Ditemukan 137124 dokumen yang sesuai dengan query
Wildan
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T44009
UI - Tesis Membership Universitas Indonesia Library
Fery Firmansah
"Misalkan adalah suatu graf berarah yang acyclic dengan ( ) * +. Matriks adjacency dari graf berarah adalah matriks [ ] yang berukuran yang didefinisikan dengan, untuk jika terdapat busur berarah dari ke dan untuk selainnya. Matriks disebut sebagai matriks antiadjacency dari graf berarah dengan adalah matriks yang berukuran dengan semua entrinya adalah . Pada tesis ini diberikan sifat-sifat dari polinomial karakteristik matriks antiadjacency dari graf berarah yang acyclic dan gabungan beberapa graf berarah yang acyclic . Selain hal tersebut juga diberikan spektrum matriks antiadjacency dari beberapa kelas graf berarah yang acyclic yaitu graf bipartit lengkap berarah ⃗⃗ dengan , graf bintang berarah keluar ⃗⃗ dengan , graf bintang berarah masuk ⃗⃗ dengan , graf lintasan lengkap berarah ⃗ ⃗⃗⃗ ⃗ dengan , gabungan graf bipartit lengkap berarah ⃗⃗ ⋃ ⃗⃗ dengan , gabungan graf bintang berarah keluar ⋃ ⃗⃗ dengan dan gabungan graf bintang berarah masuk ⋃ ⃗⃗ dengan .
Let be an directed acyclic graph with ( ) * +. The adjacency matrix of directed graph is a matrix [ ] of order , such that if there is an edge from to then , otherwise . The matrix will be called antiadjacency matrix of directed graph with is a matrix of order with all entries are . In this thesis is given properties of characteristic polynomial antiadjacency matrix of directed acyclic graph and union of some directed acyclic graphs . In addition, here are also given spectrum of antiadjacency matrix from some classes of directed acyclic graphs that are complete bipartite directed graph ⃗⃗ with , out-star directed graph ⃗⃗ with , in-star directed graph ⃗⃗ with , complete path directed graph ⃗ ⃗⃗⃗ ⃗ with , union of complete bipartite directed graphs ⃗⃗ ⋃ ⃗⃗ with , union of out-star directed graphs ⋃ ⃗⃗ with and union of in-star directed graphs ⋃ ⃗⃗ with ."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T41607
UI - Tesis Membership Universitas Indonesia Library
Nanda Anzana
"Matriks antiadjacency dan adjacency adalah contoh matriks yang merepresentasikan suatu graf berarah. Entri-entri dari matriks antiadjacency dan adjacency dari suatu graf berarah merepresentasikan ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency dan adjacency graf friendship berarah siklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiadjacency didapatkan dengan menjumlahkan determinan matriks antiadjacency dari semua subgraf terinduksi baik yang siklik maupun asiklik. Sedangkan bentuk umum dari koefisien-koefisien polinomial karaktersitik dari matriks adjacency didapatkan dengan menjumlahkan nilai determinan matriks adjacency subgraf terinduksi yang siklik saja. Nilai eigen dari matriks antiadjacency dan adjacency dapat berupa bilangan riil dan bilangan kompleks. Nilai eigen diperoleh dengan metode faktorisasi dan subtitusi. Dari hasil penelitian diperoleh bahwa koefisien polinomial karakteristik dan nilai eigen dari matriks antiadjacency dan adjacency dapat dinyatakan dalam fungsi yang bergantung pada jumlah segitiga pada graf friendship berarah siklik.
ABSTRACTAntiadjacency and adjacency matrices are examples of matrices that represent a directed graph. The entries of the antiadjacency and adjacency matrices of a directed graph represent the presence or absence of directed arcs from one vertex to the others. This undergraduate thesis discusses the polynomial characteristics and eigenvalues of antiadjacency and adjacency matrices of directed cyclic friendship graphs. The general form of the coefficients of the characteristic polynomial of the antiadjacency matrix is obtained by adding the determinant of antiadjacency matrix of all the induced subgraphs, cyclic or acyclic. While the general form of the coefficients of the characteristic polynomial of the adjacency matrix is obtained by adding the determinant of adjacency matrix of the cyclic induced subgraphs. The eigenvalues of the antiadjacency and adjacency matrices can be real or complex numbers. The eigenvalues are obtained by the factorization and substitution methods. The result obtained shows that the characteristic polynomial coefficients and eigenvalues of the antiadjacency and adjacency matrices depend on the number of triangles in the cyclic directed friendship graph.
"
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Nadia Paramita Retno Adiati
"Suatu graf berarah sederhana , dengan simpul dan busur dapat direpresentasikan dalam bentuk matriks antiadjacency, yaitu matriks , dengan adalah matriks adjacency dari graf berarah sederhana dan adalah matriks yang berukuran , dengan semua entrinya bernilai 1. Pada tesis ini diberikan beberapa sifat nilai eigen matriks antiadjacency dari graf berarah sederhana dan sifat nilai eigen pada beberapa kelas graf berarah sederhana, yaitu graf bipartit lengkap berarah, graf lintasan lengkap berarah, graf lingkaran berarah, graf korona berarah dan graf lengkap berarah.
A simple graph , with vertices and edges can be represented as an antiadjacency matrix , where is an adjacency matrix of a simple directed graph and is an matrix, with all of the entries are 1. In this thesis, a study on some properties of the eigenvalues of the antiadjacency matrix of a simple directed graph as well as for some classes of simple directed graphs is carried out. The classes of simple directed graphs being explored are complete bipartite directed graphs, complete path directed graphs, cycle directed graphs, corona directed graphs and complete directed graphs."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T44632
UI - Tesis Membership Universitas Indonesia Library
Budi Poniam
"
ABSTRAKSebuah graf friendship, baik tak berarah maupun berarah, dapat direpresentasikan dengan sebuah matriks adjacency maupun matriks anti-adjacency Bapat 2010 . Pada tesis ini diberikan polinomial karakteristik dan spektrum matriks adjacency dan anti-adjacency dari graf friendship tak berarah maupun berarah. Graf friendship berarah meliputi graf yang siklik dan asiklik, dengan graf asiklik dibahas untuk dua jenis saja. Beberapa kesimpulan yang menarik didapatkan dari hasil perbandingan polinomial karakteristik dan spektrum dari matriks adjacency dan matriks anti-adjacency.
ABSTRACTFriendship graph, both undirected and directed graphs, can be represented by an adjacency matrix or an anti adjacency matrix Bapat 2010 . In this thesis, the characteristic polynomials and spectrums of adjacency and anti adjacency matrices for undirected and directed friendship graphs are presented and discussed. Directed friendship graphs cover both cyclic and acyclic graphs, where acyclic friendship graphs are defined for 2 types only. Some interesting results are obtained from the comparison between those characteristic polynomials and spectrums of adjacency matrices with the ones of anti adjacency matrices."
Lengkap +
2017
T48134
UI - Tesis Membership Universitas Indonesia Library
Noni Selvia
"Matriks antiadjacency merupakan salah satu cara untuk merepresentasikan suatu graf berarah. Misalkan adalah sebuah graf berarah dengan ( ). Matriks adjacency dari graf berarah adalah matriks ( ) berukuran , dengan = 1 jika terdapat busur berarah dari ke dengan dan lainnya akan bernilai 0. Matriks disebut sebagai matriks antiadjacency dari graf berarah dengan adalah matriks berukuran yang semua entrinya adalah 1. Pada tesis ini, dibahas batas atas terkecil nilai eigen dari suatu graf berarah simetrik. Selain itu, diberikan batas atas terkecil nilai eigen dari beberapa kelas graf berarah simetrik.
Antiadjacency matrix is one of the ways to represent a directed graph. Let G be a directed graph with ( ) . The adjacency matrix of G is a matrix ( ) of order , with if there is an edge from to, for, otherwise will equals 0. The matrix is called the antiadjacency matrix of G, with is a matrix of order with all entries equal to 1. In this thesis, it will be shown the smallest upper bound of eigenvalues of symmetric graph. Moreover, it will be given the smallest upper bound of eigenvalues for several types of symmetric graphs."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T44083
UI - Tesis Membership Universitas Indonesia Library
Fitri Alyani
"Suatu graf G dapat dibedakan menjadi graf berarah dan graf tidak berarah. Suatu graf berarah D memuat himpunan berhingga V dari simpul dan kumpulan pasangan terurut dari simpul yang berbeda. Pasangan (u,v) dengan u,v elemen V, disebut arc atau busur berarah dan biasanya dinotasikan uv. Graf tidak berarah G=(V,E) dimana V adalah himpunan simpul dan himpunan busur E adalah himpunan pasangan tak berurut dari dua simpul yang berbeda di V . Simpul u,v elemen V bertetangga jika {u,v} elemen E . Sehingga graf tak berarah juga dapat dipandang sebagai graf berarah dengan setiap busurnya mempunyai dua arah. Matriks antiadjacency dari graf berarah G dengan V(G)={v_1,v_2,v_3, ... , v_n}adalah matriks A dengan indeks V(G) dimana =(a_ij)_nxn , a_ij=1 untuk i tidak sama dengan j jika terdapat busur dari v_i ke v_j, a_ij=0 untuk yang lainnya. Matriks B=J-A disebut sebagai matriks antiadjacency dari suatu graf berarah dimana J adalah matriks dengan semua elemennya adalah 1. Pada tesis ini, dipelajari matriks antiadjacency untuk graf tidak berarah dan spektrum dari beberapa kelas graf tidak berarah, yaitu graf lengkap K_n , graf bipartit lengkap K_m,n, graf bintang S_n, dan graf lingkaran C_n.
A graph G can be differentiated as directed and undirected graphs. A directed graph D consists of a finite set V of vertex and a collection of ordered pairs of distinct vertices. Any such pair (u,v) is called an arc or directed edge and denoted by uv . Undirected graph G=(V,E) where V is the vertex set and the edge set E is a set of unordered distinct pairs from V. Vertices u,v element V are adjacent if {u,v} element E. Thus, an undirected graph can also be viewed as a directed graph withevery edge has a two-way direction. Antiadjacency matrix of a directed graph G with V(G)={v_1,v_2,v_3, ... , v_n} is a matrix A which is indexed by V(G) where =(a_ij)_nxn , a_ij=1 if there is an edge from v_i to v_j, a_ij=0 otherwise . The matrix B=J-A will be called antiadjacency matrix of directed graph G where J is a matrix with all its elements are 1 (Bapat, 2010). In this thesis, we study an antiadjacency matrix for undirected graph and find spectrum of some families of undirected graphs, which are complete graphs K_n, complete bipartite graphs K_m,n, star graphs and cycle graphs C_n."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T41713
UI - Tesis Membership Universitas Indonesia Library
Sandi Budiyanto
"Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiadjacency graf dumbbell berarah siklik. Matriks antiadjacency dari suatu graf berarah adalah matriks yang entri-entrinya merepresentasikan apakah terdapat sebuah busur berarah yang menghubungkan dua simpul pada graf berarah tersebut atau tidak. Koefisien polinomial karakteristik dari matriks antiadjacency graf dumbbell berarah siklik didapatkan dengan menghitung determinan dari tiap-tiap subgraf terinduksi dari graf dumbbell berarah siklik dan dengan menghitung banyaknya bentuk subgraf terinduksi tertentu dari graf dumbbell berarah siklik. Nilai eigen dari matriks
antiadjacency graf dumbbell berarah siklik didapatkan dengan faktorisasi polinomial. Dari hasil penelitian, diperoleh bahwa koefisien dari polinomial karakteristik dan nilai eigen dari matriks antiadjacency graf dumbbell berarah siklik dapat dinyatakan dalam fungsi yang bergantung pada jumlah simpul pada kedua subgraf lingkaran yang dikandung graf dumbbell berarah siklik.
This undergraduate thesis explains the characteristic polynomial and eigenvalues of the antiadjacency matrix of a directed cyclic dumbbell graph. Antiadjacency matrix of a directed graph is a matrix whose entries represent whether there exist a directed edge connecting two vertices in the directed graph or not. The coefficients of the characteristic polynomial of the antiadjacency matrix of directed cyclic dumbbell graph is obtained by evaluating the determinant of each induced subgraph of the directed cyclic dumbbell graph and by counting the number of certain forms of induced subgraph of the directed cyclic dumbbell graph. The eigenvalues of the antiadjacency matrix of directed cyclic dumbbell graph is obtained by polynomial factorization. The result obtained show that the coefficients of the characteristic polynomial and the eigenvalues of antiadjacency matrix of directed cyclic dumbbell graph can be expressed as a function that is dependent to the number of vertices of the cycle subgraphs of directed cyclic dumbbell graph."Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Muhammad Sabili Robbi Solihin
"Sebuah graf berarah dapat direpresentasikan kedalam beberapa macam bentuk matriks, salah satunya adalah dengan matriks anti-adjacency. Matriks anti-adjacency merupakan sebuah matriks dimana entri-entri dari matriks ini dapat diinterpretasikan sebagai ada atau tidaknya busur berarah dari suatu simpul ke simpul lainnya. Paper ini akan berfokus pada matriks anti-adjacency dari gabungan graf lingkaran berarah. Matriks anti-adjacency adalah sebuah matriks persegi, oleh sebab itu dapat dicari persamaan karakteristik serta nilai eigen dari matriks tersebut. Untuk mencari bentuk umum persamaan karakteristik matriks anti-adjacency dari gabungan graf lingkaran berarah diperoleh dengan cara menghitung nilai determinan dan banyaknya subgraf-subgraf terinduksi pada setiap grafnya. Dengan mencari akar-akar dari bentuk umum persamaan karakteristik matriks anti-adjacency dari gabungan graf lingkaran berarah tersebut, maka akan didapatkan nilai eigen dari graf tersebut.
A graph could be represented as a matrix in many ways, one of which is an anti-adjacency matrix. Anti-adjacency matrix is a matrix whose entries shows whether there is a directed edge from a vertex to another one. This paper focuses on the anti-adjacency matrix of the union of directed cycle graphs. Anti-adjacency matrix is a square matrix, where we could find its characteristic polynomial and eigenvalues. The general form of characteristic polynomial can be found by counting the values of the determinants and the numbers of the cyclic induced subgraphs. Furthermore, the eigenvalues of the union of directed cycle graphs are derived from the general form of its characteristic polynomial."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ditya Diwyacitta Praharsini
"Suatu graf berarah dapat direpresentasikan dalam sebuah matriks antiadjacency. Jika # merupakan matriks antiadjacency dari suatu graf berarah $ maka %&'()* - # $ ) merupakan polinomial karakteristiknya. Pada skripsi ini dibahas mengenai sifat polinomial karakteristik matriks antiadjacency dari graf -. dengan penambahan dua tali busur. Salah satu sifat yang diperoleh adalah nilai dari koefisien ke ? /, yaitu yang didapat dengan mencari determinan dari matriks antiadjacency. Penambahan dua tali busur menjadikan graf -. memiliki karakteristik yang berbeda-beda sehingga determinan dari matriks antiadjacencynya pun berbeda. Oleh karena itu, dalam skripsi ini graf -. dengan penambahan dua tali busur dibagi menjadi empat bentuk dan penjelasan mengenai determinan dari matriks antiadjacency dari graf -. dengan penambahan dua tali busur dibagi sesuai dengan bentuk ? bentuk tersebut. Sifat lainnya adalah korelasi antara koefisien polinomial karakteristik dengan banyaknya lintasan berarah pada graf.
A directed graph can be represented by an antiadjacency matrix. If # is an antiadjacency matrix of a directed graph $ then det(λI − R G ) is the characteristic polynomial. This paper will discuss the properties of a characteristic polynomial of an antiadjacency matrix of a dicycle graph -. with two chords. One of the properties acquired is the value of the /th coefficient, which is obtained by finding the determinant of the antiadjacency matrix. The addition of two chords makes the graphs have different characteristics so that the determinant of the antiadjacency matrix will also differ. Therefore, in this paper, graph -. with two chords is divided into four forms and the explanation of the determinant of an antiadjacency matrix of the graph are divided according to the forms. The other property is the correlation between the coefficients of the polynomial characteristic with the directed path of the graphs."
Lengkap +
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65168
UI - Skripsi Membership Universitas Indonesia Library