Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14770 dokumen yang sesuai dengan query
cover
cover
Swansea, UK: Pineridge Press, 1982
531 REC
Buku Teks SO  Universitas Indonesia Library
cover
Rheinboldt, Werner C.
"This second edition provides much-needed updates to the original volume. Like the first edition, it emphasizes the ideas behind the algorithms as well as their theoretical foundations and properties, rather than focusing strictly on computational details; at the same time, this new version is now largely self-contained and includes essential proofs.
Additions have been made to almost every chapter, including an introduction to the theory of inexact Newton methods, a basic theory of continuation methods in the setting of differentiable manifolds, and an expanded discussion of minimization methods. New information on parametrized equations and continuation incorporates research since the first edition."
Philadelphia: Society for Industrial and Applied Mathematics, 1998
e20448491
eBooks  Universitas Indonesia Library
cover
Venkateshan, S.P.
"Computational methods in engineering brings to light the numerous uses of numerical methods in engineering. It clearly explains the application of these methods mathematically and practically, emphasizing programming aspects when appropriate. By approaching the cross-disciplinary topic of numerical methods with a flexible approach, Computational methods in engineering encourages a well-rounded understanding of the subject.
This book's teaching goes beyond the text, detailed exercises (with solutions), real examples of numerical methods in real engineering practices, flowcharts, and MATLAB codes all help you learn the methods directly in the medium that suits you best."
Oxford, UK: Academic Press, 2014
e20426935
eBooks  Universitas Indonesia Library
cover
Kahaner, David
Englewood Cliffs, NJ: Prentice-Hall, 1989
620.004 2 KAH n
Buku Teks SO  Universitas Indonesia Library
cover
Amin Nur Ambarwati
"Katarak merupakan keadaan di mana lensa mata yang biasanya terlihat jernih dan bening menjadi keruh yang disebabkan oleh sebuah kumpulan protein yang terletak di depan retina. Hal ini menyebabkan jaringan lensa mata mulai rusak dan menggumpal, sehingga berkurangnya cahaya yang masuk ke retina dan pandangan akan terlihat buram, kurang berwarna, serta dapat menyebabkan kebutaan yang permanen. Mendiagnosis penyakit katarak pada seseorang dapat menggunakan proses pemeriksaan citra fundus, hasil dari citra fundus kemudian dideteksi menggunakan salah satu pendekatan deep learning. Dalam penelitian ini, digunakan pendekatan deep learning yaitu metode Convolutional Neural Networks (CNN) classic dan CNN LeNet-5 pada fungsi aktivasi ReLU dan Mish dalam mendeteksi katarak. Data yang digunakan dalam penelitian ini yaitu data ODR yang merupakan online database yang berisi citra fundus dengan bervariasi ukuran citra. Dataset kemudian memasuki tahap preprocessing dalam meningkatkan performa model seperti mengkonversikan citra RGB menjadi grayscale dari intensitas green channel, kemudian menerapkan proses binerisasi citra menggunakan thresholding untuk menyesuaikan target atau label berdasarkan diagnosis dokter dan mengetahui tingkat kerusakan bagian mata dalam mendeteksi mata mengalami katarak atau tidak. Hasil performa pada penelitian ini menunjukkan bahwa model CNN LeNet-5 dengan fungsi aktivasi Mish lebih baik dibandingkan model CNN clasic dengan fungsi aktivasi Mish dalam mendeteksi penyakit katarak. Hasil performa keseluruhan yang optimal pada penelitian ini berdasarkan nilai accuracy, precision, recall, dan F1- score secara berturutturut yaitu 87%, 87,5%, 89,3%, 86,7%, dengan running time yang dibutuhkan pada training 95,67 detik dan testing 0,1859 detik.

Cataract is a condition in which the normally clear lens of the eye becomes cloudy due to a collection of proteins located in front of the retina. This causes the tissue of the eye's lens to begin to break down and clot, resulting in less light entering the retina and blurred vision, lack of color, and can lead to permanent blindness. Diagnosing cataracts in a person can use the process of examining the fundus image, the results of the fundus image are then detected using one of the deep learning approaches. In this study, a deep learning approach was used, namely Convolutional Neural Networks (CNN) classic and CNN LeNet-5 method on the ReLU and Mish activation functions in detecting cataracts. The data used in this study is ODR data which is an online database containing fundus images with varying image sizes. The dataset then enters the preprocessing stage to improve model performance, such as converting the RGB image to grayscale from the intensity of the green channel, then applying a binary image process using thresholding to adjust the target or label based on the doctor's diagnosis and determine the level of eye damage to detect cataracts or not. The performance results in this study indicate that the CNN LeNet- 5 model with Mish activation function is better than the CNN classic model with Mish activation function in detecting cataract disease. Optimal overall performance results in this study are based on the values of accuracy, precision, recall, and F1-score, respectively, namely 87%, 87,5%, 89,3%, 86,7%, with the running time required for training 95,67 seconds and testing 0,1859 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moursund, David G.
New York: John Wiley & Sons, 1981
510.78 MOU c
Buku Teks SO  Universitas Indonesia Library
cover
Chapra, Steven C.
New York: McGraw-Hill, 1985
511 CHA n
Buku Teks SO  Universitas Indonesia Library
cover
Chapra, Steven C.
Boston: McGraw-Hill, 1998
519.4 CHA n
Buku Teks SO  Universitas Indonesia Library
cover
Chapra, Steven C.
New York: McGraw-Hill, 2002
519.4 CHA n
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>