Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 90951 dokumen yang sesuai dengan query
cover
Nurhayati
"Gas alam mentah ada di reservoir pada suhu dan tekanan tertentu. Dalam rangka untuk memenuhi spesifikasi kontrak penjualan gas (sales gas), komposisi gas alam menjadi faktor yang mempengaruhi kualitas gas alam. Kadar air dalam gas hasil produksi harus memenuhi spesifikasi pada kontrak yaitu tidak boleh melebihi 10 lb/MMSCF. Gas alam yang ada di Lapangan S masih mengandung banyak kadar air yaitu 13-36 lb/MMSCF; bahkan ada yang sampai 220 lb/MMSCF. Oleh karena itu, perlu dilakukan penurunan kadar air. Pada penelitian ini dilakukan simulasi dehidrasi gas menggunakan Tri Ethylene Glycol (TEG) untuk memperoleh kadar air yang sesuai dengan spesifikasi penjualan gas. Parameter yang dipakai yaitu dengan memvariasi TEG feed, variasi fraksi mol feed gas dan variasi laju alir (flow rate). Kondisi operasi yang sesuai yang menghasilkan kadar air yaitu 7,5 lb/MMSCF dengan laju reaksi pada feed gas 100 MMSCFD, temperatur feed gas 125˚F dan tekanan 200 Psia yang berarti terpenuhinya spesifikasi kontrak penjualan gas sehingga selain meningkatkan nilai jual gas, produsen terhindar dari kerugian. TEG yang digunakan pada simulasi proses dehidrasi tersebut 71,26 Liter/hari.

Raw natural gas in the reservoir at a certain temperature and pressure. In order to meet the specifications of the gas sales contracts (sales gas), the composition of natural gas into the factors that affect the quality of natural gas. The water content in the gas production must meet the specifications of the contract which may not exceed 10 lb/ MMSCF. Natural gas in field "S" have to consist water content of 13-36 lb/ MMSCF and until to 220 lb / MMSCF. Because of that to decrease the water content. The focus of this study is to simulated gas dehydration using Tri Ethylene Glycol (TEG) to obtain the water content in accordance with the specifications of gas sales. The parameters used are by varying TEG feed, feed mole fraction variation and variation of gas flow rate. In order to treat feed gas 100 MMSCFD until containing water until 7,5 lb/MMSCFD, temperature and pressure for feed gas must be maintained at 125 degF and 200 Psia and TEG to be injected into the system is 71.26 liters/day.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43095
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahdi
"ABSTRACT
Penyetelan ulang pengendali proportional integral dilakukan pada pabrik penghilangan CO2 pengolahan gas alam lapangan Subang. Penyetelan ulang ini dilakukan untuk meningkatkan kinerja pengendali pada pabrik tersebut. Pengendali pada pabrik yang diteliti pada penelitian ini adalah pengendali tekanan gas umpan PIC 1101, pengendali laju alir air FIC 1102, dan pengendali laju alir sirkulasi amina FIC 1103. Metode penyetelan ulang pengendali yang diusulkan adalah metode Ziegler-Nichols PRC, Wahid-Rudi-Victor WRV, Cohen-coon, setelan hasil autotuner pada simulator, dan fine tuning. Dari hasil pengujian terhadap setiap metode penyetelan yang diusulkan, didapatkan hasil setelan yang memberikan hasil paling baik untuk setiap pengendali, yaitu setelan fine tuning. Penyetelan menggunakan fine tuning berhasil meningkatkan kinerja pengendali PIC 1101 sebesar 77,42, FIC 1102 sebesar 90.59 dan FIC 1103 sebesar 13,06 untuk penurunan nilai setpoint SP sebesar 5. Sementara untuk kemampuan pengendali mengatasi gangguan didapatkan peningkatan kinerja pengendali PIC ndash; 1101 sebesar 86,04, FIC 1102 sebesar 90,8 dan FIC 1103 sebesar 24,8.

ABSTRACT
A proportional ndash integral controller retuning is performed on CO2 removal plant in natural gas processing Subang field. Retuning is performed to increase controller performance on the plant. Retuning will be performed on feed gas pressure controller PIC ndash 1101, make up water flow controller FIC 1102 , and amine circulation flow controller FIC 1103 on the plant. Retuning methods used are Ziegler ndash Nichols PRC, Wahid Rudi Victor WRV, Cohen coon, tuning from simulator autotuner, and fine tuning method. Result of this research shows that retuning that gives the highest improvement for the controllers is tuning with fine tuning method for every controller. Retuning with fine tuning can give 77,42 improvement for PIC ndash 1101, 90,59 improvement for FIC 1102, and 13,06 improvement for FIC ndash 1103 for 5 setpoint SP reduction. While for controller capability to handle disturbance, fine tuning can give 86,04 improvement for PIC ndash 1101, 90,8 improvement for FIC ndash 1102, and 24,8 improvement for FIC 1103."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shinta Pratiwi Rahayu
"Pabrik pengolahan gas X merupakan pabrik pengolahan gas bumi menjadi gas kering yang siap dijual (sales gas) dengan kadar air maksimal 9 lb/MMscf dari proses dehidrasi menggunakan Triethylene Glycol (TEG). Proses regenerasi rich TEG pada pabrik ini hanya mampu menghasilkan lean TEG dengan kemurnian 91,7%. Sehingga pabrik pengolahan gas X hanya mampu mengolah umpan gas sebesar 175 MMscfd. Oleh karena itu perlu dilakukan usaha untuk meningkatkan kemurnian TEG dengan bantuan stripping gas agar kapasitas pabrik dapat ditingkatkan sehingga memberikan nilai keekonomian yang lebih tinggi. Pada laju alir TEG yang tetap, laju alir stripping gas (N2) yang digunakan berada pada kisaran 0 - 2 m3/h. Kapasitas yang memberikan keuntungan per satuan produk yang lebih tinggi dari pada desain awal pabrik adalah 225 MMscfd sebesar 3,9654 USD/MMBtu dengan penggunaan stripping gas sebanyak 0,006 m3/h, sedangkan yang memberikan NPV tertinggi adalah pada kapasitas 585 MMscfd yaitu sebesar 723.800.123 USD.

X gas processing plant is natural gas processing plant that produces dry gas that is ready to be sold (sales gas) with a maximum water content of 9 lb/ MMscf which is obtained from dehydration process using Triethylene Glycol (TEG). The initial design of the rich TEG regeneration process only able to produce lean TEG with a purity of 91,7%. Therefore, this processing plant only able to process the feed gas by 175 MMscfd. Thus, a study can be conducted to determine the effect of stripping gas (N2) on TEG purity so that the plant?s capacity can be increased which also increase the plant?s profits. The results show that when the TEG flow rate is fixed, flow rate of the stripping gas (N2) which can be used in the regeneration process ranges from 0 to 2 m3/h. The only capacity of modification plant which provides more profits per capacity than that obtained from the initial design of the plant is 225 MMscfd worth 3,9654 USD/MMBtu. The amount of stripping gas required in this capacity is as much as 0,006 m3/h. Meanwhile, total profit obtained by comparing NPV shows that the capacity of 585 MMscfd give the highest NPV worth 723.800.123 USD.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Shinta Pratiwi Rahayu
"Pabrik pengolahan gas X merupakan pabrik pengolahan gas bumi menjadi gas kering yang siap dijual (sales gas) dengan kadar air maksimal 9 lb/MMscf dari proses dehidrasi menggunakan Triethylene Glycol (TEG). Proses regenerasi rich TEG pada pabrik ini hanya mampu menghasilkan lean TEG dengan kemurnian 91,7%. Sehingga pabrik pengolahan gas X hanya mampu mengolah umpan gas sebesar 175 MMscfd. Oleh karena itu perlu dilakukan usaha untuk meningkatkan kemurnian TEG dengan bantuan stripping gas agar kapasitas pabrik dapat ditingkatkan sehingga memberikan nilai keekonomian yang lebih tinggi. Pada laju alir TEG yang tetap, laju alir stripping gas (N2) yang digunakan berada pada kisaran 0 - 2 m3/h. Kapasitas yang memberikan keuntungan per satuan produk yang lebih tinggi dari pada desain awal pabrik adalah 225 MMscfd sebesar 3,9654 USD/MMBtu dengan penggunaan stripping gas sebanyak 0,006 m3/h, sedangkan yang memberikan NPV tertinggi adalah pada kapasitas 585 MMscfd yaitu sebesar 723.800.123 USD.

X gas processing plant is natural gas processing plant that produces dry gas that is ready to be sold (sales gas) with a maximum water content of 9 lb/ MMscf which is obtained from dehydration process using Triethylene Glycol (TEG). The initial design of the rich TEG regeneration process only able to produce lean TEG with a purity of 91,7%. Therefore, this processing plant only able to process the feed gas by 175 MMscfd. Thus, a study can be conducted to determine the effect of stripping gas (N2) on TEG purity so that the plant?s capacity can be increased which also increase the plant?s profits. The results show that when the TEG flow rate is fixed, flow rate of the stripping gas (N2) which can be used in the regeneration process ranges from 0 to 2 m3/h. The only capacity of modification plant which provides more profits per capacity than that obtained from the initial design of the plant is 225 MMscfd worth 3,9654 USD/MMBtu. The amount of stripping gas required in this capacity is as much as 0,006 m3/h. Meanwhile, total profit obtained by comparing NPV shows that the capacity of 585 MMscfd give the highest NPV worth 723.800.123 USD."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45571
UI - Tesis Membership  Universitas Indonesia Library
cover
Herman Dinata Saputra
"Program pembangunan jaringan pipa distribusi gas bumi untuk rumah tangga yang saat ini sedang dilakukan pemerintah untuk mensubsitusi penggunaan bahan bakar minyak ke gas bumi memiliki nilai yang sangat strategis. Karena dengan mengalihkan pengunaan bahan bakar minyak ke gas bumi akan memberikan dampak yang positif bagi masyarakat maupun pemerintah. Keuntungan yang akan diperoleh masyarakat adalah mendapatkan energi yang lebih bersih, ramah lingkungan, murah dan aman. Sedangkan dari sisi pemerintah dapat mengurangi beban subsidi yang saat ini mencapai Rp.48,2 Triliun. Namun, usaha ini belum maksimal karena masih kurangnya infrastruktur atau fasilitas penyaluran gas bumi ke konsumen.
Oleh karena itu, dalam studi ini akan dilakukan simulasi proses jaringan pipa distribusi gas bumi untuk rumah tangga sebagai salah satu langkah awal pembangunan infrastruktur sistem distribusi gas bumi untuk rumah tangga. Studi kasus yang akan dilakukan adalah di wilayah Kota Pekanbaru, Bandar Lampung, Muara Enim dan Cilegon. Langkah-langkah yang akan dilakukan meliputi pengumpulan data dan analisis data, penetapan sumber pasokan gas bumi, penetapan kecamatan prioritas, simulasi dan analisa hasil simulasi, serta rekomendasi dan kesimpulan.
Simulasi dilakukan menggunakan perangkat lunak sistem perpipaan. Hasil studi ini menghasilkan desain basis proses untuk jaringan pipa distribusi gas bumi dan dimensi pipa yang dibutuhkan untuk jaringan pipa distribusi gas bumi ini.

Program development natural gas distribution pipelines to households currently being done by the government for substitution oil fuel to natural gas has a very strategic value. Since the substitution of oil fuel usage to natural gas will have a positive impact for the society and government. Gains for society is getting more clean energy, environmental friendly, cheap and safe. While the government can reduce the burden of subsidies currently reached Rp.48.2 Trillion. However, these efforts are not maximized due to a lack of infrastructure or natural gas distribution facilities to consumers.
Therefore, in this study will be conducted process simulation of natural gas distribution pipelines to households as one of the first steps of infrastructure development of natural gas distribution system for households. Case studies will be done is in the city of Pekanbaru, Bandar Lampung, Muara Enim and Cilegon. The steps to be taken include data collection and analysis, determining the source of gas supply, setting priorities district, simulation and analysis, and recommendations and conclusions.
Simulations are conducted using the software pipeline system. The results of this study produced the basis design for the process of distribution pipelines and pipe dimensions required for natural gas distribution pipelines.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52219
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Ikhlas Ibrahimsyah
"Pengembangan lapangan gas bumi baru setelah ditemukan memerlukan desain pabrik pengolahan gas bumi, termasuk di Lapangan X. Selain desain proses, desain kontrol proses juga sangat penting. Untuk itu, pada pemisahan awal gas bumi yang akan diproses lebih lanjut, dirancang pengendalian proses menggunakan pengontrol proporsional-integral berbasis sistem identifikasi ulang (PI-SRI). Terdapat tiga sumur (Alpha, Betha, dan Charlie), separator dan cooler pada proses pemisahan awal dan terdapat tiga jenis kontroler (tekanan [PC], level [LC] dan temperatur [TC]). Untuk menentukan parameter kontroler PI yang optimal, dilakukan tiga kali identifikasi sistem untuk menghasilkan tiga model first-order plus dead-time (FOPDT). Ketiga model tersebut dimasukkan dalam persamaan tuning untuk metode Ziegler-Nichlos sehingga dihasilkan tiga parameter kontroler PI. Untuk menguji kinerja kendali yang optimal digunakan perubahan set point (SP) pada PC, LC dan TC, serta gangguan berupa perubahan laju aliran gas bumi yang berasal dari ketiga sumur tersebut. Indikator kinerja pengendalian yang digunakan adalah overshoot dan settling time. Hasil penelitian menunjukkan bahwa model FOPDT untuk proses pemisahan awal produksi gas bumi berdasarkan tiga variabel terkontrol memiliki =−1,614, =0,24 dan =0,01 untuk PC; =−0.882, =0.2295 dan =0.2385 untuk LC dan =−0.063, =1.5075 dan =0.0425 untuk TC. Harga parameter kontroler PI yang memberikan performansi kontrol optimum (overshoot dan settling time) adalah =−13,383, =0,033 untuk PC; =−132.6, =0.483 untuk LC, dan =−506.7, =0.142 untuk TC.

The development of a new natural gas field after being discovered requires the design of a natural gas processing plant, including in Field X. In addition to process design, process control design is also very important. For this reason, at the initial separation of natural gas which will be further processed, process control is designed using a proportional-integral controller based on a re-identification system (PI-SRI). There are three wells (Alpha, Betha, and Charlie), separator and cooler in the initial separation process and there are three types of controllers (pressure [PC], level [LC] and temperature [TC]). To determine the optimal PI controller parameters, three system identifications were carried out to produce three first-order plus dead-time (FOPDT) models. The three models are included in the tuning equation for the Ziegler-Nichlos method so that three PI controller parameters are produced. To test the optimal control performance, changes in the set point (SP) of the PC, LC and TC are used, as well as disturbances in the form of changes in the flow rate of natural gas originating from the three wells. The control performance indicators used are overshoot and settling time. The results showed that the FOPDT model for the initial separation process of natural gas production based on three controlled variables had =−1.614, =0.24 and =0.01 for PC; =−0.882, =0.2295 and =0.2385 for LC and =−0.063, =1.5075 and =0.0425 for TC. The parameter values ​​for the PI controller that provide optimum control performance (overshoot and settling time) are =−13,383, =0.033 for PC; =−132.6, =0.483 for LC, and =−506.7, =0.142 for TC."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suprapto Soemardan
"Pengembangan sebuah lapangan gas bumi memerlukan perencanaan akurat dalam rangka menentukan laju produksi gas yang merupakan salah satu tantangan utama dalam menentukan kelayakan proyek gas. Laju produksi gas optimum ditentukan tidak hanya oleh karakteristik cadangan gas dan reservoirnya, tetapi juga oleh persyaratan konsumen terkait tekanan gas jual, jangka waktu kontrak penjualan gas dan harga gas. Penelitian ini mengembangkan model optimisasi produksi gas yang didasarkan pada pendekatan biaya marjinal untuk memaksimumkan keuntungan ekonomi dengan menggunakan studi kasus lapangan gas bumi Blok Matindok di Sulawesi Tengah.
Hasil penelitian mengungkapkan bahwa meningkatkan tekanan gas jual dan harga gas meningkatkan laju produksi gas optimum dan meningkatkan keuntungan maksimumnya. Sementara itu, peningkatan jangka waktu kontrak penjualan gas akan mengurangi tingkat produksi gas optimum dan mengurangi atau menaikkan keuntungan maksimumnya tergantung atas cadangan gas dan karakteristik reservoirnya. Karena keterbatasan cadangan dan karakteristik reservoir gas, maka peningkatan harga gas membatasi laju produksi optimumnya hingga batas laju maksimum reservoirnya, namun keuntungan maksimumnya akan naik terus mengikuti kenaikan harga gas. Hasil riset ini dengan jelas menunjukkan hubungan yang kuat antara persyaratan kebutuhan konsumen gas dan laju produksi gas optimum, yang merupakan bagian penting untuk negosiasi harga gas dan perencanaan produksi.

The development of a gas field requires accurate planning, in order to determine the gas production rate which is one of the main challenges in determining the gas project feasibility. An optimum gas production rate is determined not only by the gas reserve and reservoir characteristics but also by the consumer’s requirements of the sales gas pressure, duration of the gas sales contract and gas price. This paper presents a gas production optimization model using marginal cost approach to maximize economic profit with Matindok Block as field data.
The results reveal that increasing the sales gas pressure and gas price raises the optimum gas production rate and maximum profit. Meanwhile, increasing the duration of a gas sales contract will reduce the optimum gas production rate and reduce or increase the maximum profit depending on the gas reserve and reservoir characteristics. Due to limitation of gas reserves and reservoir characteristics, then an increase in gas prices limit the optimum production rate up to reservoir maximum rate limits, but the maximum profit will continue to follow up the gas price hike. This work clearly shows the relationship between the user's requirements and optimum gas production rate, which is an important piece of information for negotiating the gas price and planning production.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1937
UI - Disertasi Membership  Universitas Indonesia Library
cover
D. Gusnoto Harywendro
"ABSTRAK
Proses penurunan tekanan dan temperatur suatu gas bumi pada entropi konstan dengan bantuan Turboexpander banyak digunakan dalam proses pengolahan gas bumi.
Residu gas bumi di Central Plant lapangan Arjuna ARII yang sebagian komposisinya metana, diekpansikan melalui turboexpander untuk dimanfaatkan efek pendinginannya.
Besarnya penurunan temperatur yang dapat dihasilkan dengan turboexpander berkisar antara 80 ± 90°F pada effisiensi berkisar antara 80 ± 100%.
Penulis juga membahas bagaimana cara memperoleh harga effisiensi yang optimum, dan apa saja yang bias dilakukan untuk menaikkan effisiensi.
Jika proses penurunan temperatur dan tekanan gas bumi ini dilakukan dengan fjafltuan Joule Thomson Valve, diperoleh penurunan temperatur hanya berkisar 40 ± 50°F.
Akibatnya jika Expander dimafkan dan prctses gas di bypass melalui JT valve, temperatur jadi kurang dingin sehingga banyak propana yang tidak mencair dan terbawa dalam bentuk fase gas.
Dalam tugas akhir ini dibahas mengenai perhitungan termis turboexpander dan Joule Thomson Valve, perbandingan unjuk kerjanya serta effisiensi yang optimum dari turboexpander.

"
1995
S36513
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andriany Nirmalakrisna
"Permasalahan industri gas domestik di Indonesia saat ini adalah ketidakpastian alokasi pasokan gas domestik, minimnya infrastruktur, serta permasalahan harga jual gas. Untuk meningkatkan alokasi gas industri, harga gas domestik seharusnya dinaikkan, sehingga disparitasnya tidak terlalu jauh dengan harga gas ekspor. Di sisi lain, adanya monopoli akses transportasi jalur pengangkutan gas di Indonesia menyebabkan industri harus membayar harga gas lebih mahal dari yang sewajarnya.
Pada penelitian ini dilakukan simulasi untuk mendapatkan harga gas yang layak dalam rangka membantu Pemerintah dalam menetapkan harga gas agar tidak selalu terpaku pada harga gas yang ditetapkan oleh pedagang gas (trader) dan pengangkut gas (transporter).
Metode yang digunakan dalam penentuan harga gas ini adalah metode Netback Value (NBV). Pengolahan data dalam penelitian ini menggunakan analisis ketidakpastian untuk mendapatkan validasi ketidakpastian dengan simulasi Monte Carlo menggunakan piranti lunak Crystal Ball.
Berdasarkan penelitian, didapatkan rasio pembiayaan antara sektor hulu dan hilir untuk harga jual gas rekalkulasi dengan kondisi ideal (biaya transmisi jalur pipa Pertagas serta prediksi biaya distribusi didasarkan informasi laporan tahunan PGN) sebesar lebih dari satu atau mendekati satu. Hal ini masih wajar mengingat sektor hulu memiliki nilai investasi lebih tinggi untuk melakukan aktivitas ekplorasi dan produksi, dibandingkan dengan sektor hilir.
Sementara itu, jika dibandingkan dengan harga jual gas bumi PGN baik untuk sektor listrik dan sektor industri non pupuk, terdapat perbedaan yang sangat signifikan sehingga menyebabkan rasio pembiayaan sektor hulu dan hilir tidak realistis.

Domestic gas industry?s problems in Indonesia are uncertain allocation for domestic gas supply, lack of infrastructure, and also gas price issue. To improve the gas allocation for domestic industrial sector, domestic gas prices should be raised, so that the disparity between domestic gas price and export gas price is not too far away. On the other hand, the existence of monopoly of gas trader and transporter in Indonesia caused the industry has to pay the price of gas more expensive than normal.
In this study conducted a simulation to get decent gas prices in order to give recommendation to the Government in determining the price of gas that does not always get hung up on the price of gas that is determined by gas traders and transporters.
The method used in determining the gas price is the Netback Value method (NBV). The data in this study is processed using uncertainty analysis to with Monte Carlo simulation using Crystal Ball software.
Based on the study, the cost ratio between the upstream and downstream sectors for gas price recalculation with ideal conditions (using Pertagas pipeline transmission costs and distribution cost based on annual report of PGN) is more than one or close to one. It is still reasonable considering the upstream sector has a higher investment value for exploration and production activities than the downstream sector.
Meanwhile, when compared with the gas price from PGN, there are very significant differences that cause the cost ratio of the upstream and downstream sector is not realistic."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42106
UI - Tesis Membership  Universitas Indonesia Library
cover
Zenda Christian Adhiatama
"Lapangan XYZ yang berlokasi di daerah Jatibarang Jawa Barat mengolah gas sebesar 19 MMSCFD dengan kandungan CO2 > 60 %. Lapangan XYZ tidak dapat langsung menyalurkan produksi gas kepada pembeli karena tidak memenuhi syarat perjanjian jual beli gas (PJBG) yang telah disepakati dimana kandungan CO2 yang diperbolehkan adalah < 8 %. Penggunaan teknologi absorpsi telah diterapkan di banyak proses pemurnian gas (gas sweetening) terutama menggunakan pelarut sebagai bahan dasarnya sehingga tingkat kesiapan teknologi ini sangat berkembang dibandingkan teknologi lainnya. Teknologi kriogenik juga memiliki kelemahan utama pada sistem absorpsi berbasis pelarut yaitu kebutuhan daya yang tinggi. Hal tersebut dapat diatasi dengan penggunaan teknologi membran maupun adsorpsi yang secara prinsip memiliki kebutuhan energi yang lebih rendah. Teknologi adsorpsi maupun kriogenik memiliki biaya investasi dan operasional yang tinggi sehingga teknologi membran memiliki prospek yang lebih baik apabila digabungkan dengan absorpsi berbahan dasar pelarut pada proses pemurnian gas. Pada penelitian ini dilakukan simulasi menggunakan gabungan antara teknologi membran serta teknologi absorpsi berbasis pelarut aMDEA untuk menurunkan kadar CO2 dengan menggunakan software Aspen Hysys. aMDEA (activated methyldiethanolamine) dipilih karena menggabungkan keuntungan yang dimiliki oleh pelarut methyldiethanolamine (MDEA) yaitu korosifitas yg rendah dan piperazine (PZ) memiliki laju penyerapan CO2 yang lebih baik. Membran menurukan kadar CO2 ditahap awal sedangkan pelarut aMDEA menurunkan kadar CO2 menjadi < 8%. Tujuan dari penelitian ini untuk mendapatkan kinerja optimal penggunaan gabungan teknologi membran dan absorpsi berbasis pelarut aMDEA serta kelayakan ekonomi terhadap Gas Sweetening Unit untuk penurunan CO2 yang memiliki kadar > 60%. Simulasi dilakukan dengan hasil Gas Sweetening Unit gabungan antara teknologi membran dan absorpsi aMDEA menurukan kadar CO2 menjadi 5,947 % dengan flow rate menjadi 6,95 MMSCFD. Selain itu dibutuhkan luas membran total sebesar 4.611 m2 dan kebutuhan pelarut sebesar 180.218 lb/hr. Nilai IRR yang dihasilkan adalah sebesar -12,67 % dan NPV sebesar USD -35.248.813. Kenaikan harga jual gas menjadi USD 7 / MMBTU meningkatkan kelayakan dengan NPV 4.009.601 dan IRR menjadi 8,8%.

XYZ field located in Jatibarang area, West Java, processes 19 MMSCFD of gas with CO2 content > 60%. The XYZ field cannot directly distribute gas production to buyers because it does not meet the terms of the agreed gas sales and purchase agreement (PJBG) where the allowable CO2 content is <8%. The use of absorption technology has been applied in many gas sweetening processes, especially using solvents as the base material, so the readiness level of this technology is very developed compared to other technologies. Cryogenic technology also has a major weakness in solvent-based absorption systems, i.e. high power requirements. This can be overcome by the use of membrane and adsorption technologies which in principle have lower energy requirements. Adsorption and cryogenic technologies have high investment and operational costs so that membrane technology has better prospects when combined with solvent-based absorption in the gas purification process. In this study, simulations were carried out using a combination of membrane technology and aMDEA solvent-based absorption technology to reduce CO2 levels using Aspen Hysys software. aMDEA (activated methyldiethanolamine) was chosen because it combines the advantages possessed by the solvent methyldiethanolamine (MDEA), i.e. low corrosivity and piperazine (PZ) has a better CO2 absorption rate. The membrane reduces CO2 levels in the early stages while the aMDEA solvent reduces CO2 levels to <8%. The purpose of this study is to obtain the optimal performance of the combined use of membrane technology and aMDEA solvent-based absorption and economic feasibility of the Gas Sweetening Unit for reducing CO2 levels > 60%. Simulations were carried out with the results of the Gas Sweetening Unit combined between membrane technology and aMDEA absorption reducing CO2 levels to 5.947% with a flow rate of 6.95 MMSCFD. In addition, it takes a total membrane area of 4,611 m2 and solvent requirements of 180,218 lb/hr. The resulting IRR value is -12.67% and NPV is USD -35,248,813. The increase in gas selling price to USD 7/MMBTU increases the feasibility with NPV 4,009,601 and IRR to 8.8%."
Jakarta: Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>