentukan oleh hasil keluaran dari pengendali jaringan syaraf tiruan. Pengendali ini mengenali input dan outputnya dengan berdasarkan proses pembelajaran jaringan syaraf tiruan. Proses pembelajaran yang dilakukan adalah dengan menggunakan algoritma backpropagation jenis levenberg-marquardt. Pengendalian sudut penyalaan tiristor pada braking resistor-reactor ini berfungsi untuk mengatur dan mengendalikan percepatan dan perlambatan putaran rotor sehingga kestabilan sistem dapat lebih ditingkatkan.
Simulasi pengambilan data dilakukan dengan memberikan tiga jenis gangguan ke dalam sistem dengan dua durasi waktu yang berbeda. Ketiga jenis gangguan tersebut adalah gangguan tiga fasa ke tanah, dua fasa ke tanah, dan satu fasa ke tanah. Hasil simulasi memperlihatkan bahwa penerapan pengendali jaringan syaraf tiruan untuk koordinasi pensaklaran braking resistor-reactor dapat mempercepat dan meningkatkan kestabilan sistem.

Stability is one of the most important factor that affects performance of the electric power system. When large and sudden faults occurred, generator will be swung and get in to the transient condition. If generator can goes back to the balance condition, generator will be stable.That’s why, for improving the generator stability’s, we need a method to do that. One of the method which can be used to improve the generator stability’s is dynamic braking resistor-reactor.
This paper describes about the implementation of artificial neural network controller for switching coordination of braking resistor-reactor in the electric power system transient stability. When faults occurred, rotor speed deviation will be measured and then, the thyristor firing-angle’s will be determined by the output of the artificial neural network controller. This controller identify its inputs and outputs based on the training process of artificial neural network. The training process was been doing by using levenberg-marquardt backpropagation algoritm's. By controlling the thyristor firing-angle's of the braking resistor-reactor, rotor speed acceleration’s and deceleration’s can be controlled so that the system stability can be improved.
Simulation process was been doing by occurring three kinds of faults in the system with two different kinds of time durations. Those three faults are threephase-ground fault, two-phase-ground fault, and single-phase-ground fault.The simulations results show that implementation of artificial neural network controller for switching coordination of braking resistor-reactor can improve the system stability.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40529
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>