Ditemukan 127760 dokumen yang sesuai dengan query
Muhamad Sean
"Pada skripsi ini akan dibahas bagaimana pengujian dan analisis performansi dari program pengoreksi kesalahan penulisan kata pada kalimat dengan menggunakan algoritma jaro winkler distance pada SIMPLE-O. Di dalam penggunaan word processor sering ditemukan kesalahan pengetikan suatu kata. Kesalahan yang terjadi adalah ketika kata yang diketik memiliki struktur huruf yang salah sehingga mengakibatkan kata yang diketik tidak mengandung arti yang sebenarnya. Kesalahan penulisan tersebut dapat berakibat berkurangnya nilai akhir yang didapatkan jika dilakukan penilaian dengan menggunakan program penilai otomatis SIMPLE-O. Algoritma Jaro Winkler Distance merupakan sebuah variant algoritma Jaro Distance metric yang bisa digunakan untuk menganalisa kesamaan antara dua string. Dengan menggunakan algoritma tersebut, sebuah string dapat dicari kemiripan struktur hurufnya dengan membandingkannya dengan string yang lain. Algoritma Jaro Winkler Distance melakukan beberapa tahapan proses dalam mencari kesamaan antara dua string yaitu menghitung panjang string, mencari jumlah huruf yang sama dan menentukan jumlah transposisi. Presentase keefektifan program pengoreksi kesalahan penulisan kata dalam mengoreksi kata yang salah pada jawaban user adalah sebesar 83,63 %.
This thesis will mainly discuss about testing and analyzing the performance of word error correction system in sentences by using jaro winkler distance algorithm in SIMPLE-O. In applying word processor, we often find an error of typing. The error occurred when the word which is typed has no meaning. This typing error could decrease the obtained final result if it is done by using SIMPLE-O automatic grader system. The algorithm of Jaro Winkler distance is a variant of Jaro distance algorithm metrics which can be used to analyze the similarity between two strings. By using the algorithm, a string structural similarity can be found by comparing it with another string. Jaro Winkler distance algorithm performs several stages in the process of finding the similarities between two strings those are calculate the string length, search the same number of letters and determine the amount of transposition. The effectiveness precentage of typo correction program in correction the user’s answer mistakes is 83,63%."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S60072
UI - Skripsi Membership Universitas Indonesia Library
Ivan Raditya
"Pada skripsi ini akan melakukan Analisis dan pengujian program perbaikan penulisan kalimat dengan menggunakan fungsi levenshtein distance yang diimplementasikan pada SIMPLE-O. Kesalahan pengetikkan dapat terjadi ketika kata yang diketik tidak memiliki struktur yang sama dengan kata yang sebenarnya. Fungsi levenshtein distance merupakan sebuah fungsi yang dapat digunakan untuk menilai kesamaan dari dua buah string. Dalam melakukan proses pengecekan kesamaan dua buah string, fungsi ini akan memeriksa kesamaan struktur huruf pada string pertama dan kedua. Fungsi levenshtein distcane akan melakukan beberapa tahapan proses ketika melakukan pemeriksaan kesamaan struktur yaitu, menghitung panjang kedua string yang akan diperiksa dan menentukan jumlah transposisi yang terjadi pada string kedua. Keefketifan program perbaikan kata pada skripsi ini adalah 92 dan dapat menaikkan akurasi sebesar 1.45.
This thesis will talk about the analysis and testing results of sentence correction program using Levenshtein distance function implemented in SIMPLE O. Levenshtein distance function is a function that can be used to find similarities from two strings. In finding similarities between the two strings, this function will find similarities in letter structure between both compared strings. The Levenshtein distance function will go through a few steps when finding similarities between compared structures by first counting the length of both strings, which will then be used to figure out the transposition in the second string. The efectiveness percentage of typing correction program is 92 and increase 1.45 the accuration of SIMPLE O."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68942
UI - Skripsi Membership Universitas Indonesia Library
Ahmad Rasyid Maulana
"Perubahan adalah sesuatu yang biasa terjadi dalam kehidupan sehari-hari. Baik itu masyarakat, lingkungan, dan khususnya teknologi tidak lepas dari perubahan. SIMPLE-O merupakan salah satu bentuk perkembangan teknologi yang memungkinkan otomatisasi koreksi soal dalam bentuk esai. Pada skripsi ini akan dilakukan integrasi sistem SIMPLE-O dengan web interface yang telah diciptakan tahun lalu, dan menggabungkan algoritma LSA dengan algoritma Cosine Similarity dan algoritma Jaro Winkler Distance untuk kemudia diuji dan dianalisis hasilnya. Berdasarkan hasil analisis, algoritma gabungan lebih efektif dan akurat dalam 5 dari 6 skenario, dengan nilai korelasi yang lebih tinggi. Namun, untuk algoritma gabungan maupun algoritma yang tidak dimodifikasi, tingkat akurasi masih rendah jika menggunakan jawaban yang menggunakan banyak kata-kata. Tingkat akurasi masih termasuk rendah untuk kedua algoritma, dengan korelasi tertinggi hanya mencapai 0.416883886. Sistem dengan Algoritma LSA memiliki keunggulan waktu proses yang signifikan atas sistem dengan Algoritma gabungan, dimana keunggulan waktu sampai dengan 531%.
Change is something that occurs frequently in our daily lives. Nothing is free of change, be it the public, the environment, and especially technology. SIMPLE-O is a form of technology advancement which makes automatic essay correction possible. This essay will integrate SIMPLE-O with a web interface that was created specifically for SIMPLE-O last year, and integrate Cosine Similarity and Jaro Winkler Distance algorithms into the system. Based on the analysis, the joined algorithm is more effective and accurate in 5 out of 6 scenarios, whic is indicated by a higher correlation number. However, for the algorithm whether it is joined or not, the accuracy is still low if it is used for processing long answers. The accuracy level is still low for both systems, with the highest correlation value being 41%. Regarding execution time, the unmodified system is vastly superior with processing speeds up to 531% faster than the modified system."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65033
UI - Skripsi Membership Universitas Indonesia Library
Hanif Arkan Audah
"Non-word error merupakan kesalahan ejaan yang menghasilkan kata yang tidak ada dalam kamus. Tujuan dari penelitian ini adalah membandingkan dua metode pemeriksa ejaan non-word error, yaitu SymSpell dan kombinasi Damerau-Levenshtein distance dengan struktur data trie. Kedua metode tersebut melakukan isolated-word error correction terhadap non-word error. Dalam implementasi, SymSpell dibedakan menjadi dua, yaitu weighted dan unweighted. Proses perbandingan metode dimulai dengan penyusunan kamus menggunakan entri kata dari KBBI V yang diperkaya dengan kata-kata tambahan dari Wiktionary. Kamus yang dihasilkan memuat 91.557 kata. Selanjutnya, disusun dataset uji yang dibuat secara sintetis dengan memanfaatkan modifikasi dari candidate generation Peter Norvig. Dataset uji sintetis yang dihasilkan memuat 58.532 kata salah eja. Dilakukan perbandingan antara Weighted SymSpell, Unweighted SymSpell, dan kombinasi Damerau-Levenshtein distance dengan struktur data trie menggunakan dataset uji sintetis tersebut. Perbandingan tersebut mengukur best match accuracy, candidate accuracy, dan run time. Hasil perbandingan menyimpulkan bahwa SymSpell memiliki performa yang lebih baik dibandingkan dengan metode kombinasi Damerau-Levenshtein distance dan struktur data trie karena unggul dari aspek best match accuracy dan run time serta memperoleh candidate accuracy yang setara dengan metode-metode lain. Implementasi SymSpell yang unggul, yaitu Weighted SymSpell memperoleh best match accuracy 66,79%, candidate accuracy 99,33%, dan run time 0,39 ms per kata.
Non-word errors are errors during writing where the resulting word does not exist in the dictionary. The objective is to compare non-word error spell checker methods, which are SymSpell and a combination of Damerau-Levenshtein distance with the trie data structure. Both methods handle non-word errors using isolated-word error correction.During implementation, SymSpell is divided into two types: weighted and unweighted.The comparison process starts by compiling a dictionary from word entries in KBBI V and Wiktionary. The resulting dictionary contains 91,557 words. The next stepis to synthetically generate a test dataset using a modified version of Peter Norvig’s candidate generation method. The resulting test dataset contains 58,532 misspellings.A comparison is made between Weighted SymSpell, Unweighted SymSpell, and acombination of Damerau-Levenshtein distance with the trie data structure using the synthetic test dataset that was generated. The comparison measures the best match accuracy, candidate accuracy, and run time. The results found that SymSpell performed better than the method that used a combination of Damerau-Levenshtein distance with the trie data structure because it obtained a higher best match accuracy, lower run time, andan equivalent candidate accuracy compared to the other methods. The best performingSymSpell implementation is Weighted SymSpell which obtained a best match accuracy of 66.79%, candidate accuracy of 99.33%, and a run time of 0.39 ms per word."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Barry, David
New York: Prentice-Hall, 1985
652 BAR u
Buku Teks Universitas Indonesia Library
Dyah Lalita Luhurkinanti
"
ABSTRACTAlgoritma winnowing merupakan algoritma yang berbasiskan fingerprint untuk mendeteksi tingkat kemiripan teks. Penelitian ini akan membahas pengembangan sistem penilai otomatis SIMPLE-O yang dikembangkan Departemen Teknik Elektro berbasis algoritma winnowing dan diterapkan untuk bahasa Jepang. Pada input bahasa Jepang diterapkan proses romanisasi untu mengubah karakter ke bentuk romaji. Penelitian dilakukan untuk mencari parameter terbaik dengan nilai akurasi atau agreement with human rater tertinggi. Dari hasil percobaan diketahui jika parameter untuk tiap-tiap input disesuaikan, secara keseluruhan sistem dapat memiliki rata-rata akurasi nilai total seluruh data hingga 90.92 dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91 dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19 hingga 100.
ABSTRACTWinnowing Algorithm is a fingerprint based algorithm for detecting similarity between texts. This research will talk about the development and application of automatic essay grading system SIMPLE O, developed by Department of Electrical Engineering with winnowing algorithm for Japanese language. On the Japanese language input, romanization is implemented to change the input to romaji. The purpose of this research is to find the best parameter with the highest accuracy or agreement with human rater. The result of the conducted experiment shows that with customized parameter for each input, the average of total score for all students is 90.92 with accuracy for each student is up to 99.91 and accuracy for each problem ranged from 60.19 to 100."
2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Bangun, Kristofer Jehezkiel
"Tingginya tingkat kompleksitas program menyebabkan program memiliki waktu eksekusi yang lama jikalau tidak dijalankan pada mesin berkomputasi tinggi. Masalah ini dapat diatasi salah satunya dengan cara menjalankan berbagai proses pada program tersebut secara simultan sehingga program dapat semakin cepat tereksekusi. Metode ini dikenal dengan istilah parallel computing. Untuk lebih mempercepat waktu eksekusi program, parallel computing tersebut dapat diimplementasikan pada arsitektur High Performance Computing HPC. Metode parallel computing dalam HPC tersebut diimplementasikan ke dalam program Sistem Penilaian Esai Otomatis Simple-O. Simple-O merupakan program penilai esai otomatis yang merupakan pengembangan dari Departemen Teknik Elektro. Dengan menerapkan parallel computing dan menjalankan program pada HPC, eksekusi yang dibutuhkan untuk memeriksa jawaban esai dapat semakin cepat. Parallel computing atau parallelism akan diterapkan pada salah satu bagian dari Simple-O yaitu pada algoritma pembelajaran dalam Simple-O, lebih tepatnya pada Self Organizing Map SOM atau Learning Vector Quantization LVQ. Parallelism dalam SOM dan LVQ diterapkan dengan metode network partition dimana node komputasi Euclidean distance dilakukan secara parallel. Pada penelitian ini didapatkan bahwa kecepatan program serial 1,28 kali lebih cepat dibandingkan program parallel.
The escalation of program complexity nowadays means slower run time when it is not executed in high performance machine. One way to address this issue is to execute the processes in the program simultaneously so the program may be executed quicker, known as parallel computing. To further accelerate the program parallel computing can be implemented in High Performance Computing HPC architecture. This method of applicating parallel computing with HPC is implemented in Automatic Essay Grading System, known as Simple O. Simple O is an automatic essay grading system developed by Department of Electrical Engineering Universitas Indonesia. The purpose of applicating the aforementioned method to Simple O is to accelerate the speed of essay grading execution. Parallel computing will be implemented to one of Simple O rsquo s part of program, which is in the learning algorithm. The learning algorithm applied in Simple O is Self Organizing Map SOM and Learning Vector Quantization LVQ. The implementation of parallelism in the learning algorithm uses network partition method, where the calculation of Euclidean distance is done in parallel. Through this research, it can be concluded that the the speed of serial program is 1.28 times quicker than the parallelized program."
Depok: Fakultas Teknik Universitas Indonesia, 2018
Spdf
UI - Skripsi Membership Universitas Indonesia Library
Hannah Gracia Tiurinda
"Melalui penelitian dan penulisan ini, program Sistem Penilaian Esai Otomatis (SIMPLE-O) dikembangkan untuk penilaian esai berbahasa Indonesia menggunakan algoritma hybrid CNN dan Bidirectional GRU dengan metrik Manhattan Distance dan Cosine Similarity. CNN digunakan untuk melakukan ekstraksi fitur dari masukan teks. Bidirectional GRU digunakan untuk menangkap makna atau konteks teks dari dua arah. Pengembangan program ini menggunakan bahasa pemrograman Python untuk proses deep learning. Hasil rata-rata selisih penelitian ini adalah 15.04 untuk model metrik Manhattan Distance dan 22.02 untuk model Cosine Similarity.
Through this research and writing, the Automatic Essay Scoring System (SIMPLE-O) program was developed for evaluating essays in the Indonesian language using a hybrid CNN and Bidirectional GRU algorithm with Manhattan Distance and Cosine Similarity metrics. CNN is employed to extract features from the input text, while Bidirectional GRU captures the meaning or context of the text from both directions. The development of this program utilizes the Python programming language for deep learning processes. The average differences results of this research is 15.04 for the Manhattan Distance metric model and 22.02 for the Cosine Similarity model."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Fika Fikria Riasti
"Skripsi ini membahas mengenai pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) untuk ujian esai berbahasa Indonesia. Sistem ini dirancang dengan menggunakan Stacked Bidirectional LSTM dan menggunakan dua jenis similarity measurement, yaitu Manhattan Distance dan Cosine Similarity, untuk mencari model dengan performa paling optimal dan selisih terbaik dari tiap jenis similarity measurement. Sistem ini menggunakan bahasa pemrograman Python, dan terdiri atas tahap preprocessing, word embedding, training menggunakan deep learning, testing, dan similarity measure untuk menghitung kemiripan antar kata pada input. Input yang digunakan pada sistem ini adalah jawaban dosen sebagai kunci jawaban dan jawaban mahasiswa. Fase training menggunakan data augmentasi dan fase testing menggunakan jawaban mahasiswa asli. Pengujian sistem ini dilakukan dengan menggunakan 7 jenis skenario. Dengan hasil selisih akhir dari model untuk fase training dan testing pada Manhattan Distance sebesar 1.871 dan 7.808, dan Cosine Similarity sebesar 2.31 dan 7.635.
This thesis discusses the development of an Automated Essay Scoring System (SIMPLE-O) for Indonesian-language essay exams. This system is designed using Stacked Bidirectional LSTM and uses two types of similarity measurement, which are Manhattan Distance and Cosine Similarity, to find the model with the most optimal performance and the best difference from each type of similarity measurement. The system uses Python programming language, and the system's stages consist of preprocessing, word embedding, training using deep learning, testing, and similarity measuring to calculate the similarity between words on the input. The inputs used in this system are lecturers' answers as answer keys and students' answers. The training phase uses augmented data, and the testing phase uses original student answers. To test this system uses 7 types of scenarios. The final difference results of the model for the training and testing phases are 1.871 and 7.808 on Manhattan Distance and 2.31 and 7.635 on Cosine Similarity."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nurjannah Cintya Adiningsih
"Skripsi ini membahas tentang Sistem penilaian esai Otomatis (SIMPLE-O) untuk ujian Bahasa Jepang dengan Bidirectional LSTM dan Manhattan Distance. Dalam penggunaan Algoritma RNN menggunakan arsitektur Bidirectional LSTM. SIMPLE-O merupakan sistem yang sedang dikembangkan oleh Departemen Teknik Elektro UI yang digunakan untk menilai esai secara otomatis. Sistem berjalan menggunakan model Bidirectional LSTM, diukur dengan Manhattan Distance serta terdapat metric evaluasi yang terdiri dari Accuracy, Recall, Precision, F1-Measure. Dalam pengolahan sistem dilakukan secara otomatis menggunakan tensorflow. Pengujian yang dilakukan pada sistem yang dibangun terdapat 3 pengujian yaitu : pengujian terhadap epoch, optimizer dan word2vec. Untuk epoch dilakukan terhadap 3 epoch yaitu 20, 5 dan 10. Dari masing – masing epoch dijalankan sebanyak 5 kali. Hasil tertinggi yang didapatkan pada epoch ada pada epoch 20 yaitu 99.02%, untuk hasil pengujian optimizer menggunkan SGD atau stochastic gradient descent dan word2vec sebesar 500.
This thesis discusses the Automatic essay scoring system (SIMPLE-O) for Japanese language exams with Bidirectional LSTM and Manhattan Distance. In the use of the RNN Algorithm, the Bidirectional LSTM architecture is used. SIMPLE-O is a system being developed by the Department of Electrical Engineering UI which is used to automatically assess essays. The system runs using the Bi-LSTM model, measured by Manhattan Distance and there is an evaluation metric consisting of Accuracy, Recall, Precision, F1-Measure. In the system processing is done automatically using tensorflow. Tests carried out on the system built have 3 tests, namely: testing the epoch, optimizer and word2vec. For epoch, it is done for 3 epochs, namely 20, 5 and 10. From each epoch, it is run 5 times. The highest result obtained on epoch is at epoch 20, which is 99.02%, for the optimizer test results using SGD or stochastic gradient descent and word2vec of 500."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library