Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15479 dokumen yang sesuai dengan query
cover
Nagel, Wolfgang E., editor
"This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2011. The reports cover all fields of computational science and engineering, ranging from CFD to computational physics and chemistry, to computer science, with a special emphasis on industrially relevant applications. Presenting results for both vector systems and microprocessor-based systems, the book allows readers to compare the performance levels and usability of various architectures. As HLRS operates not only a large cluster system but also one of the largest NEC vector systems in the world, this book also offers excellent insights into the potential of vector systems. The book covers the main methods used in high-performance computing. Its outstanding results in achieving highest performance for production codes are of particular interest for scientists and engineers alike. The book comes with a wealth of color illustrations and tables of results."
Berlin: Springer, 2012
e20420454
eBooks  Universitas Indonesia Library
cover
Resch, Michael, editor
"The book presents the state of the art in high performance computing and simulation on modern supercomputer architectures. It covers trends in hardware and software development in general and specifically the future of vector-based systems and heterogeneous architectures. The application contributions cover computational fluid dynamics, material science, medical applications and climate research. Innovative fields like coupled multi-physics or multi-scale simulations are presented. All papers were chosen from presentations given at the 13th Teraflop Workshop held in October 2010 at Tohoku University, Japan.
"
Berlin: Springer, 2012
e20420456
eBooks  Universitas Indonesia Library
cover
Holger Brunst, editor
"The proceedings of the 5th International Workshop on Parallel Tools for High Performance Computing provide an overview on supportive software tools and environments in the fields of system management, parallel debugging and performance analysis. In the pursuit to maintain exponential growth for the performance of high performance computers the HPC community is currently targeting exascale systems. The initial planning for exascale already started when the first petaflop system was delivered. Many challenges need to be addressed to reach the necessary performance. Scalability, energy efficiency and fault-tolerance need to be increased by orders of magnitude. The goal can only be achieved when advanced hardware is combined with a suitable software stack. In fact, the importance of software is rapidly growing. As a result, many international projects focus on the necessary software.
"
Berlin: Springer, 2012
e20406453
eBooks  Universitas Indonesia Library
cover
Michael W. Berry, editor
"This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features : includes contributions from an international selection of world-class authorities, examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques, reviews emerging applications of numerical methods in information retrieval and data mining, discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems, and presents outstanding challenges and developing technologies, and puts these in their historical context."
London: Springer, 2012
e20407473
eBooks  Universitas Indonesia Library
cover
"This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource."
Switzerland: Springer Cham, 2019
e20503029
eBooks  Universitas Indonesia Library
cover
Boca Raton: CRC Press, 2008
R 004.16 HIG
Buku Referensi  Universitas Indonesia Library
cover
Tomi Wirianata
"ABSTRAK
Pada skripsi ini telah dibangun infrastruktur cloud dengan menggunakan Openstack platform. Openstack menjanjikan infrastruktur yang scalable yang menjadikan platform cloud ini digemari banyak pengguna cloud. Tujuan dari skripsi ini adalah untuk mempelajari kinerja jaringan OpenStack berdasarkan implementasi Neutron dan memberikan rekomendasi rancangan jaringan optimal untuk integrasi high performance computing. Parameter kinerja jaringan seperti throughput, packet loss dan latency akan dievaluasi berdasarkan transmisi data TCP dan UDP dengan menggunakan alat benchmark IPerf. Hasil dari eksperimen menunjukkan kinerja Openstack hampir tidak memiliki hambatan dalam penggunaan bandwidth jaringan. Hasil penelitian juga menunjukkan bahwa lokasi virtual machine di instansiasi dan alamat jaringan akan mempengaruhi kinerja jaringan. Skripsi ini juga akan membahas alur yang digunakan untuk menganalisa perbedaan hasil kinerja jaringan virtual machine pada cloud serta menampilkan hasil pengolahan data kinerja jaringan yang kemudian akan memberikan rancangan cloud yang optimal untuk integrasi high performance computing.

ABSTRACT
In this thesis, a cloud infrastructure is built using Openstack platform. Openstack promises a scalable infrastructure that makes this platform as favourite for cloud users. The purpose of this thesis is to study the performance of Openstack network based on the implementation of Neutron to provide recommendations of the optimal network design for the integration of high performance computing. Network performance parameters such as throughput, packet loss and latency will be evaluated based on TCP and UDP transmission data using IPerf benchmarking tool. The result of the experiments show that Openstack performance have no network bandwidth bottleneck. The result also show that the location where virtual machine is instantiate and network address will affect network performance. This thesis will also discuss the flow used to analyze the differences in virtual machine network performance results in the cloud and display the results of virtual machine network performance which will then provide an optimal cloud design for the integration of high performance computing."
2017
S67603
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christian Bischof, editor
"This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the Gauss-Allianz, the association of High-Performance Computing centers in Germany. The reports cover all fields of computational science and engineering, ranging from CFD to Computational Physics and Biology to Computer Science, with a special emphasis on industrially relevant applications. Presenting results for large-scale parallel microprocessor-based systems and GPU and FPGA-supported systems, the book makes it possible to compare the performance levels and usability of various architectures. Its outstanding results in achieving the highest performance for production codes are of particular interest for both scientists and engineers. The book includes a wealth of color illustrations and tables."
Berlin: [Springer-Verlag , ], 2012
e20408707
eBooks  Universitas Indonesia Library
cover
Manila : De La Saller University, 2007,
Majalah, Jurnal, Buletin  Universitas Indonesia Library
cover
Pandu Wicaksono
"ABSTRAK
Teknologi di bidang perangkat lunak dan perangkat keras semakin berkembang cepat. Masalah keterbatasan kapasitas suatu komputer memicu berkembangnya sebuah inovasi yang disebut dengan High Performance Computing HPC . HPC merupakan sekumpulan komputer yang digabungkan dalam sebuah jaringan dan dikoordinasi oleh software khusus. Cloud Computing merupakan paradigma yang relatif baru dalam bidang komputasi. Pada penelitian ini dilakukan pengujian terhadap performansi High Performance Computing Cluster HPCC berbasis cloud menggunakan layanan OpenStack dalam menjalankan fungsi dasar Message Passing Interface. Pengujian dilakukan menggunakan program Mpptest dan SIMPLE-O. Penggunaan server yang tidak mendukung hypervisor KVM pada pengujian point-to-point communication dapat menurunkan performansi HPCC berbasis cloud sebesar 3,1 - 12,4 dibandingkan dengan HPCC berbasis non-cloud. Pada pengujian point-to-point communication dengan 2 server yang mendukung hypervisor KVM, HPCC berbasis cloud unggul dibandingkan HPCC berbasis non-cloud sebesar 1,6 ndash; 2,7 . Pada pengujian performansi HPCC dalam melakukan fungsi MPI collective communication tidak ditemukan perbedaan berarti antara kedua cluster dimana HPCC berbasis non-cloud mengungguli HPCC berbasis cloud sebesar 0 - 1,4 . Pada pengujian menggunakan program SIMPLE-O didapati performansi HPCC berbasis cloud dan non-cloud imbang jika semua instance dijalankan dengan server yang mendukung hypervisor KVM, apabila terdapat instance yang dijalankan server tanpa dukungan KVM maka HPCC berbasis non-cloud unggul 96,2 dibandingkan HPCC berbasis cloud. Ketersedian modul KVM pada server yang menjadi host suatu instance sangat berpengaruh terhadap performansi HPCC berbasis cloud.

ABSTRACT
Software and hardware technologies have been developing rapidly. Capacity limation problems found in computers triggered a development of a new innovation called High Performance Computing HPC . HPC is a cluster of computers in a network coordinated by a special software. Cloud Computing is a new paradigm in computation field. In this research, series of test are done to find out the performance of cloud and non cloud based High Performance Computing Cluster HPCC while running basic functions of Message Passing Interface. Tests are done using Mpptest and SIMPLE O program. By using a server that does not support KVM in point to point communication test could decrease the performance of cloud based HPCC by 3,1 to 12,4 compared to non cloud based HPCC. During the test of point to point communication using 2 servers that support KVM hypervisor, cloud based HPCC is ahead of non cloud based HPCC by 1,6 to 2,7 . During the test of collective communication, there are no significant differences between performances of the two cluster, with non cloud based HPCC is ahead by 0 to 1,4 compared to cloud based HPCC. During the test using SIMPLE O program, the two cluster is even in term of performance as long as every instance is run by servers that support KVM hypervisor, if there is an instance that is run by a server that does not support KVM hypervisor then the performance of non cloud based HPCC is still ahead by 96,2 compared to cloud based HPCC. During the performance testing of HPCC while running collective communication, noticable performance difference between cloud and non cloud based HPCC was not found. The availability of KVM module in a server that is used to host an instance is really essential to the cloud based HPCC performance."
2017
S66989
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>