Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 33221 dokumen yang sesuai dengan query
cover
"This monograph focuses on the construction of regression models with linear and non-linear constrain inequalities from the theoretical point of view. This volume analyses the properties of regression with inequality constrains, investigating the flexibility of inequality constrains and their ability to adapt in the presence of additional a priori information The implementation of inequality constrains improves the accuracy of models, and decreases the likelihood of errors. Based on the obtained theoretical results, a computational technique for estimation and prognostication problems is suggested. "
New York: [Springer, ], 2012
e20419174
eBooks  Universitas Indonesia Library
cover
Pardoe, Lain, 1970-
""This book offers a practical, concise introduction to regression analysis for upper-level undergraduate students of diverse disciplines including, but not limited to statistics, the social and behavioral sciences, MBA, and vocational studies. The book’s overall approach is strongly based on an abundant use of illustrations, examples, case studies, and graphics. It emphasizes major statistical software packages, including SPSS(r), Minitab(r), SAS(r), R, and R/S-PLUS(r). Detailed instructions for use of these packages, as well as for Microsoft Office Excel(r), are provided on a specially prepared and maintained author web site. Select software output appears throughout the text. To help readers understand, analyze, and interpret data and make informed decisions in uncertain settings, many of the examples and problems use real-life situations and settings. The book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, Bayesian modeling, and time series and forecasting. New to this edition are more exercises, simplification of tedious topics (such as checking regression assumptions and model building), elimination of repetition, and inclusion of additional topics (such as variable selection methods, further regression diagnostic tests, and autocorrelation tests)"-- Provided by publisher."
New Jersey: John Wiley & Sons, 2012
519.536 PAR a
Buku Teks  Universitas Indonesia Library
cover
Harrell, Frank E., Jr.
"This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with too many variables to analyze and not enough observations, and powerful model validation techniques based on the bootstrap. The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes. This text realistically deals with model uncertainty, and its effects on inference, to achieve safe data mining. It also presents many graphical methods for communicating complex regression models to non-statisticians."
Switzerland: Springer International Publishing, 2015
e20510032
eBooks  Universitas Indonesia Library
cover
Olive, David J
"This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models."
Switzerland: Springer International Publishing, 2017
e20528414
eBooks  Universitas Indonesia Library
cover
cover
Gina Nuryani Putri
"Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald.

Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mosteller, Frederick
"Statistik; Statistik matematika; Indication"
Menlo Park: Addison-Wesley, 1977
001.422 2 MOS d
Buku Teks  Universitas Indonesia Library
cover
Ann Anbor: Michigan Institute for Social Research The University of Michigan, 1973
519.536 MUL
Buku Teks  Universitas Indonesia Library
cover
"This handbook focuses on the analysis of lifetime data arising from the biological and medical sciences. It deals with semiparametric and nonparametric methods. For investigators new to this field, the book provides an overview of the topic along with examples of the methods discussed. It presents both classical methods and modern Bayesian approaches to the analysis of data"--
"Preface This volume examines modern techniques and research problems in the analysis of life time data analysis. This area of statistics deals with time to event data which is complicated not only by the dynamic nature of events occurring in time but by censoring where some events are not observed directly but rather they are known to fall in some interval or range. Historically survival analysis is one of the oldest areas of statistics dating its origin to classic life table construction begun in the 1600's. Much of the early work in this area involved constructing better life tables and long tedious extensions of non-censored nonparametric estimators. Modern survival analysis began in the late 1980's with pioneering work by Odd Aalen on adapting classical Martingale theory to these more applied problems. Theory based on these counting process martingales made the development of techniques for censored and truncated data in most cases easier and opened the door to both Bayesian and classical statistics for a wide range of problems and applications. In this volume we present a series of papers which provide an introduction to the advances in survival analysis techniques in the past thirty years. These papers can serve four complimentary purposes. First, they provide an introduction to various areas in survival analysis for graduates students and other new researchers to this eld. Second, they provide a reference to more established investigators in this area of modern investigations into survival analysis. Third, with a bit of supplementation on counting process theory this volume is useful as a text for a second or advanced course in survival analysis. We have found that the instructor of such a course can pick and chose papers in areas he/​she deem most useful to the"
Boca Raton: CRC press, 2014
610.7 HAN
Buku Teks SO  Universitas Indonesia Library
cover
Draper, N.R.
New York: John Wiley & Sons, 1981
519.536 DRA a
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>