Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 68952 dokumen yang sesuai dengan query
cover
Fiko Satiawan
"Parameter dari kualitas pembakaran pada motor pembakaran dalam dapat dilihat dari perfomanya dan emisi gas buang yang dihasilkan. Salah satu faktornya adalah kualitas bahan bakar yang digunakan. Metode untuk meningkatkan kualitas bahan bakar adalah dengan memberi katalis pada bahan bakar. Hal ini bertujuan untuk meningkatkan kemampuan bahan bakar mengikat oksigen, sehingga dapat meberikan efek pembakaran yang lebih baik. Tujuan lainnya adalah penggunaan katalis diharapkan dapat menghemat konsumsi bahan bakar dan menghasilkan emisi gas buang yang lebih baik. Pengujian ini menggunakan bahan bakar dasar pertamax plus. Katalis yang digunakan antara lain type a (sebut tablet), yaitu katalis dimasukan kedalam tangki bahan bakar. Sedangkan katalis yang kedua type b, katalis yang dipasang pada saluran bahan bakar yang terletak diantara pompa bahan bakar dan karburator. Pegujian juga dilakukan dengan melakukan perpaduan antara kedua katalis. Hasil pengujian menunjukan bahwa penggunaan perpaduan kedua katalis tidak menghaslkan performance yang baik jika dipadukan dengan bahan bakar pertamax plus. Dari hasil yang ada, penggunaan pertamax plus lebih baik daripada menggunakan katalis ini.

The parameters of the combustion quality of the internal combustion engine can be seen from perfomanya and exhaust emissions produced. One factor is the quality of fuel used. Methods to improve the quality of the fuel is to provide a catalyst to fuel. it aims to improve fuel bind oxygen, so it can not give a better burning effect. Other goal is the use of catalysts is expected to save fuel consumption and exhaust emissions better. This test uses the base fuel plus pertamax. Catalysts used include type A (called tablet), the catalyst is inserted into the fuel tank. While the second catalyst type b, a catalyst installed in the fuel line located between the fuel pump and carburetor. Test of also be done through a combination of the two catalysts. Test results show that use of a blend of the two catalysts not menghaslkan good performance when combined with fuel pertamax plus. Of the existing results, use pertamax plus better than using this catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S58399
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gustian Jaya
"Studi oksidasi parsial metana ini dilakukan untuk mempelajari karakterisasi dan kinerja katalis Cu3(PW12040)2 (CuPW) dan Cu (II) zeolit alam yang diaktifkan (Cu-Z). Kedua katalis tersebut dipreparasi dengan metode pertukaran ion. Percobaan ini menggunakan reaktor unggun tetap dengan melihat pengaruh suhu (400-700°C), rasio umpan CH4/O2, dan rasio berat katalis terhadap laju alit umpan (W/F) pada tekanan atmosferik.
Hasil karakterisasi menunjukkan bahwa CuPW mempunyai luas permukaan (3,38 m²/gram) yang jauh lebih kecil dari Cu-Z (62,67 m²/gram) akan tetapi kandungan Cu (II) di CuPW (4,2%) jauh lebih besar dari Cu-Z (0,5%).
Kekuatan adsorpsi Cu-Z terhadap metana lebih besar dari CuPW yang ditunjukkan oleh suhu desorpsi maksimum metana pada hasil Temperatur Program Desorpsi (TPD) 570 °C untuk Cu-Z dan 420 °C untuk CuPW, dan sebaliknya terhadap oksigen. Sedangkan Cu-Z mempunyai kekuatan asam lebih tinggi dari CuPW, yang ditunjukkan oleh suhu desorpsi maksimum piridin pada hasil TPD 680 °C untuk CuPW dan 780 ° C untuk Cu-Z.
Konversi metana pada katalis CuPW dua kali (2K) Cu-Z pada W/F dan CH4/02 yang sama, meskipun luas permukaan keduanya berbeda. Fenomena ini disebabkan oleh pengaruh berperannya beberapa besaran (luas permukaan, kandungan inti aktif Cu+2 dan keasaman) secara simultan.
Reaksi oksidasi tanpa umpan oksigen menunjukkan bahwa oksigen kisi kedua katalis berperan pada parsial oksidasi ini. Perbedaan kekuatan ikatan oksigen kisi pada kedua katalis memberikan selektivitas yang berbeda terhadap metanol/formaldehida. Cu-Z dengan kekuatan asam yang lebih tinggi dari CuPW mempunyai kapasitas adsorpsi terhadap metana lebih besar, sehingga konsentrasi metana yang besar di permukaan ini meningkatkan konversinya lebih besar dibanding terhadap CuPW.
Pada katalis Cu-Z, selektivitas metanol yang terbesar (sekitar 7,5%) didapat pada 600 °C, CH4/02 = 17,3 dan W/F =-0,2 gr-kat.menit/ml. Selektivitas optimum formaldehid (sekitar 9%) pada W/F = 0,3 gr-kat.menit/ml, CH4/02 = 3, 600 °C. Sedangkan pada katalis" CuPW, metanol tidak terbentuk. Selektivitas formaldehida optimum adalah sekitar 18%, pada 500 °C, CH4/02 = 3 dan W/F = 0,3 grkat.menit/ml."
Depok: Fakultas Teknik Universitas Indonesia, 1996
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rita Susanty
"Reaksi oksidasi parsial metana mulai diminati sejak 1990-an, karena reaksinya yang bersifat eksotermik dan juga rasio H2/CO yang dihasilkan adalah 2 yang cocok untuk reaksi Fischer Tropsch dan praduksi metanol. Proses ini menguntungkan dibandingkan dengan proses pembentukan sintesis gas dengan metode konvensional (reformasi kukus) yang sangat endotermik dan rasio H2/CO≥3 yang tidak sesuai untuk proses Fischer Tropsch. Katalis Ni/A1203 telah banyak digunakan untuk reaksi oksidasi parsial metana. Namur terjadinya deposit karbon dan deaktivasi katalis menjadi kendala utama pada proses ini.
Katalis serbuk Ni/ γ -A1203 dipreparasi dengan metode sol gel menggunakan aluminium isopropoksida sebagai prekursor untuk mendapatkan penyangga dengan luas permukaan tinggi dan lebih berpori, metode impregnasi dengan Ni(NO3)3.6H2O sebagai prekursor untuk mendapatkan inti aktif nikel dengan variasi penambahan promotor CeO2, La2O3, dan MgO alau kombinasinya. Perlakuan ultrasonik diberikan pada saat proses impregnasi dengan frekuensi 18 - 22 kHz selama 60 menit.
Katalis Nily-A1203 dengan variasi promotor CeO2 dari MgO (SG 5NCT--CeMg) dengan loading Ni 5% berat memiliki aktivitas katalitik yang tinggi dan stabil dalam waktu reaksi hingga 48 jam. Konversi metana rata-rata sebesar 97,06 % dan selektivitas produk H2 dan CO berturut-turut sebesar 83.38% dan 73,14% dengan rasio produk H2/CO adalah 2,28. Penambahan promotor CeO2 meningkatkan chemisorption H2 sedangkan promotor penambahan MgO meningkatkan jumlah inti aktif nikel dengan mencegah terbentuknya spinel NiA12O4 yang merupakan fasa tidak aktif dengan terbentuknya spinel MgAl2O4 sehingga kombinasi keduanya dapat meningkatkan kinerja katalis. Reaksi tersebut dilakukan pada kondisi tekanan atmosferik, pada temperatur 800°C, rasio reaktan CH4 : O2 = 2 : 1,2 dan WIF = 0,2 g.detiklml. Perlakuan ultrasonik yang diberikan dapat menaikkan selektivitas produk H2 dan CO hingga 9% dan 12% berturut-turut, karena memiliki diameter partikel yang lebih kecil dan komposisi yang lebih seragam dibandingkan dengan katalis tanpa perlakuan ultrasonik.

Partial oxidation of methane has been an interested process since 1990s, because of the reaction is mildly exothermic and also the syngas obtained a suitable H2/CO ratio of 2 for Fischer Tropsch process and production of methanol. This process is more valuable than the process of syngas production through conventional method (Steam Reforming) which is a highly endothermic reaction and the H2/CO≥3ratio of 3 is not suitable for Fischer Tropsch process. Ni/Al2O3 catalyst has been widely used for partial oxidation of methane reaction. Nevertheless the carbon deposit and catalyst deactivation has become the main obstacle in this process.
The powder of Nily-Al2O3 catalyst was prepared by sol gel method using aluminum isopropoxide as a precursor to get a support with high surface area and more porous, impregnation method with Ni(N03)3.6H2O as precursor to get the active site of nickel with addition of various promoters CeO2, La2O3, and MgO or the combination of them. Ultrasonic treatment when impregnation process has been done with 18 - 22 kHz frequency for 60 minutes.
Nily-Al2O3 catalyst with promoters CeO2 and MgO (SG 5NU-CeMg) with 5 wt. % loading of Ni has high catalytic activity and stable for 48 hours time reaction. The mean methane convert-ion is 97,06 % and the product selectivity of H2 and CO is 83.38% and 73,14% respectively, with product H2/CO ratio of 2,28. The addition of CeO2 promoter increase the H2 chemisorptions while the addition of MgO promoter increase the active site of nickel with decreasing the formation inactive NiAl2O4 spine' by forming a stable MgAI2O4 spinel, therefore the combination of these two kind promoters increase the performance of the catalyst. These reaction was studied at atmospheric pressure, with temperature 800°C, CH4:O2 ratio is 211,2 and WIF ratio is 0,2 g.second/ml. Ultrasonic treatment increase the product selectivity of Hz and CO up to 9% and 12% respectively, because of has a smaller particle diameter and more homogeneous composition than the catalyst without ultrasonic treatment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14718
UI - Tesis Membership  Universitas Indonesia Library
cover
"Molybdenum oxide (MoO3) have been introduced to titanium silicalite (Ts-1) by impregnation methode and have been characterized with X-ray diffraction (XRD), infrared spectroscopy,nitrogen and pyridine adsorption...."
Artikel Jurnal  Universitas Indonesia Library
cover
Parinduri, Wilda Yuni
"Nanokarbon adalah material karbon yang diproduksi dengan struktur dan ukuran nanometer yang dapat digunakan untuk membuat nanomaterial bagi peranti mikroelektronik, produk makanan, obat-obatan dan berbagai bidang lainnya. Dekomposisi katalitik metana merupakan salah satu sintesis nanokarbon dengan metode CVD (Chemical Vapour Deposition) yang cukup ekonomis untuk menghasilkan nanokarbon. Optimasi proses diperlukan untuk menghasilkan nanokarbon yang komersil dan berkualitas baik.
Penelitian ini dilakukan menggunakan katalis Ni-Cu-Al pada komposisi 2:1:1 yang dipreparasi dengan metode kopresipitasi menggunakan presipitan larutan sodium karbonat. Katalis direaksikan dengan metana pada kondisi operasi yang divariasikan yaitu suhu reaksi berada pada rentang 500°C-750°C, waktu reaksi pada rentang 1-60 menit, dan laju alir metana pada 40 mL/mnt - 120 mL/mnt. Produk dikarakterisasi dengan SEM, TEM dan BET.
Berdasarkan hasil penelitian, diperoleh kondisi optimum untuk memperoleh nanokarbon dengan morfologi yang baik berada pada waktu reaksi 20 menit dengan laju alir 120 mL/mnt dan suhu reaksi 7000C pada tekanan atmosferik. Bentuk nano karbon yang terbentuk adalah MWNT berdiameter 54-59 nm. Setelah direaksikan selama 10 jam, ternyata katalis masih terlihat stabil. Aktivitas katalis meningkat 5 menit pertama kemudian menurun secara drastis hingga aktivitas relatif stabil pada rentang 1-10 jam.

Nanocarbon is a carbon material produced by the nanometer structure and size that can be used to make nanomaterials for microelectronics devices, food products, medicines etc. Catalytic decomposition of methane is one of the economic methods for synthesis nanocarbon by CVD (Chemical Vapour Deposition) to produce nanocarbon. Optimization of the process required to produce a commercial nanocarbon and good quality.
The research was conducted using the catalyst Ni-Cu-Al in composition 2:1:1 prepared by coprecipitation method using a solution of sodium carbonate as presipitan. The catalyst is reacted with methane which the operating conditions of the reaction temperature was varied in the range of 500°C-750°C, reaction time on the range of 1-60 minutes, and the methane flow rate at 40 mL / min - 120 mL / min. Products were characterized by SEM, TEM and BET.
Based on results of this research, optimum conditions to obtain nanocarbon with good morphology is at the 20 minutes reaction times with a flow rate of 120 mL / min and the reaction temperature 7000C at atmospheric pressure. Nanocarbon formed is MWNT with diameter 54-59 nm. After treated for 10 hours, catalyst still looks stable. Catalytic activity increases for 5 minutes and then decreased drastically until the activity is relatively stable in the range of 1-10 hours.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1604
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Hanif Kustadi
"Three silica supported cobalt-base catalysts were prepared by wet impregnation method, the differences are changing the cobalt loading (1.65 wt.%, 4.78 wt.%, and 7.56 wt.% Co). Co/SiO2 catalysts were made from solution Co(NO3)2.6H2O, NH4OH, and SiO2 Degussa (200 m2.gr.-1) as support.
Magnetic measurement, transmission electronic microscopy (TEM), and chemisorptions method have been used to characterize the reduction and catalytic behavior of a series Co1SiO2 catalysts. Magnetic measurements were performed by Weiss extraction method, these give information both on the degree of reduction and on the metal size when the system is super paramagnetic. TEM would be determined average size and size distribution of particles. Structure sensitivity of organometalic surface of CO adsorption was observed with infra-red spectroscope (IR). H2 adsorption ability of catalysts and prediction of diameter size of cobalt could be calculated with volumetric adsorption method. The test catalytic hydrogenation CO reaction was proceeded under 200°C, 220°C, and 240°C, and the exit gas was analyzed on heated line by gas chromatography (FM and TCD) for measurement products conversion and selectivity.
All catalysts were reduced fully at 650°C, at that condition metal dispersion as active site on surface increases with decreasing cobalt loading, and the highest metal dispersion found 30 %.
The particle size of fully reduced cobalt metal is subject to rise with the increasing of metal loading, that is range of 3.9 nm to 8.7 nm and homogeneities distribution range of 8.7 % to 32 %. The smallest metal particle size is found about 3.9 nm and the highest H2 adsorption ability is 23,6 ml. gr.-1 for 1.65 wt.% Co1SiO2 catalyst.
The result of catalytic test at 220°C / 2 MPa / GHSV 2000 h-i was demonstrated that product selectivity for high hydrocarbon (greater than C5) has tendency to rise up to 29.9 %

Telah dilakukan penelitian pembuatan katalis logam cobalt dengan penyangga SiO2 Degussa untuk proses sintesis Fischer-Tropsch dengan metode impregnasi basah. Konsentrasi cobalt yang dibuat divariasikan sebesar 1,65 %, 4,78 %, dan 7,56 % berat. Preparasi dilakukan dengan mereaksikan larutan Co(NO3)z. 6H2O dengan NH4OH, dan SiO2 Degussa sebagai penyangga.
Karakterisasi katalis dilakukan dengan menentukan sifat kemagnetan dengan metode ekstraksi Weiss, data ini digunakan untuk mengukur sifat paramagnetik setelah dereduksi dan mengukur besarnya distribusi butiran. Untuk mengetahui bentuk, ukuran, dan hubungan antar butir partikel dilihat juga dengan metoda mikroskop transmisi elektronik (TEM). Pengamatan sensitivitas struktur permukaan organometalik dari gas CO dengan spektroskop infra-merah (FR). Pengukuran kemampuan katalis mengadsorpsi gas hidrogen pada katalis dan prediksi besar butir partikel logam dilakukan dengan adsoprsi volumetrik gas hidrogen. Uji katalis cobalt pada reaksi sintesis Fischer-Tropsch dilaksanakan di dalam reaktor unggun tetap dengan suhu 200°C sampai 240°C, pengukuran produk hasil proses dianalisis dengan kromatograft gas (GC-FM dan GC-TCD) untuk mengetahui konversi dan selektivitas produk.
Hasil penelitian menunjukkan bahwa ketiga katalis tersebut dapat tereduksi sempurna dengan gas hidrogen pada temperatur 650°C. Pada kondisi tersebut, persen dispersi logam sebagai inti aktif di permukaan katalis semakin besar dengan berkurangnya konsentrasi cobalt, persen dispersi tertinggi diperoleh sebesar 30 %.
Ukuran butiran partikel logam cobalt yang tereduksi sempurna semakin besar dengan bertambahnya konsentrasi cobalt yaitu antara 3,9 nm sampai 8,7 nm dan homogenitas distribusi bervariasi antara 8,7 % sampai 32 %. Ukuran katalis terkecil terukur sebesar 3,9 nm dan daya adsorpsi hidrogen tertinggi diperoleh sebesar 23,6 ml/gram cobalt pada katalis 1,65 % Co1SiO2 .
Hasil uji katalis pada temperatur 240°C / 2 MPa 1 GHSV 2000 h-1 menunjukkan bahwa selektivitas produk berupa hidrokarbon rantai panjang (> C5) cenderung meningkat sampai 29,9 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 1994
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Slamet
"ABSTRAK
Salah satu aplikasi yang cukup potensial dari fenomena fotokatalisis adalah untuk mengkonversi karbon pada senyawa anorganik seperti CO2 menjadi senyawa-senyawa organik yang lebih berguna. Disamping diperolehnya produk senyawa organik yang dapat digunakan untuk keperluan tertentu, transformasi CO2 tersebut dalam kurun waktu tertentu dapat mengurangi laju emisi CO2 di atmosfer, yang akhir-akhir ini menjadi issu lingkungan global karena dipercaya dapat memberikan kontribusi yang signifikan terhadap timbulnya efek rumah kaca (greenhouse effect). Efisiensi reduksi CO2 sangat tergantung pada fotokatalis yang digunakan. Beberapa peneliti telah membuktikan bahwa CO2 dapat direduksi secara fotokatalitik dalam uap air atau Iarutan dengan TiO2, akan tetapi efisiensinya masih sangat rendah. Studi ini difokuskan pada pengembangan fotokatalis yang efektif untuk proses reduksi CO2 menjadi metanol.
Fotokatalis TiO2 serbuk dengan berbagai komposisi kristal anatase dan rutile dibuat dengan cara menghidrolisis TiCk yang dilanjutkan dengan kalsinasi pada berbagai temperatur. Modifikasi katalis TiO2 film dilakukan dengan menambahkan polyethilene glycol atau silika, menggunakan metode sol-gel dan dip-coating. Fotokatalis tembaga-titania dibuat dengan metode impregnasi-termodifikasi menggunakan TiO2 Degussa P25 clan larutan tembaga nitrat, serta metode pencampuran fisik menggunakan serbuk TiO2 Degussa P25. CuO, Cu2O, dan Cu. Katalis-katalis yang telah dibuat kemudian dikarakterisasi dengan XRD, DRS, SEM/EDX/Mapping, AAS, dan BET. Uji kinerja katalis yang dilakukan meliputi uji aktivitas fasa cair dan gas, uji kinetika, dan uji mekanisme reaksi dengan metode in-situ FTIR.
Hasil penelitian membuktikan bahwa dengan bantuan fotokatalis titania dan tembaga-titania. karbon dioksida dapat direduksi oleh air baik dalam sistem cair-padat rnaupun gas-padat, menghasilkan produk utama metanol. Metana, etanol, propanol, dan aseton adalah senyawa-senyawa lain yang juga terbentuk, meskipun dalam jumlah yang relatif lebih sedikit. Aktivitas reduksi fotokatalisis CO2 pada larutan 1 M KHCO3 paling optimal diamati te1jadi ketika keasaman larutan diatur pada pH 4. Katalis TiO2 serbuk dengan komposisi kristal anatase yg tinggi, ukuran kristal kecil, dan luas permukaan besar, rnempunyai efisiensi fotoreduksi CO2 yang tinggi. Penambahan dopan PEG atau SiO2 sampai pada tingkat loading tertentu dapat meningkatkan porositas fotokatalis TiO2 film, sehingga kine1:janya menjadi Iebih baik.
Katalis tembaga/Ti02 dcngan loading tertcntu menunjukkan kinerja fotokatalisis yang sangat efisien untuk reduksi CO2, baik pada sislem cair-padat maupun gas-padat. Hasil inYestigasi menunj ukkan bahwa Cu11O adalah spcsi do pan yang paling signi fikan dalan1 1neningkatkan kine1ja TiO2 pada reduksi CO2 menjadi metanol. loading optimal yang diperoleh pada katalis CuO/TiO2 hasil impregnasi adalah 3% berat Cu, sedangkan pada katalis yang dibuat dengan pencan1puran fisik adalah 5% berat untuk dopan Cu2O dan l % berat untuk dopan CuO.
Peningkatan efisiensi reduksi CO2 1nenjadi metanol yang signifikan oleh dopan ten1baga (terutan1a dalam bentuk metal oksida) pada fotokatalis TiO2 diduga karena adanya peran ganda yang sinergis dari dopan tembaga tersebut, yaitu sebagai electron trapper pada proses fotokatalisis dan sebagai inti aktif pada proses katalisis. Sebagai electron trapper~ dopan tembaga secara efektif dapat n1enghambat laju rekombinasi pasangan elektron-hole sehingga secara signifikan dapat meningkatkan efisiensi reduksi CO2. Sebagai inti aktif pada proses katalisis, dopan tembaga diperkirakan dapat meningkatkan selektivitas produk metanol, dengan 1nekanisme melalui pen1bentukan intermediate forn1at dan metoksida.
Uji kinetika yang dilakukan pada rentang te1nperatur 43 -l 00 °C menunjukkan bahwa dopan CuO dapat n1eningkatkan laju reaksi, sehingga secara signifikan dapat meningkatkan photoefficiency dari katalis TiO2. Nilai energi aktivasi teramti (Ea) yang diperoleh untuk katalis 3% CuO/TiO2 adalah sebesar + 12 kJ/mol, yang mengindikasikan bahwa desorpsi produk adalah merupakan tahap penentu laju reaksi pada pembentukan metanol dari CO2 dan H20 dengan katalis 3%CuO/TiO2. "
Universitas Indonesia Fakultas Teknik , 2004
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Luthfie Ahmaddani
"Indikator kualitas dari motor pembakaran dalam adalah performa dan gas buang. Salah satu faktor yang mempengaruhi kuaitas adalah bahan bakarnya. Metode untuk menaikkan kualitas bahan bakar yaitu dengan menambahkan katalis ke dalamnya. Tujuannya adalah untuk mengikat molekul oksigen dengan mudah sehingga mendapatkan proses pembakaran yang lebih baik. Tujuan lain yaitu untuk mengurangi konsumsi bahan bakar dan emisi yang baik untuk lingkungan. Penelitian ini menggunakan bensin (Pertamax) sebagai bahan bakar. Tipe katalis A dimasukkan kedalam tangki bahan bakar. Tipe katalis B diletakkan saluran bahan bakar antara karburator dan pompa bahan bakar. Pengujian juga menggunaka kombinasi keduanya. Hasil penelitian dari penggunaan kedua jenis katalis tersebut menunjukkan peningkatan Daya (BHP), efisiensi Thermal, dan pengurangan konsumsi bahan bakar dan emisi gas buang.

The indicators quality of internal combustion engines are performance and exhaust gas condition. One of the factors is the quality of fuel that is used. The method to increase fuel quality is by added fuel with catalyst. The purpose is the fuels can bind oxygen easily and get the better combustion process. Other purposes are to decrease fuels consumption and good for the environment. This research use gasoline (Pertamax) as fuels. The type of catalyst is A that is input to fuel tank. The second type is B, which is passed by fuel and is located between carburetor and fuel pump. The experiments also use both of fuel catalyst combination. The result of experiments indicates that utilization both of catalyst combination can increase BHP average and thermal efficiencies. The results also show that decrease the specific fuel consumption and emission compare to gasoline result."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50951
UI - Skripsi Open  Universitas Indonesia Library
cover
"Di Indonesia penggunaan bahan buangan telah banyak di lakukan tetapi masih dalam taraf penelitian apakah bahan buangan tersebut layak digunakan dalam perkerasan jalan. Banyak bahan buangan yang dapat langsung di gunakan dalam campuran beraspal, sebagai contoh: katalis bekas,slag,abu terbang(fly-ash) atau melalui proses agar dapat digunakan di dalam campuran beraspal seperti limbah plastik,limbah ban karet
"
JJJ 25:1 (2008)
Artikel Jurnal  Universitas Indonesia Library
cover
Damar Wibisono
"Penambahan air dalam umpan dapat menghambat deaktivasi katalis. Kandungan umpan 60% air memberikan deaktivasi katalis yang lebih lambat dibandingkan kandungan umpan 30% dan 15 % air. Selain itu, dengan laju umpan yang besar didapatkan konversi jauh lebih besar, namun akan terjadi penurunan konversi yang signifikan yang menyebabkan katalis terdeaktivasi. Penurunan aktivitas katalis (deactivation) tersebut dikarenakan penutupan inti aktif asam oleh kokas (coke). Hal ini dapat diketahui dengan uji keasaman katalis yang mengalami penurunan dan hasil FTIR didapatkan ikatan coke pada bilangan gelombang 1540-1600 cm-1.

Adding water to feed may inhibit deactivation of the catalyst. Sixty percent of water content in feed giving catalyst's deactivation which is slower than the feed with 30% and 15% water content. Besides that, the more faster of feed flowrate given, the more bigger conversion that earned, but there will be a significant decrease of the conversion that caused deactivation of catalyst. Deactivation of catalyst is due to the closure of the active core acid by the coke. This can be identified by testing catalyst's acidity value which has decreased and the FTIR test that contains a bond coke at a wave numbers of 1540-1600 cm-1."
2011
S186
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>