Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5980 dokumen yang sesuai dengan query
cover
"Machine generated contents note: 1. STARCH-LIGNIN FILMS1 -- Stephanie Baumberger -- 2. LIGNOSULFONIC ACID-DOPED POLYANILINE (LIGNO-PANITTM) -- - A VERSATILE CONDUCTING POLYMER21 -- Brian C. Berry and Tito Viswanathan -- 3. POLYURETHANES CONTAINING LIGNIN41 -- Hyoe Hatakeyama -- 4. LIGNINS AS MACROMONOMERS FOR POLYESTERS AND -- POLYURETHANES57 -- Alessandro Gandini, Mohamed N. Belgacem, Zhao-Xia Guo and Suzelei Montanari -- 5. LIGNIN AND ITS POLYBLENDS - A REVIEW81 -- Dorel Feldman -- 6. ARBOFORM - A THERMOPLASTIC, PROCESSABLE MATERIAL -- FROM LIGNIN AND NATURAL FIBERS101 -- Helmut Nagele, Jirgen Pfitzer, Edgar Nagele, Emilia R. Inone, Norbert Eisenreich, -- Wilhelm Eckl and Peter Eyerer -- 7. LIGNIN-BASED CARBON FIBERS121 -- John F. Kadla, Satoshi Kubo, Richard D. Gilbert and Richard A. Venditti -- 8. THE USE OF LIGNOSULFONATES AS WATER REDUCING AGENTS -- IN THE MANUFACTURE OF GYPSUM WALLBOARD139 -- Robert A. Northey -- 9. MODIFIED KRAFT LIGNIN AND ITS USE FOR SOIL -- PRESERVATION151 -- Kyoko Katsumata and Gyosuke Meshitsuka -- 10. NITROGENOUS FERTILIZERS FROM LIGNINS - A REVIEW167 -- Klaus Fischer and Rainer Schiene -- 11. PULPING CATALYSTS FROM LIGNIN -- - THE DIELS - ALDER STEP199 -- Donald R. Dimmel, Joseph J. Bozell, David G. von Oepen, and Michael C. Savidakis -- 12. ACETYLATION OF LIGNIN AND PHOTOSTABILIZATION OF -- LIGNIN-RICH MECHANICAL WOOD PULP AND PAPER221 -- Magnus Paulsson and Rune Simonson -- 13. CATALYTIC MODIFICATION AND PHOTOSTABILIZATION -- OF LIGNIN FUNCTIONAL GROUPS247 -- Thomas Q. Hu and Brian R. James -- 14. CHARACTERISTICS, INDUSTRIAL SOURCES, AND UTILIZATION -- OF LIGNINS FROM NON-WOOD PLANTS267 -- Jairo H. Lora -- INDEX283."
New York: Springer science/Business media, 2002
572.566 82 CHE (1)
Buku Teks  Universitas Indonesia Library
cover
cover
Christian Hidayat
"Polipropilene(PP) sebagai bahan baku produk kemasan, seperti gelas air mineral, setelah pemakaian cenderung kurang diberdayakan padahal jumlah limbah PP tersebut setelah pemakaian sangat banyak. Pada sisi lain, kertas yang banyak digunakan pada proses pengolahannya menghasilkan limbah, salah satunya adalah lignin. Pemberdayaan limbah lignin hingga saat ini masih belum optimal, padahal jumlahnya juga sangat banyak. Modifikasi dari kedua limbah ini sebagai bahan baku suatu produk, menjadi sesuatu yang sangat menarik untuk diteliti. Penelitian ini mempelajari perubahan yang terjadi pada PP sebelum dan sesudah penggunaan dan juga pengaruh komposisi, waktu dan penambahan CaCO3 pada pencampuran lignin dan PP terhadap sifat mekanik, sifat fisik kemampuan pembentukan dan morfologi permukaan dan perpatahan produk yang dihasilkan. Analisa penelitian ini didukung oleh beberapa metode pengujian, seperti uji tarik, FTIR, uji densitas dan FESEM. Hasil dari pengujian yang telah dilakukan menunjukkan kemampuan mekanik optimal diperoleh dengan penambahan lignin sebanyak 5 phr dengan waktu pencampuran 20 menit tanpa CaCO3.

As a raw material for packaging Polyproylene (PP), such as plastic cups, PP after consuming not being optimally utilized even the quantity of PP waste is very abundant. On the other side, the pulp making process produces wastes, such a lignin in abundant amount. Utilization of lignin waste in Indonesia still not effective. Modification of the two materials as a new raw material is an interesting subject. This research studied change of PP properties before and post consumption and effect of composition, mixing time and addition of CaCO3 at mixing of lignin and PP to mechanical and physical properties, formability and morphology of surface of the product. Characterization of the product was performed by measuring UTM, FTIR, density test and FESEM. The results showed that the best Young Modulus was 74 MPa at 5 phr of lignin with mixing time 20 minute without CaCO3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56455
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sienko, Michell J.
Kogakusha: McGraw-Hill, 1974
540 SIE c
Buku Teks SO  Universitas Indonesia Library
cover
Samuel Christian Giovanni
"[ABSTRAK
Pada aplikasinya, konstruksi jalan masih memiliki banyak kelemahan antara lain mudah rusak pada saat terdapat genangan air sehingga akan memperpendek umur pakai jalan. Pada penelitian ini akan dilakukan modifikasi dari bitumen yang merupakan bahan utama pembuatan jalan dengan cara penambahan High Density Polyehtylene (HDPE) dan liginin pada campuran bitumen pen 60/70. Hal ini dapat menurunkan nilai penetrasi sehingga menjadikan bitumen lebih keras dan tahan ketika diberikan beban kendaraan yang berulang, meningkatkan titik lembek, dan menurunkan daktilitas. Selain itu, penambahan lignin sebagai coupling agent dapat meningkatkan kompaktibilitas antara HDPE dengan bitumen karena lignin yang memiliki gugus polar dan non-polar. Kadar lignin yang digunakan yaitu 0,1%, 0,3%, dan 0,5%. Selain itu, penelitian ini juga ingin mengetahui pengaruh temperatur proses yaitu 140˚C, 160˚C dan 180˚C dan waktu pencampuran yaitu 15, 30, dan 45 menit terhadap sifat bitumen hasil modifikasi. Untuk itu dilakukan pengujian mekanik dan karakterisasi campuran untuk melihat kekuatan dari bitumen dan kompatibilitas antara bitumen, HDPE, dan lignin. Pengujian dilakukan melalui uji daktilitas, penetrasi, dan titik lembek. Sedangkan, karakterisasi dilakukan dengan menggunakan Fourier Transform Infrared (FTIR), Thermo Gravimetric Analyzer (TGA), dan Differential Scaning Calorimetry (DSC). Dari hasil pengujian menunjukkan semakin tinggi kadar dari liginin dan semakin tinggi temperatur proses yang digunakan maka semakin tinggi juga kekuatan bitumen modifikasi dalam menahan beban serta semakin tinggi ketahanan termalnya. Kompatibilitas yang baik didapat pada penambahan lignin 0,5% dan temperatur proses 180&#deg;C.

ABSTRACT
In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration?s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180°C.
;In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration?s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180oC., In the application, road construction still has some weakness such as easily damaged, especially when wet patch of water exists. In this case, it will shorten the lifespan of the road. In this study, therefore, the main purpose is to modify the bitumen, which is the main ingredient of asphalt for road construction. The work was performed by adding high density polyethylene (HDPE) and lignin into the bitumen mix pen 60/70. It was expected that it could decrease the penetration’s value so it will make the asphalt harder and resistant to the load, increase the softening point, and thus lower the ductility. The addition of lignin was expected to function as a coupling agent and could increase the compatibility between HDPE and bitumen. This can be understood since lignin has a polar and a non-polar groups. Concentration of lignin used was 0.1, 0.3, and 0.5 wt.% at processing temperature of 140oC, 160oC and 180oC and mixing times of 15, 30, and 45 minutes. Characterization was performed by using a Fourier Transform Infrared (FTIR), Thermogravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC), whereas the mechanical testing of the modified bitumen was performed through ductility testing, penetration, and softening point. The results showed that high level of lignin and high temperature of the process resulted in high strength of the modified bitumen and so does the thermal resistance. The best result was obtained in the addition of 0.5 wt.% lignin at a process temperature of 180oC.]"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S61894
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oxford: Oxfam , 1979
362.5 PIC
Buku Teks  Universitas Indonesia Library
cover
Sydney: Ashgate, 2000
345 CRI
Buku Teks SO  Universitas Indonesia Library
cover
New York: IEEE Press, 1985
621.395 VLS
Buku Teks  Universitas Indonesia Library
cover
Daubert, Thomas E.
New York: McGraw-Hill Company, 1985
;660.296 9 DAU c (2)
Buku Teks  Universitas Indonesia Library
cover
Syaukat Rafifidhiya
"ABSTRAK
Bitumen termodifikasi polimer telah banyak diminati sebagai bahan pengeras jalan. Namun, kestabilan bitumen termodifikasi masih dirasa kurang sehingga dilakukan penelitian lanjutan untuk menemukan kompatibiliser yang sesuai kebutuhan, salah satunya lignin termodifikasi. Penelitian tentang bagaimana pengaruh dari lignin termodifikasi terhadap sifat mekanis bitumen termodifikasi polimer polymer modified bitumen-PMB dilakukan dengan mencampurkan ketiga komponen tersebut dengan hot melt mixing dengan komposisi lignin termodifikasi 0,1 , 0,3 , dan 0,5 serta suhu pencampuran 160 oC, 180 oC, dan 200 oC. Dan waktu pencampuran 15, 30, dan 45 menit. Penelitian dengan menggunakan STA, FTIR, sudut kontak dengan metode sessile drop, FE-SEM, dan uji mekanis pada daktilitas dan penetrasi menunjukkan penambahan lignin termdofikasi memengaruhi sifat mekanis PMB dengan menurunkan penetrasi hingga 33 dan daktilitas PMB hingga 68 . Selain itu, sifat termal juga terpengaruh dengan meningkatnya titik leleh hingga 5 oC seiring dengan penambahan konsentrasi lignin termodifikasi. Suhu dan waktu pencampuran memengaruhi distribusi dan dispersi campuran dengan indikasi peningkatan intensitas ikatan hidrogen

ABSTRACT
Polyethylene Modified Bitumen PMB has been developed to give an alternative in material selection on pavement engineering. However, PMB has no good stability especially on wet weather. Many compatibilisers has been developed to overcome this problem, and one of them is urethanized ndash modified lignin. HDPE, bitumen, and modified lignin has mixed on hot melt mixing with varied concentration of modified lignin, temperature of mixing, and mixing time. Concentration of modified lignin vary from 0,1 , 0,3 to 0,5 , temperature of mixing varied from 160 oC, 180oC, dan 200 oC and time of mixing varied from 15,30, dan 45 minutes. Observation with STA, FTIR, contact angle with sessile drop method, FE SEM, and mechanical test on ductility and penetration show that modified lignin effect on mechanical and thermal properties of PMB. The effect has been indicated by decreasing of value of penetration to 67 and ductility of PMB to 31 and increasing the melting point up to 5 oC. Beside that, temperature and time of mixing effect the distribution and dispersion on mixing."
2017
S67219
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>