Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 162673 dokumen yang sesuai dengan query
cover
Riska Yulianiza
"ABSTRAK
Penyangga katalis NiMo yaitu alumina, alumina-zeolit HY dan alumina-silika dengan variasi massa zeolit dan silika telah berhasil disintesis, selanjutnya dilakukan impregnasi katalis logam NiMo ke dalam penyangga katalis dengan menggunakan metode impregnasi basah. Karakterisasi katalis dilakukan dengan TGA, adsorpsi nitrogen, uji kekuatan mekanik (crushing strength), XRD, dan XRF. Hasil dari karakterisasi TGA menunjukkan dekomposisi katalis bervariasi dari satu hingga tiga kali. Karakterisasi dengan adsorpsi nitrogen menunjukkan bahwa katalis NiMo/ alumina-zeolit HY (kandungan zeolit HY 10 %) memiliki luas permukaan paling tinggi (268 m2/g) sedangkan katalis NiMo/alumina-silika (kandungan silika 5 %) memiliki nilai volume pori paling tinggi (0,52 cc/g) dan katalis NiMo/alumina memiliki distribusi ukuran pori paling tinggi (46 Å). Seluruh katalis memiliki nilai uji kekuatan mekanik (crushing strength) diatas 5. Karakterisasi menggunakan XRD menunjukkan bahwa fasa alumina pada katalis sudah menjadi fasa gamma (γ) terbukti dengan adanya puncak pada 2θ = ±37,9˚, ±46,2˚, dan ±67˚. Karakterisasi dengan XRF membuktikan bahwa katalis mengandung komponen penyangga maupun katalis yaitu aluminium, fosfor, silika, nikel dan molibdenum. Uji aktivitas katalis dilakukan pada reaksi hidrodemetalisasi nikel dan vanadium dalam fraksi diesel. Hasil karakterisasi dengan ICP-OES menunjukkan bahwa katalis NiMo/alumina-silika (kandungan silika 5 %) merupakan katalis yang dapat menghilangkan logam nikel paling banyak yakni sebesar 97,6 % sedangkan katalis NiMo/alumina merupakan katalis yang dapat menghilangkan logam vanadium paling banyak yakni sebesar 98 %.

ABSTRACT
NiMo catalyst supports which were alumina, alumina-zeolite HY and alumina-silica with mass variation of zeolite and silica were successfully synthesized, next was impregnation process of NiMo catalyst into catalyst supports by used wet impregnation method. Characterization of catalysts were performed by TGA, nitrogen adsorption, crushing strength’s test, XRD, and XRF. Result from characterization by TGA showed that catalysts’s decomposition occured from once to three times. Nitrogen adsorption characterization showed that NiMo/alumina-zeolite HY (HY zeolite’s composition : 10 %) catalyst had highest surface area (268 m2/g) while NiMo/alumina-silica (silica’s composition : 5 %) catalyst had highest pore volume’s value (0,52 cc/g) and NiMo/alumina catalyst had highest pore’s distribution (46 Å). All of catalysts had crushing strength’s value over five. Characterization by XRD showed that alumina phase in catalysts were gamma (γ) phase which were proved by the peak of 2θ = ±37,9˚, ±46,2˚, and ±67˚. Characterization by XRF proved that composition of catalyst supports and catalysts were aluminium, fosfor, silica, nickel, and molybdenum. Activity test of catalysts were tested on hydrodemetallization of nickel and vanadium reaction in diesel fraction. Characterization result by ICP-OES showed that NiMo/alumina-silica (silica’s composition : 5 %) catalyst was catalyst to remove most of all nickel metal (97,6 %), while NiMo/alumina catalyst was catalyst to remove most of all vanadium metal (98 %). "
2015
S60386
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Putri Noviani
"ABSTRAK
Aktivitas hidrodenitrogenasi dengan katalis NiMo/γ-Al2O3 yang
mengandung fosfor diuji dalam flow reactor pada suhu 285-330oC dan LHSV 3-6
dengan umpan lube base oil dengan quinoline. Katalis NiMo(P)/γ-Al2O3 0,5%
fosfor dan 2,0% fosfor di karakterisasi menggunakan XRD yang menunjukan
kristal yang terbentuk adalah γ-Al2O3. Karakterisasi dengan XRF menunjukan
perbedaan kandungan Ni dan Mo di katalis ,pada katalis dengan 2,0% fosfor
kandungan Ni dan Mo lebih banyak dibandingkan 0,5% fosfor. Karakterisasi luas
permukaan katalis dengan metode BET menunjukan adanya penurunan luas
permukaan dengan bertambahnya kandungan fosfor. Katalis diuji kekuatan
mekaniknya , dimana semakin banyak fosfor pada katalis maka kekuatan
mekaniknya semakin menurun. Produk reaksi hidrodenitrogenasi dianalisa
menggunakan GC-MS, HPLC, Total Nitrogen Total Sulufr Analyzer, dan GCSIMDIS
(Simulation Distilation). Reaksi hidrodenitrogenasi ini merupakan
kinetika reaksi pseudo orde 1. Energi aktivasi reaksi hidrogenasi quinoline
membentuk 5,6,7,8-tetrahydroquinoline, decahydroquinoline, dan NH3 untuk
katalis NiMo(P)/γ-Al2O3 dengan 0,5% fosfor adalah 49,68 kJ/mol sedangkan
untuk 2,0% fosfor 33,01 kJ/mol. Energi aktivasi reaksi hidrodenitrogenasi dalam
menghilangkan nitrogen pada quinoline menjadi gas NH3 untuk katalis dengan
0,5% fosfor adalah 78,8 kJ/mol dan katalis dengan 2,0% fosfor 61,87 kJ/mol.
Dalam reaksi hidrodenitrogenasi dengan katalis NiMo(P)/γ-Al2O3 menggunakan
flow reactor ini tidak terjadi pergeseran titik didih antara umpan dengan produk,
sehingga cracking yang terjadi sangat minimal selama reaksi berlangsung.

ABSTRACT
Hydrodenitrogenation activity over NiMo/γ-Al2O3 catalyst containing
phosphorus were tested in a flow reactor at 285-330oC and LHSV 3-6 with lube
base oil and quinoline as a feed. NiMo(P)/γ-Al2O3 catalysts with 0.5% phosphorus
and 2.0% phosphorus were characterized using XRD that show a γ-Al2O3 cristal
at catalyst. Characterization using XRF showed the different content of nikel and
molibdenum more high at 2.0% phosphorus than 0.5% phosphorus. The surface
area decreased with increase phosphorus on catalyst with BET method. Catalysts
also characterized by the crushing strength test, when the phosphorus content
increase, the crushing strength will decreased. Product of hydrodenitrogenation
were analyzed using GC-MS, HPLC, Total Nitrogen Total Sulufr Analyzer, dan
GC-SIMDIS (Simulation Distilation). This reaction is a kinetics pseudo first
order. Activation energy hydrogenation of quinoline form 5,6,7,8-tetrahydroquinoline,
decahydroquinoline, and NH3 for NiMo(P)/γ-Al2O3 catalyst with 0.5%
phosphorus is 49,68 kJ/mol, while for catalyst with 2.0% phosphorus is 33,01
kJ/mol. Activation energy for hydrodenitrogenation to relieve nitrogen at
quinoline to NH3 at catalyst with 0.5% phosphorus is 78,8 kJ/mol and catalyst
with 2.0% phosphorus is 61,87 kJ/mol. Hydrodenitrogenation with NiMo(P)/γ-
Al2O3 catalyst using flow reactor is no shift at boiling point between feed and
product, so that the cracking during the raction is small or minimal."
2016
S65391
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michaelle Flavin Carli
"Saat ini, sumber bahan bakar utama masih berasal dari bahan bakar fosil, salah satunya adalah avtur, yang ketersediannya masih terbatas dan meningkatkan emisi gas rumah kaca. Kondisi ini mendorong penggantian avtur menjadi bioavtur, yang merupakan salah satu energi berkelanjutan yang ramah lingkungan. Pada penelitian ini, bioavtur disintesis melalui reaksi hidrodeoksigenasi dan perengkahan katalitik dari senyawa model asam oleat menggunakan katalis NiMo/Zeolit. Hidrodeoksigenasi dilakukan pada kondisi operasi yang seragam yaitu pada suhu 375°C, pada tekanan hidrogen 15 bar selama 2,5 jam. Rantai hidrokarbon pada hasil hidrodeoksigenasi yang dianggap masih panjang direngkah kembali melalui reaksi perengkahan katalitik selama 1,5 jam. Reaksi ini dilakukan pada tiga variasi suhu, yaitu 360, 375, dan 390°C. Karakteristik produk cair dibagi menjadi dua macam, yaitu karakteristik kimia, berupa bilangan asam, FTIR, dan GC-MS dan karakteristik fisik, berupa uji densitas dan viskositas. Bioavtur yang telah tersintesis melalui perengkahan katalitik ini telah memenuhi spesifikasi avtur komersial, kecuali bilangan asam dengan suhu optimum pada 375°C. Pada kondisi ini, NiMo/Zeolit mampu melakukan sintesis bioavtur dengan yield 34,77, selektivitas 36,43 dan konversi 84,30. Nilai persentase yield dan selektivitas yang terbilang masih rendah disebabkan oleh kinerja katalis yang belum optimal. Sedangkan konversi yang tinggi, disebabkan oleh cukup tingginya suhu perengkahan katalitik.

Currently, fossil fuels are still the primary source of fuel. As has been known, fossil fuel especially aviation fuel is limited resources and can increase greenhouse gas emissions. This condition encourages avture replacement efforts into bioavtures fuel. In this research, bioavture is synthesized through hydrodeoxygenation and catalytic cracking from oleic acid as model compound using NiMo Zeolite catalyst. Hydrodeoxygenation carried out under operating conditions at temperature of 375°C, under 15 bar pressure and for 2.5 hours. The chain of hydrocarbons from the result of hydrodeoxygenation has been cracked by catalytic cracking reaction for 1.5 hours. Variation operating condition used are 360, 375, and 390°C. The liquid product is tested its chemical characteristic, ie acid number, FTIR and GC MS and its physical characteristics, ie density test and viscosity. Bioavtur that synthesized by catalytic cracking have met the specifications of bioavtur, except the acid number with optimum temperature at 375oC. These conditions with NiMo Zeolite activated led to dominant yield of 34.77 , selectivity of 36.43, and conversion of 84.30. Percentage of yield and selectivity of bioavtur are still low caused by performance of catalyst that is still can not optimum. Whereas, high percentage conversion caused by high temperature used for catalytic cracking."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Gumilar
"Air baku yang terdapat di alam tidak semuanya memenuhi persyaratan air bersih yang bisa digunakan sesuai dcugan persyaralan yang dilelapl-;an. Kcbululian akan air bersih bagi kehidupan manusia mendorong untuk diremukannya berbagai teknologi pengolahan air, Salah satunya adalah teknologi rnembran mikrofiltrasi.
Melodc unluk meningkalkan elbklifilas koagulasi dan kincrja membran mikrofiltrasi adalah deugau mellanlbalikali hahan hanlu koagulan (L`f1{J'{lfIff'(2'Hf ffffllv) dan penyesuaian pl-I air urnpan sesuai dengan kondisi kerja optimum koagulasi Pada penelitian ini koagulan yang digunakan adalah Aluminum sulfat (Al2(SO4)3_l8H;O) dan bahan bantu koagulan berupa zeolit alam Lampung, dengan variasi perbandingan closis tertentu.
Tujuan penelitian adalah untuk mcngetahui pengaruh penambahan zeolit dan kondisi pH air umpau terhadap efektifitas koagulasi menggunakan koagulan alum sulfat, serta menentukan perbandingan dosis alum:zeolit dan pH operasi optimum untuk proses koagulasi.
Efektiitas koagulasi cendenmg meningkat seiring dengan penambahan zeolit hingga mencapai perbandingan dosis alum : zeolit optimum (l:4). Sedangkan, kondisi pH air umpan mempengaruhi kondisi kerja optimlun koagulan Aluminum sulfat, sehingga akan mempengaruhi efektifitas koagulasi dan kinerja membran.
Dari hasil penelitian didapatkau bahwa untuk koagulan (A|;(SO4)3_l8H3O) dengan dosis 50 ppm, penambahan zeolit dengan perbandingan alum:zeolit sebesar l:4, meningkatkan efektiiitas koagulasi llingga mencapai 52 % unluk penyisihan (removal) TDS dan 48 % umuk penyisillan COD-nya.
Sedangkan untuk pengaruh pH umpan terhadap efektifitas koagulasi didapat bahwa pada pl-l 7 efektifitas koagulasi, menggunakan dosis alum-zeolit optimum, mencapai 50 % untuk penyisihan TDS dan 46 %lu\l11k penyisilian COD-nya_ Fluks permeat yang diperolcli sebesar 0,013 |n3f1n2:’ja1n_ Persentase penyisihan TDS dan COD dalam proses mikrofiltrasinya ialah 37 % dan 24 %.
Selain itu, penelitian ini juga melillal pengaruh zeolil terhadap penyisilian logam Ca dan Mg yang terdapat dalam air Lunpan. Unmk perbandingan dosis allun-zeolit optimum (l:4), persentase penyisilian logam Ca sebesar 7,5 % dan logam Mg sebesar 17 %"
Depok: Fakultas Teknik Universitas Indonesia, 2004
S49434
UI - Skripsi Membership  Universitas Indonesia Library
cover
Victor Teguh Wirahardja
"Pada penelitian ini digunakan zeolit klinoptiiolit alam sebagai bahan dasar kata|is_ Proses aktivasi di-Iakukan dalam dua cara yang bebeda, yaitu proses pertukaran kation diikuti dengan dealuminasi, Serta proses aktivasi dengan urutan sebaliknya Salah satunya diujikan sebagai katalis sadangkan yang Iain sebagai support untuk katalis ZnOICr2O3 yang penyisipannya dilakukan dengan metode kopresipitasi.
Sebelum dilakukan uji coba pada reaksi dekomposisi n-heksana, dilakukan karakterisasi iuas permukaan, komposisi kation dan kristaIinitas. Uji reaksi dilakukan dengan reaktor unggun tetap (kontinu) pada Iaju alir gas carrier N2 sebesar 30 mllmenit dan berat katalis masing-masing 0,1 gram.
Zeolit klinoptilolit yang proses aktivasinya diawali dengan pertukaran kation, pada reaksi dekomposisi n-heksana memgrikan konversi mulai signifikan pada temparatur reaksi mulai mendakati 450 °C dan menghasilkan sanyawa propena Serta isomamya. Pada suhu 470 °C, konversinya mencapai 10,5%. Sedangkan zeolit kiinoptilolit yang proses aktivasinya diawali dengan dealuminasi, sampel katalis Iebih cepat terdeaktivasi sekalipun memiliki karakter permukaan yang Iebih baik.
Katalis Zn0!Cr2O3!zeo|it menghasilkan konversi yang mulai signitikan pada temperatur reaksi mendekati 400 °C dan mamberikan produk senyawa heksena sarla isomernya. Pada 470 °C, konversinya mencapai 22%."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48893
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indah Revita Saragi
"ABSTRAK
Sintesis Zeolit NaY menggunakan sumber alam alumina dan silika memiliki banyak
tantangan. Berfokus pada pengurangan bahan sintetis, dalam penelitian ini, sintesis telah
dilakukan menggunakan kaolin alam Bangka Belitung sebagai sumber silika dan
alumina. Pre-treatment pada kaolin diperlukan melalui proses aktivasi, pemurnian, dan
kalsinasi. Selanjutnya, zeolit NaY juga disintesis menggunakan kaolin alami sebagai
sumber silika dan alumina dengan beberapa jenis benih yang dibuat dari sumber silika
yang berbeda, yaitu Ludox HS40, Na-silikat, dan NaY komersil dari Wako. Semua
material kemudian dikarakterisasi menggunakan XRD, FTIR, dan SEM-EDX. Dapat
dilihat bahwa seed dari Ludox HS40 memberikan NaY terbaik. Tapi, zeolite NaP
menjadi pengotor utama. Rasio Si/Al NaY zeolit adalah ~1.78 dengan bentuk pola
difraksi mirip dengan yang ada dalam literatur. Sehingga disimpulkan, sintesis NaY
menggunakan aluminasilika alam sebagai sumber silika dan alumina cukup berhasil.
Hasil uji perengkahan memperlihatkan jika katalis dengan material sintetik (HY
sintetik) memiliki persen konversi, yield dan selektivitas yang lebih tinggi dibandingkan
dengan katalis dengan campuran bahan alam (HY MKSE dan HY SE). Namun, setiap
katalis memiliki persen yield dan selektivitas lebih tinggi terhadap produk C5
dibandingkan dengan produk lainnya.

ABSTRACT
Synthesis of sodium Y zeolite (NaY Zeolite) using natural sources of alumina and silica
is interesting yet challenging. Focused on reducing synthetic material, in this research,
synthesis has been carried out using Bangka natural Kaolin as silica and alumina
sources. Pretreatment on kaolin was needed through the process of activation,
purification, and calcination. The purpose of activation process is to remove the polar
impurities, free oxides in the surface that cover up the pores, and release the water that
trapped in the pores of the materials. The purification was conducted using Na-acetate
buffer solution with ratio 1:3 (w/v). The calcination process was required because Si-O
and Al-O structures in Kaolin are inactive and inert. Synthesis of NaY zeolite was
conducted with the addition seed gel using hydrothermal method with 24 hours at the
temperature 100 oC for crystallization. Furthermore, NaY zeolites were also synthesized
using natural kaolin as silica and alumina sources with several types of seeds made from
different silica sources, i.e Ludox HS40, Na-silicate, and NaY zeolite from Wako . All
materials then were characterized using XRD, FTIR, and SEM-EDX. It can be seen that
seed from Ludox HS40 gives the best NaY. But, NaP zeolite becomes the main
impurities. The Si/Al ratio of NaY zeolite is ~1.78 but the shape of the crystals is
similar to that in literature. To conclude, synthesis of NaY using natural
aluminasilicates as source is considerably successful. The cracking test results show if
the catalyst with synthetic material (HY synthetic) has a higher percent conversion,
yield and selectivity compared to a catalyst with a mixture of natural materials (HY
MKSE and HY SE). However, each catalyst has a higher percent yield and selectivity
for C5 products compared to other products."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T51691
UI - Tesis Membership  Universitas Indonesia Library
cover
Teguh Diyanto
"Dalam penelitian ini dilakukan sintesa fraksi hidrokarbon C3 dan C4 dari minyak jarak yang memiliki kandungan asam lemak tak jenuh yang lebih banyak dari CPO. Kandungan asam lemak tak jenuh yang memiliki ikatan rangkap ini memudahkan pemutusan ikatan lebih banyak oleh katalis, menghasilkan yield C3 dan C4 yang lebih banyak. Untuk menghasilkan fraksi C3 dan C4 dari minyak jarak digunakan metode perengkahan katalitik menggunakan katalis ZSM-5. Reaksi dilakukan secara tumpak pada fasa cair dan tekanan atmosferik selama 60 menit. Pada reaksi divariasikan suhu reaksi (320°C; 330°C;340°C) dan rasio massa katalis/SJO (1:75 dan 1:100). Produk gas dianalisis dengan GC sedangkan produk cair menggunakan FTIR Berdasarkan hasil penelitian, pada reaksi dengan suhu 340°C dan rasio katalis/SJO = 1:100 didapatkan hasil maksimum yaitu yield hidrokarbon C4 mencapai 12 %. Produk gas yang diperoleh kebanyakan berupa produk i-C4 dan n-C4 . Sedangkan produk C3 tidak diperoleh secara konsisten.

In this research, synthesis of hydrocarbon fraction C3 and C4 will be held using Jatropha Oil which has more unsaturated fatty acid compared to Crude Palm Oil. This content of unsaturated fatty acid will make it easier for the catalyst to cut the bond, producing more product of C3 and C4. To produce C3 and C4, catalytic cracking method is used with ZSM-5 catalyst. Reaction is performed in batch reactore in liquid phase with atmospheric pressure within 60 minutes. The temperature will be varied within 320°C; 330°C;340°C and the ratio of catalyst/SJO mass of 1:75 and 1:100. The gas product will be analyzed with GC and the liquid product with FTIR. According to the research, the maximum yield is obtained in the 340°C temperature and of catalyst/SJO mass of 1:100, with the result of 12%. The gas product mainly consist of i-C4 and n-C4. Whild the C3 product is not obtained consistently."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52230
UI - Skripsi Open  Universitas Indonesia Library
cover
Siregar, Ali Rimbasa
"Bahan bakar minyak memainkan peran yang sangat penting dalam pengembangan industri, transportasi, pertanian serta aktivitas manusia lainnya. Bahan bakar minyak yang umum digunakan adalah bahan bakar berbasis fosil yang jumlahnya terbatas, tidak terbarukan serta berdampak negatif terhadap lingkungan. Oleh karena itu dewasa ini penelitian dan produksi bahan bakar bersih dan terbarukan berbasis minyak nabati dan lemak hewani marak dilakukan. Biodiesel sebagai bahan bakar nabati yang populer untuk substitusi minyak diesel konvensional didapati masih banyak kelemahan baik di dalam proses produksinya maupun dari kualitas produk biodiesel itu sendiri. Oleh karena itu dibutuhkan teknologi konversi minyak nabati yang lebih efisien dan menghasilkan bahan bakar setara solar atau yang dikenal renewable diesel.
Teknologi hydrotreating katalitik sebagai existing technology di kilang pengolahan minyak bumi memiliki kemampuan untuk mengkonversi baik trigliserida maupun asam lemak bebas melalui satu tahap reaksi menjadi hidrokarbon jenis parafinik setara minyak diesel konvensional yang tidak mengandung senyawa oksigen sehingga stabilitasnya lebih baik dari biodiesel. Proses Hydrotreating katalitik berbasis NiMo/ɣ-Al2O3 yang dikerjakan dalam penelitian ini bertujuan untuk mendapatkan produk minyak diesel terbarukan (Renewable Diesel) setara minyak diesel konvensional dengan menggunakan umpan minyak kemiri sunan yang pemanfaatannya masih menggunakan proses transesterifikasi menghasilkan produk biodiesel.
Penelitian ini dilakukan dalam tiga tahap yaitu preparsi katalis, karakterisasi katalis dan sintesis renewable diesel dengan proses hydrotreating. Hasil katalis yang telah dipreparasi dilakukan karakterisasi dengan Brunaur Emmet Teller (BET) dan didapat luas permukaan 105.5 m2/g serta volume dan diameter pori masing-masing sebesar 0.1842 cc/g dan 34.93 A0. Kemudian identifikasi dengan X-ray diffraction (XRD) menunjukan keberadaan logam Mo dan persebarannya dalam support yang cukup merata.
Hasil Scanning Electron Microscope (SEM) yang diperkuat X-ray Energy Dispersive (EDX) menggambarkan keberadaan logam Ni dan Mo dalam suatu komposisi mikro dan tekstur persebaran dari logam-logam aktif yang cukup merata. Produk hasil proses hydrotreating dengan variasi tekanan, suhu dan rasio berat katalis terhadap umpan minyak nabati dianalisis menggunakan Gas Chromatography (GC) dan dilakukan uji sifat fisika kimianya.
Hasil GC menunjukan kenaikan suhu dan tekanan operasi meningkatkan yield produk hidrokarbon range diesel dengan yield tertinggi sebesar 30.95% pada tekanan 60 bar dan suhu 400 0C. Nilai konversi dan selektifitas adalah masing-masing 33.48% dan 95.72% dengan arah reaksi cenderung ke mekanisme decarbonylation. Perubahan di dalam rasio berat katalis terhadap umpan minyak nabati tidak mempengaruhi yield produk secara keseluruhan. Analisis sifat fisika dan kimia terhadap produk sebelum dilakukan distilasi menunjukan penurunan nilai densitas, viskositas, angka iod dan angka asam yang cukup signifikan dan mendekati spesifikasi minyak diesel komersial.

Fuel plays a very important role in the development of industry, transportation, agriculture and other human activities. The ordinary fuel derived from fossils which has a limited reserves due to they are not renewable and have a negative impact on the environment. Therefore, currently the research and production of clean and renewable fuels based on vegetable oils and animal fats had been conducted extensively. Biodiesel as a biofuel that is popular for the substitution of conventional diesel oil was found still has some weaknesses both in the production process as well as on the quality biodiesel product itself. Therefore a technology for conversion of vegetable oil in efficient way is needed to produce equivalent diesel fuel or renewable diesel.
Catalytic hydrotreating technology known as an existing technology in petroleum refineries has the ability to convert both triglycerides and free fatty acids through one reaction stage into hydrocarbons types paraffinic oil equivalent conventional diesel that contains no oxygen compounds thus better stability than biodiesel. Catalytic Hydrotreating process based on NiMo/ɣ-Al2O3 was conducted in this study aims to obtain renewable diesel oil products as well as conventional diesel oil using the feedstock of kemiri sunan oil which the utilization is still using the transesterification process to produce biodiesel.
This research was conducted in three phases, namely catalysts preparation, catalyst characterization and synthesis of renewable diesel by hydrotreating process.
The results of the prepared catalyst was characterized by Brunaur Emmet Teller (BET) and obtained 105.5 m2/g for the surface area and the pore volume and diameter of each are 0.1842 cc/g and 34.93 A0. Then identify with X-ray diffraction (XRD) showed the presence of metal Mo and spreading on the support of catalyst was fairly uniform. The results of Scanning Electron Microscope (SEM) were amplified Energy Dispersive X-ray (EDX) describes the presence of metal Ni and Mo in a micro composition and texture distribution of active metals are fairly evenly. Hydrotreating process products with variations in pressure, temperature and weight ratio of catalyst to feed vegetable oils were analyzed using Gas Chromatography (GC) and test of the physical and chemical properties.
GC results showed the increase in operating pressure and suhue increased the yield hydrocarbon products in the range diesel with the highest yield of 30.95% at a pressure of 60 bar and temperature of 400 0C. The conversion and selectivity is 33.48% and 95.72% where the reaction route tends to the decarbonylation mechanism. Changes in the weight ratio of catalyst to feed the vegetable oil did not affect the overall product yield. Analysis of physical and chemical properties of the product prior to distillation showed a decrease in the value of density, viscosity, iodine numbers and acid numbers are quite significant and closer specification commercial diesel oil.
"
2015
T44606
UI - Tesis Membership  Universitas Indonesia Library
cover
Dika Nuryulia Ardy
"Senyawa stilben terprenilasi diketahui memiliki banyak potensi aktivitas biologis seperti anti-tumor dan anti-kanker. Pada umumnya senyawa-senyawa tersebut didapat dari hasil isolasi atau ekstraksi. Oleh sebab itu diperlukan metode untuk dapat mensintesis stilben terprenilasi dengan menggunakan katalis yang mempunyai aktivitas dan selektivitas yang baik. Reaksi prenilasi senyawa stilben dapat dikatalisis dengan menggunakan katalis zeolit KNaX dan γ-Al2O3/NaOH/Na pada suhu 600C dengan waktu yang divariasikan. Waktu optimum untuk reaksi prenilasi trans-stilben dengan katalis zeolit KNaX adalah 12 jam dengan persen konversi produk sebesar 17,65 %. Waktu optimum untuk reaksi prenilasi trans-stilben dengan katalis γ-Al2O3/NaOH/Na adalah 6 jam dengan persen konversi produk sebesar 18,33 %. Dari hasil tersebut dapat disimpulkan bahwa katalis γ- Al2O3/NaOH/Na memiliki selektivitas dan aktivitas yang lebih baik dibandingkan katalis zeolit KNaX.

Prenylated stilbene compounds have been known to have many potential biological activities such as anti-tumor and anti-cancer. In general, the compounds were obtained from the isolation or extraction of natural products. Therefore, some methods are needed to synthesize prenylated stilbene, such as using catalyst which has good activity and selectivity. In this research, the prenylation of stilbene was conducted using zeolite KNaX and γ-Al2O3/NaOH/Na as basic catalyst at temperature of 600C with the variation of reaction times. The optimum time for the prenylation reaction of stilbene using zeolite KNaX was 12 hours with the conversion 17.65%. The optimum time for the prenylation reaction of stilbene using γ-Al2O3/NaOH/Na was 6 hours with the conversion 18.33%. According to those results, the catalyst γ-Al2O3/NaOH/Na had better selectivity and activity than KNaX zeolite catalysts.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S54045
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tri Silvia Ningsih
"Dalam penelitian ini telah berhasil dilakukan sintesis fotokatalis Ni2+-ZnO berbasis zeolit alam dengan teknik presiptasi. . Sampel fotokatalis Ni2+ZnO berbasis zeolit alam dikarakterisasi dengan melakukan serangkaian pengujian seperti X-ray Diffraction (XRD), ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX). Larutan metal jingga digunakan sebagai katalis untuk mengetahui aktivitas fotokalisis dari sampel. Hasil penelitian menunjukkan bahwa zeolit dapat meningkatkan aktivitas dan efisiensi fotokatalis ZnO, karena memiliki kemampuan absorbance yang tinggi karena memiliki struktur berpori. Ion doping yang diberikan juga dapat meningkatkan aktivitas fotokatalis karena akan menahan laju rekombinasi. Selain itu, semakin besar konsentrasi ion yang didoped, maka semakin kecil energi celah pita yang membuat semakin mudahnya eksitasi elektron dari pita valensi ke pita konduksi.

In the current research Ni2+-ZnO photocatalyst has been performed, using a precipitation technique. The as prepared materials were characterized by X-ray Diffraction (XRD), ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray analysis (EDX). Methyl Orange solution was used to estimate the photocatalytic activity of the samples. The research showed that zeolite enhance photocatalytic activity and efficiency of ZnO because of its high absorbance ability and its porous structure. Ion doped also enhance photocatalytic activity because inhibite the recombination rate. In addition, higher concentration of ion doped, lower band gap energy making electron easily excitate."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1868
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>