Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 208630 dokumen yang sesuai dengan query
cover
Deni Saputra
"Daerah prospek panas bumi Gunung Arjuno dan Gunung Welirang berada pada jalur vulkanik yang dikenal dengan jalur ring of fire, yaitu rentetan gunung api, baik yang aktif, maupun gunung api yang tidak aktif. Gunung tersebut berasosiasi dengan pembentukan sistem panas bumi yang ditandai dengan kemunculan manifestasi yang terdiri dari mata air panas Padusan, Coban dan Cangar serta adanya fumarol yang terdapat di komplek Gunung Welirang. Dari hasil perhitungan geothermometer daerah prospek panas bumi Gunung Arjuno dan Gunung Welirang memiliki temperatur 250o C dan masuk dalam kategori high temperature (>225 oC). Untuk mengetahui batas, kedalaman, dan geometri dari reservoir yang ada, dilakukan pengukuran dengan metode Magnetotellurik (MT), Time Domain Electromagnetic (TDEM) dan gaya berat.
Dari hasil pengukuran tersebut, dilakukan pemodelan pada 138 data MT, 103 data TDEM dan 253 data gaya berat. Selanjutnya hasil pemodelan dianalisa dengan menggunakan penampang 1 dimensi, 2 dimensi dan visualisasi 3 dimensi. Karakteristik reservoir berada pada kisaran 10-30 Ohm-m dengan nilai densitas rata-rata 2.2 gr/cc dan menghasilkan prospek panas Gunung Arjuno dan Gunung Welirang sekitar 40 km2 dengan potensi yang dapat dikembangkan untuk pembangkit tenaga listrik sebesar 140 MWe, rekomendasi penentuan titik bor eksplorasi berada di 2 km baratlaut dari komplek Gunung Welirang.

The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity.
From the results of these measurements, modeling performed on the 138 MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g/CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point determination located at 3km north-west of the mountain complex Mount Welirang.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43401
UI - Tesis Membership  Universitas Indonesia Library
cover
Fikri Fahmi
"Daerah prospek panas bumi Arjuno-Welirang berada di jalur ring of fire Indonesia dan berlokasi di Kab. Mojokerto, Kab. Malang, Kab. Pasuruan, dan Kota Batu Provinsi Jawa Timur. Secara geologi batuan di daerah ini didominasi oleh batuan vulkanik berupa lava dan piroklastik yang berumur kuarter. Manifestasi yang muncul di permukaan berupa fumarol - solfatar yang terletak di puncak Gn. Welirang dan mata air panas yang berada di sebelah barat dan baratlaut Gn. Welirang bertipe bicarbonate dengan suhu berkisar antara 39 - 55 0C. Inversi 2-D dan 3-D dari data Magnetotellurik dilakukan untuk mengetahui struktur resistivitas bawah permukaan dengan menggunakan software WinGlink dan MT3DInv-X.
Hasil penelitian ini menunjukan bahwa inversi 3-D mampu menggambarkan struktur bawah permukaan dengan lebih baik dibandingkan dengan inversi 2-D. Lapisan konduktif (<15 ohm-m) dengan ketebalan sekitar 1 - 1,5 km diindikasikan sebagai clay cap dari sistem panas bumi. Lapisan yang berada di bawah clay cap dengan nilai resistivitas sedikit lebih tinggi (20 - 60 ohm-m), diindikasikan sebagai zona reservoir. Body dengan nilai resistivitas yang tinggi (>80 ohm-m), diinterpretasikan sebagai heat source yang berasosiasi dengan aktivitas vulkanik Gn. Arjuno-Welirang.
Tahap akhir dari penelitian adalah mengintegrasikan data MT, geologi dan geokimia, untuk membangun model konseptual. Luas daerah prospek untuk sistem geotermal Arjuno-Welirang sekitar 18 km2 dengan pusat reservoar berada di bawah puncak Welirang. Temperatur reservoar geotermal Arjuno-Welirang dihitung dengan menggunakan geotermometer gas CO2 sekitar 260oC. Potensi dari sistem geotermal Arjuno-Welirang dihitung dengan metode Volumetrik Lump Parameter adalah sebesar 144 MWe.

Arjuno-Welirang Geothermal prospect area is situated in ring of fire Indonesia and located in Kab. Mojokerto, Kab. Malang, Kab. Pasuruan, and Kota Batu, East Java. Geologically, the prospect area is dominated by Quartenary volcanic rocks, both lava and phyroclastic. Surface manifestations occured in this prospect area are fumaroles-solfatara found on top of Mount Welirang. Other manifestanions found in this area are hot springs on the West and Northwest of Mount Welirang that catagorized as bicarbonate type with temperatures range between 39 to 55 oC. The 2-D and 3-D inversion MT data are performed to determine the subsurface resistivty structure. The 2-D inversion was done by using WinGlink software, while the 3-D inversion has been carried out using MT3DInv-X software.
The result of the inversion shows that the 3-D inversion can deliniate the subsurface structure more clearly than the 2-D inversion. The conductive layer (<15 ohm-m) with a thickness of about 1 - 1,5 km is indicated indicating the clay cap of the geothermal system. A slighty higher resistivity value (20-60 ohm-m) is discovered below the clay cap, indicating the reservoir zone. Body with high resistivity values (> 80 ohm-m) is interpreted as heatsource of geothermal system associated with volcanic activity of Mount Welirang.
The final stage of the research is to intergrate the MT data, geology and geochemistry data, to build a conceptual model. The coverage boundary of the prospective area is about 18 km2 with the summit of Mount Welirang as the center of reservoar. Temperature of geothermal reservoir based on CO2 gas geothermometer is about 260oC.The capacity of Arjuno-Welirang geothermal system counted using Volumetric Lump Parameter method is about 144 MWe.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52633
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Purbiyantoro
"Terdapat dua prospek panas bumi di sekitar Gunung Slamet, yaitu prospek Guci di sebelah barat laut dan prospek Baturaden di sebelah selatan dari Gunung Slamet. Menjadi sangat menarik untuk mengetahui hubungan kedua prospek tersebut, apakah prospek tersebut merupakan dua daerah prospek yang dipisahkan oleh tinggian low permeability barrier sehingga tidak akan terjadi interferensi diantara kedua prospek?
Dengan melakukan deliniasi zona permeabel berdasarkan analisis data magnetotelurik dan data gravity dikorelasikan dengan data struktur geologi permukaan dan data manifestasi permukaan yang ada, diharapkan dapat mengetahui hubungan diantara kedua prospek tersebut.
Dalam penelitian ini dilakukan pemrosesan dan pemodelan data geofisika menggunakan metode magnetotelurik inversi 2-D dan metode gravity 2-D forward. Pemodelan ini sangat efektif dalam mendeteksi zona-zona dengan kontras resistivitas tinggi untuk mendeliniasi zona permeabel lapangan panas bumi. Daerah prospek panas bumi Gunung Slamet dapat terdeliniasi dengan jelas berdasarkan beberapa penampang lintasan yang dibuat, yang menunjukkan daerah prospek berada di sisi sebelah barat Gunung Slamet dengan luas berdasarkan peta BOC sekitar 13 km2, dan berdasarkan peta resistivitas pada elevasi 0 meter yang dikombinasikan dengan peta struktur geologi luas daerah prospek sekitar 22 km2.
Dan hasil akhir dari penelitian ini adalah memberikan rekomendasi dalam menentukan lokasi pemboran, dengan sebelumnya membuat model konseptual prospek panas bumi Gunung Slamet.

There are two geothermal prospects in the vicinity of Mount Slamet, the prospect of Guci in northwest and prospects Baturaden in the south of Mount Slamet. Be very interesting to know the relationship between the two prospects, whether the prospect of two regions separated by low permeability barrier heights so that there will be no interference between the two prospects?
By doing permeable zone delineation based on data analysis magnetotelluric and gravity, correlated with surface geological structural data and existing surface manifestations, are expected to know the relationship between the two prospects.
In this research, processing and modeling of geophysical data using magnetotelluric inversion method 2-D and 2-D method of gravity forward. Modeling is very effective in detecting zones with high resistivity contrast to delineate the permeable zone geothermal field. Geothermal prospect areas of Mount Slamet can be delineated clearly based on some of the tracks that made cross-section, showing the prospect area is located on the west side of Mount Slamet with broad based map BOC about 13 km2, and resistivity maps based on elevation of 0 meters, combined with the structure geological maps, the prospect area about 22 km2.
And the end result of this study is to provide recommendations in determining the location of drilling, with previous a conceptual model of geothermal prospects Mount Slamet.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T-43405
UI - Tesis Membership  Universitas Indonesia Library
cover
Sigit Wahono
"Pengeboran eksplorasi adalah merupakan pengeboran wildcat yang memiliki risiko sangat tinggi karena rasio keberhasilannya relatif berimbang dengan tingkat kegagalannya. Oleh karena itu, untuk meminimalkan risiko tersebut, integrasi terhadap data Geologi, Geokimia dan Geofisika dengan kualitas baik diperlukan untuk dapat menggambarkan kondisi bawah permukaan melalui model konseptual yang mendekati kondisi sebenarnya. Target utama dalam pengeboran panas bumi adalah zona reservoir yang memiliki permeabilitas serta temperatur tinggi. Data Magnetotelluric MT digunakan untuk mengetahui distribusi konduktivitas batuan bawah permukaan sekaligus digunakan dalam memperkirakan sebaran temperaturnya, sementara itu data gravity dioptimalkan untuk merekonstruksi struktur geologi bawah permukaan yang berasosiasi dengan permeabilitas batuan. Inversi 3-D dari data MT serta pemodelan data gravity merupakan metode yang digunakan untuk menganalisis struktur resistivitas serta posisi struktur geologi bawah permukaan.
Hasil integrasi data geologi, geokimia dan geofisika menunjukkan bahwa sebaran low resistivity yang berasosiasi sebagai lapisan claycap berada dibagian baratlaut daerah penelitian gunung ldquo;X rdquo; dan sekaligus merupakan daerah upflow hal ini didindikasikan tipe air pada contoh manifestasi berupa air sulfat, dimana kemunculan manifestasi berupa air panas pada daerah tersebut dikontrol oleh struktur geologi berarah tenggara-baratlaut. Rekomendasi pemboran ekplorasi ditetapkan 2 lokasi pada zona upflow dan salah satunya mengarah tegak lurus pada struktur geologi berupa patahan yang merupakan hasil interpretasi SVD data gravity.

Exploratory drilling is a wildcat drilling that has a very high risk because the success ratio is relatively balanced with the failure rate. Therefore, to minimize such risks, the integration of good quality Geological, Geochemical and Geophysical data is required to illustrate the subsurface condition through a conceptual model that is close to the actual conditions. The main target in geothermal drilling is the reservoir zone which has high permeability and temperature. Magnetotelluric MT data were used to determine the conductivity distribution of subsurface rocks as well as to estimate their temperature distribution, while gravity data was optimized to reconstruct subsurface geological structures associated with rock permeability. 3 D Inversion of MT data as well as gravity data modeling is a method used to analyze the resistivity structure as well as the position of subsurface geological structures.
The results of the integration of geological, geochemical and geophysical data indicate that the low resistivity distribution associated as claycap layer is located in the north west part of the research area mount X and is also an upflow zone. This is indicated by water type in a manifestation sample as water sulfate, where the appearance of manifestation in the area is controlled by geological structures of SE NW. Exploration drilling recommendations are set at 2 locations in the upflow zone and one of them lead perpendicular to the geologic structure which is the result of SVD interpretation of gravity data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T49617
UI - Tesis Membership  Universitas Indonesia Library
cover
Hadi Allamilfar I.
"Lapangan panasbumi Candradimuka berada di dataran tinggi Dieng, merupakan daerah prospek di luar lapangan Dieng sebelumnya, sehingga diperlukan deliniasi zona permeabel untuk pemboran. Lapangan ini memiliki manifestasi berupa fumarol dan mata air panas di bagian Kawah Candradimuka diantara dua daerah vulkanik berumur kuarter yaitu Gunung Jimat dan Kawah Dringo. Perlunya deliniasi zona permeabel untuk menentukan sistem panas bumi di daerah Kawah Candradimuka dan juga diperlukan penentuan zona upflow dan outflow sebagai dasar dalam pemboran. Manifestasi panasbumi yang berada di permukaan akan di ambil sample fluida dan dianalisis dengan metode geokimia untuk mengetahui suhu fluida permukaan dan pendugaan suhu bawah permukaan. Kondisi bawah permukaan akan dianalisis dengan metode magnetotellurik dalam penentuan zona alterasi, heatsource, dan batas zona permeabel yang merupakan batas reservoir. Hasil penelitian menjelaskan zona permeabel yang merupakan reservoir sistem panasbumi Candradimuka dipengaruhi oleh formasi batuan Gunung Jimat-Kawah Dringo, dengan suhu reservoir sekitar 270degC. BOC sistem ini di ketinggian 1.000m dan deliniasi zona permeabel atau reservoir berada di elevasi 250m, dengan upflow berada di Gunung Jimat-Kawah Dringo, dengan outflow di sekitar patahan Wonopriyo di arah NW dari zona upflow. Direkomendasikan lokasi pemboran pada bagian batuan yang belum mengalami alterasi sehingga lebih aman untuk dibuat rig di sebelah timur manifestasi, kemudian arah pemboran di arahkan di sekitar patahan di tengah reservoir, dimana ada sekitar 1000m di bawah permukaan, dengan resistivitas sekitar 20-60 ohm.

The Candradimuka geothermal field is located in the Dieng plateau, which is a prospect area outside the previous Dieng field, so delineation of the permeable zone is required for drilling. This field has manifestations in the form of fumaroles and hot springs in the Candradimuka Crater section between two quarterly volcanic areas, namely Mount Jimat and Dringo Crater. It is necessary to delineate the permeable zone to determine the geothermal system in the Candradimuka Crater area and also to determine the upflow and outflow zones as a basis for drilling. Geothermal manifestations that are on the surface will be taken fluid samples and analyzed by geochemical methods to determine the temperature of the surface fluid and estimate the subsurface temperature. The subsurface conditions will be analyzed using the magnetotelluric method in determining the alteration zone, heat source, and the permeable zone boundary which is the reservoir boundary. The results of the study explain that the permeable zone which is the reservoir of the Candradimuka geothermal system is influenced by the rock formations of Mount Jimat-Dringo Crater, with a reservoir temperature of around 270degC. The BOC of this system is at an altitude of 1,000m and the delineation of the permeable zone or reservoir is at an elevation of 250m, with the upflow being at Mount Jimat-Kawah Dringo, with outflow around the Wonopriyo fault in the NW direction from the upflow zone. It is recommended that the drilling location is in the rock part that has not undergone alteration so that it is safer to build a rig to the east of the manifestation, then the drilling direction is directed around the fault in the middle of the reservoir, which is about 1000m below the surface, with a resistivity of around 20-60 ohms."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Urip Priyono
"Tingkat kesuksesan pemboran geotermal di Indonesia masih menjadi kendala utama dalam upaya pengembangan geothermal. Lapangan geotermal ?X? merupakan salah satu daerah prospek di Indonesia yang belum dilakukan pengeboran oleh pihak pengembang. Manifestasi yang muncul ke permukaan berupa mata air panas dan alterasi batuan, dengan tidak adanya manifestasi fumarol maka menjadi tantangan tersendiri dalam melakukan kegiatan eksplorasi geotermal di daerah penelitian.
Penelitian ini difokuskan pada penentuan target pemboran di zona prospek. Adapun metode yang digunakan yaitu: remote sensing citra Landsat 7, 3D-MT serta geokimia. Analisis struktur permukaan lapangan geotermal "X" menggunakan citra satelit DEM dan Landsat 7. Teknologi citra dalam hal ini remote sensing sangat membantu dalam memetakan sebaran manifestasi aktivitas geothermal di suatu wilayah. Sedangkan untuk analisis struktur bawah permukaan dapat dilakukan dengan bantuan metode geofisika magnetotelluric (MT) didukung dengan data geologi dan data geokimia. Analisis data 3-D magnetotelluric (MT) dapat membantu mengintepretasikan resistivitas batuan bawah permukaan.
Hasil Intepretasi data pada penelitian ini yaitu model konseptual dan luasan wilayah prospek. Mengacu pada model konseptual, dimana terdapat zona upflow yang ditandai adanya alterasi batuan dan adanya pola dome pada penampang resistivitas 3-D magnetotelluric (MT) di dekat struktur utama yang mengontrol aktivitas geotermal daerah penelitian, sedangkan zona outflow berarah ke barat dan timur daerah penelitian, sehingga penelitian ini merekomendasikan titik pemboran di zona upflow yang diharapkan berada pada zona dengan permeabilitas serta temperatur yang tinggi.

Drilling success ratio of geothermal in Indonesia is still a major constraint in the development of geothermal. Geothermal field "X" is one of the unexploited, prospected field in Indonesia. Manifestations of a possible geothermal field are hot springs and rock alteration; the lack of fumarole manifestation has become a challenge in conducting geothermal exploration in the study area.
This research is focused on determining the drilling target of the prospected zone. The methodes used for this research are Landsat 7 image remote sensing, 3D-MT and geochemistry. The structure of geothermal field ?X??s surface is analyzed with DEM satellite image and Landsat 7. The imaging technology of remote sensing is very helpful in mapping the distribution of geothermal activity manifestation in a region. Meanwhile, analysis of subsurface structures can be done with the help of geophysical methods magnetotelluric (MT) is supported by geological and geochemistry data. The data analysis of 3-D magnetotelluric (MT) resistivity can help interpretation in sub-surface rocks.
Interpretation of data resulted in this research is the conceptual model and measuring the prospected region of the research areas. Based on the conceptual model, in which there?s an upflow zone marked with rock alterations and dome patterns on ressistivity of 3-D MT section near the main structure that controls the geothermal activities in the study area; while the outflow zone pointing west and east of the study area, allowing this research to recommend drilling target at the upflow zone expected to be at the high permeability and high temperature.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45299
UI - Tesis Membership  Universitas Indonesia Library
cover
Andi Susmanto
"Tahap eksplorasi panas bumi merupakan tahap yang memiliki resiko paling tinggi dibandingkan dengan tahapan panas bumi lainnya. Sehingga diperlukan data-data kondisi bawah permukaan yang terintegrasi dengan baik dalam mendukung penentuan lokasi pemboran dengan tingkat kepastian yang lebih tinggi. Target pemboran ditujukan pada daerah yang memiliki temperatur dan permeabilitas tinggi. Distribusi temperatur bawah permukaan dapat didekati dari nilai resistivitas data Magnetotellurik (MT).
Penelitian ini difokuskan pada pemodelan sistem panas bumi menggunakan data MT. Inversi 3-dimensi (3-D) data MT dilakukan untuk mengetahui resistivitas bawah permukaan. Lapisan konduktif diindikasikan sebagai clay cap dari sistem panas bumi, lapisan yang berada di bawah clay cap dengan nilai resistivitas sedikit lebih tinggi diindikasikan sebagai zona reservoir, dan body dengan nilai resistivitas tinggi yang merupakan heat source dapat dideteksi dengan metode MT.
Hasil pengolahan data MT dan data interpretasi terpadu dengan data pendukung data geologi, geokimia, dan data sumur diperoleh model sistem panas bumi dan target pemboran. Berdasarkan peta elevasi Base of Conductor (BOC) dan hasil inversi MT 3-dimensi: luas daerah prospek Gunung Parakasak sekitar 15 km2 dengan potensi 117 MWe (untuk k=0.1) dan 257 MW (untuk k=2), struktur updome (upflow zone) di bawah puncak Gunung Parakasak dan aliran outflow menuju ke Rawa Danau.

Geothermal exploration phase is the phase that has the highest risk among the other geothermal activities. Hence, the good integrated data of the subsurface condition needed to support the determination of the drilling location with the higher probability. The target of drilling activities is addressed to any regions that have high temperature and permeability. The distribution of the subsurface temperature can be approached by the resistivity value of Magnetotelluric data (MT).
This research focus is modelling of geothermal system by using MT data. Inversion of 3-dimension MT data conducted to analyze the subsurface resistivity. The conductive layer can be indicated as clay cap of geothermal system, the layer that resided under the clay cap with much more higher resistivity value can be indicated as reservoir zone, and the body with high resistivity value is the heat source that can be detected by MT method.
The tabulation of MT data and integrated interpreted data with the supporting data, such as geology data, geochemical data, and geothermal-well data will result the model of geothermal system and well targeting. Based on Base of Conductor (BOC) elevation map and MT 3-D inversion result, prospect area of Mt. Parakasak are about 15 km2 with the geothermal potency 117 MWe (k=0.1), 257 MW (k=2), the updome structure (upflow zone) under the top of Mt. Parakasak, and outflow zone towards to Rawa Danau.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43404
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahmi Alfi Sani
"Sistem panas bumi Baturraden berasosiasi dengan aktivitas vulkanik yang berkembang akibat tektonik Jawa pada Kala Paleosen. Pada Kala ini mulai terbentuk struktur geologi yang intensif. Hal ini memicu magma andesitis untuk keluar pada Zaman Kuater. Intensitas aktivitas vulkanisme Gunung Slamet yang tinggi pada Kala Holosen mengakibatkan material vulkanik muda menutupi data permukaan seperti struktur geologi dan alterasi. Padahal data tersebut sangat membantu dalam mengidentifikasi zona permeable dan zona reservoir.
Penelitian ini dilakukan untuk memastikan zona permeable dan zona reservoir dengan mengkorelasikan data struktur geologi dan magnetotelluric (MT). Korelasi ini diperoleh melalui analisis komperhensif berdasarkan litologi, struktur permukaan, karakteristik dan model MT 3D. Selain itu juga untuk meningkatkan tingkat keyakinan terhadap korelasi, pada penelitian ini mengaplikasikan metode gravity.
Hasil penelitian dari penelitian ini menunjukan adanya korelasi antara struktur geologi dengan data MT antara lain inversi 3D MT, polar diagram, induction arrow, splitting curve, nilai tipper dan nilai ellipticity. Korelasi tersebut memperlihatkan adanya kontol struktur NE-SW terhadap hadirnya zona main conductor dan zona deformasi. Struktur NE-SW yang bersifat ekstensional mengontrol vulkanisme komplek Gunungapi Slamet dan zona permeable dari sistem panas bumi Baturraden sehingga zona pemboran diorientasikan NE-SW dengan target pemboran berarah NW-SE.

Baturraden geothermal system associated by volcanic activity which grown by Paleocene tectonic in Java. At the time, initial geological structure was established intensively thus it triggered andesitic magma to flow out in Quaternary Period. High intensity of Mt. Slamet volcanism in Holocene Epoch affected younger volcanic material could covered surface data such as geological structure and alteration. Whereas those data are very helpful to identify permeable zone and reservoir zone.
This study will be conducted to ensure the presence of the permeable zone and reservoir zone by correlating geological structure and magnetotelluric (MT). The correlations are acquired through a comprehensive analysis of lithology, surface structure, MT data characterization and MT 3D model. Furthermore, to improve confidence level of the correlation, the study applies gravity method.
The result of this study shows that there are any correlations between geological structure and MT data including 3D MT inversion, polar diagram, induction arrow, splitting curve, tipper value and ellipticity value. The Correlations present the influence NE-SW structure to the existence of main conductor and deformation zone. Extensional NE-SW structure triggered volcanism of Slamet Volcano Complex and permeable zone of Baturraden geothermal system thus drilling zone should be oriented NE-SW direction with well targeting should be pointed to NW-SE direction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45312
UI - Tesis Membership  Universitas Indonesia Library
cover
Fitriyani Mustika Ruslita
"Energi panas bumi adalah energi terbarukan yang sedang dikembangkan di dunia ini. Namun sebelum energi panas bumi dapat dimanfaatkan, perlu dilakukan eksplorasi untuk mengetahui kondisi bawah permukaan. Ada tiga hal yang harus dipenuhi dalam menentukan target eksplorasi sistem panas bumi, yaitu adanya suhu bawah permukaan yang tinggi, fluida dengan derajat keasaman netral, dan adanya zona dengan permeabilitas tinggi. Zona dengan permeabilitas tinggi berkaitan dengan adanya struktur geologi bawah permukaan atau patahan. Metode Magnetotellurik (MT) dan Metode Microearthquake dapat digunakan untuk mendelineasi keberadaan struktur bawah permukaan. Data MT riil diolah dengan metode inversi 3-D sampai akhirnya didapatkan karakteristik dari diagram polar, induction arrow, dan penampang resistivitas. Diagram polar dapat mengidentifikasi adanya patahan, sedangkan induction arrow dapat mengidentifikasi zona konduktif yang biasanya mengindikasikan struktur bawah permukaan. Hasil ini didukung oleh data MEQ riil yang telah diolah dengan menggunakan metode single station sampai didapatkan lokasi hiposenter yang menandakan zona dengan permeabilitas tinggi. Data geologi dan geokimia yang dikombinasikan dengan hasil dari pengolahan data riil MT dan MEQ tersebut menghasilkan delineasi daerah dengan suhu yang tinggi, memiliki fluida dengan derajat keasaman netral, serta zona dengan permeabilitas tinggi dan memiliki struktur bawah permukaan yang nantinya akan dijadikan target pengeboran.

Geothermal energy is a renewable energy which is now being developed all over ther world. However, before it can be optimized, exploration needed to be done in order to understand about the subsurface condition. There are three things that needed to be fulfilled in order to define the exploration target of geothermal system : high subsurface temperature, neutral fluids, and a zone with high permeability. High permeability zones are often associated with subsurface geological structure or fault. Magnetotelluric (MT) dan Microearthquake (MEQ) methods can be utilized to delineate subsurface structures. Polar diagram, induction arrow, and resistivity section are obtained from 3-D inversion of a real MT data. Polar diagram can identify the existence of a fault, meanwhile induction arrow can only identify conductive zones. These results will be supported with high permeability zone and hipocenters of real MEQ data which has been processed by single station method. Geology and geochemistry data can be combined with MT and MEQ results, thus the high subsurface zone, neutral subsurface fluids, high permeability zone and subsurface structure can be delineated, also well target location can be obtained."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhilaryazti
"Kecelakaan kerja menyebabkan terhentinya proses bekerja. Kondisi tidak aman di tempat kerja, atau praktik yang tidak aman dari sesama karyawan, dapat mengganggu orang dan merusak kinerja mereka. Salah satu upaya perusahaan dalam mencegah terjadinya kecelakaan adalah dengan melakukan safety inspection. Skripsi ini membahas tentang evaluasi pelaksanaan safety safety inspection di area kerja drilling oleh PT. Surveyor Indonesia – Drilling & Completion Safety Compliance Audit pada tahun 2012. Penelitian ini merupakan penelitian semi kuantitatif. Untuk melakukan evaluasi, digunakan International Safety Rating System edisi ke-enam tahun 1996, yaitu elemen ketiga mengenai safety inspection. Kerangka konsep penelitian ini diambil dari variabel-variabel yang ada pada ISRS. Secara keseluruhan hasil penilaian safety inspection di PT. Surveyor Indonesia – DCSCA adalah 100 %, bahwa semua sasaran, target, serta pelaksanaan safety inspection sudah sesuai dengan elemen-elemen yang ada dalam International Safety Rating System.

Workplace injury causes the cessation of the work process. Unsafe conditions in the workplace, or unsafe actions from the workers, could disturb and damage the work performance. One of the company’s efforts to prevent accidents in to do a safety inspection program.This thesis discusses the evaluation of the safety inspection in area of work drilling by PT. Surveyor Indonesia- Drilling & Completion Safety Compliance Audit in 2012. This research is a semi-quantitative. To perform the evaluation, use the International Safety Rating System (ISRS) the sixth edition 1996, the third element of the safety inspection. Conceptual framework were taken from the variables that exist in the ISRS. Overall, of safety inspection at PT. Surveyor Indonesia - DCSCA is 100%, that all goals, targets, and implementation of safety inspection is in accordance with the elements that exist in the International Safety Rating System."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2013
S45285
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>