Ditemukan 14386 dokumen yang sesuai dengan query
Grafarend, Erik W.
"This volume offers a thorough treatment of the 'grand universe' of linear and weakly nonlinear regression models, from an algebraic view as well as a stochastic one. It includes examples and test computations, and a bibliography with over 2000 references."
Heidelberg : Springer, 2012
e20405750
eBooks Universitas Indonesia Library
Heumann, Christian
"This introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. In the experimental sciences and interdisciplinary research, data analysis has become an integral part of any scientific study. Issues such as judging the credibility of data, analyzing the data, evaluating the reliability of the obtained results and finally drawing the correct and appropriate conclusions from the results are vital."
Switzerland: Springer International Publishing, 2016
e20510005
eBooks Universitas Indonesia Library
Montgomery, Douglas C.
New Jersey: John Wiley & Sons, 2012
519.5 MON i
Buku Teks SO Universitas Indonesia Library
Olive, David J
"This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models."
Switzerland: Springer International Publishing, 2017
e20528414
eBooks Universitas Indonesia Library
Edwards, Allen L.
New York : W.H. Freeman, 1984
519.536 EDW i
Buku Teks SO Universitas Indonesia Library
Harrell, Frank E., Jr.
"This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with too many variables to analyze and not enough observations, and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty, and its effects on inference, to achieve safe data mining. It also presents many graphical methods for communicating complex regression models to non-statisticians."
Switzerland: Springer International Publishing, 2015
e20510032
eBooks Universitas Indonesia Library
Chichester: John Wiley & Sons, 1980
519.54 STA
Buku Teks SO Universitas Indonesia Library
Novi Andra
"Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan antar variabel yang diekspresikan dalam bentuk persamaan antara variabel dependen dengan variabel bebas. Dalam analisis regresi terdapat beberapa asumsi yang harus dipenuhi. Spasial dependen pada suatu kumpulan data sampel berarti observasi pada suatu lokasi berkorelasi dengan observasi pada lokasi lain. Sehingga asumsi error antar observasi yang saling bebas tidak terpenuhi. Oleh karena itu, dibutuhkan suatu model yang memperhitungkan adanya korelasi spasial yaitu model spasial dependen. Model spasial dependen terbagi dua yaitu spasial lag dan spasial error. Model spasial lag merupakan model regresi linier dimana pada variabel dependennya terdapat korelasi spasial sedangkan model spasial error merupakan model regresi linier dimana pada errornya terdapat korelasi spasial. Penaksiran parameter menggunakan metode maksimum likelihood. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27679
UI - Skripsi Membership Universitas Indonesia Library
Bambang Kustituanto
Jogjakarta: BPFE, 1984
519 BAM s
Buku Teks SO Universitas Indonesia Library
Meyer, Paul L.
Reading, Massachusetts: Addison-Wesley, 1970
519.1 MEY i
Buku Teks SO Universitas Indonesia Library