Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 122324 dokumen yang sesuai dengan query
cover
Haqqyana
"Untuk meningkatkan bio-oil baik dari segi kualitas dan kuantitas, co-pyrolysis jerami padi dengan plastik HDPE dan PP, yang mengandung kadar hidrogen tinggi, dapat menjadi salah satu solusi. Prosedur slow co-pyrolysis dilakukan pada reaktor batch dengan laju pemanasan 5℃ /menit hingga suhu 500℃ dan laju aliran nitrogen yang digunakan adalah 750 mL/menit. Produk cair selanjutnya dianalisis dengan menggunakan GC-MS.
Hasil penelitian menunjukkan bahwa semakin besar rasio berat plastik/biomassa menghasilkan yield char yang rendah serta yield oil dan yield gas yang cenderung meningkat dengan hasil bio-oil maksimum diperoleh melalui co-pyrolysis PP/jerami padi dengan rasio berat 25:75, yakni 12,88%. Besarnya rasio berat plastik/biomassa juga mempengaruhi penurunan senyawa aldehid dan fenol pada kandungan bio-oil. Adapun lama waktu penahanan menunjukkan adanya reaksi cross-linking sehingga meningkatkan yield waxy solid.

To improve the quality and quantity of bio-oil derived from rice straw pyrolysis, the idea of incorporating plastics (HDPE and PP) containing higher hydrogen contents can be considered. Slow co-pyrolysis performed in a batch reactor with a heating rate of 5℃ /min up to a temperature of 500℃ with nitrogen flow rate 750mL/min. Liquid products were than analyzed by GC/MS.
The results showed that the greater the weight ratio of plastic/biomass produces low char yield with oil and gas yield are likely to increase. The maximum yield of bio-oil obtained (12,88%) through co-pyrolysis of PP/rice straw with a weight ratio of 25;75. Upon increasing weight ratio of plastic/biomass, the decline of aldehyde and phenol compunds in bio-oil were observed. The increasing holding time thus further promotes cross-linking reaction thereby increasing the amount of waxy solid obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S62624
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan
"Fast pyrolysis biomassa dapat menghasilkan bio-oil dengan potensi aplikasi yang luas, salah satunya dapat digunakan sebagai bio-fuel. Sayangnya, bio-oil berbasis biomassa memiliki sifat fisikokimia yang buruk dan banyak mengandung senyawa oksigenat sehingga heating value-nya rendah. Plastik diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan.
Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Bonggol jagung akan dipirolisis bersama-sama dengan plastik polipropilena dalam reaktor batch berpengaduk dengan variasi rasio plastik dalam umpan sebesar 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, dan 87,5%. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,5 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Terjadi peningkatan pH, densitas, dan warna pada bio-oil hasil slow co-pyrolysis.
Karakterisasi GC-MS menunjukkan penurunan senyawa oksigenat di dalam bio-oil berbanding lurus dengan komposisi plastik dalam umpan. Efek sinergetik teramati saat rasio plastik ≥50%. Komposisi umpan 12,5% bonggol jagung dan 87,5% plastik PP menghasilkan yield tertinggi dengan kandungan senyawa oksigenat terendah.

Fast pyrolysis of biomass produces bio-oil with many potential applications, one of them is to be bio-fuel. Unfortunately, biomass derived bio-oil has low physicochemical properties and contains lot of oxygenated compounds thus the heating value is low. Plastics are known to have higher H/C ratio and almost no oxygen content, so co-pyrolysis of biomass and plastic could be used as a simple, effective yet cheap bio-oil upgrading solution. By mixing those two as a feed, a synergetic effect will occur and improve the bio-oil both in quantity and quality.
Corn cobs are chosen as the biomass due to its high cellulose content and availability. Corn cobs will be slow co-pyrolyzed with polypropylene plastic in a two stirrer batch reactor with plastic ratio variation of 12,5%, 25%, 37,5%, 50%, 62,5%, 75%, and 87,5%. Maximum temperature of 500oC, 0,5 L/min nitrogen flow, 10 minutes holding time and heating rate of 5oC/min was used in the experiment. pH, density, and color improvement were observed.
GC-MS results showed that lower oxygenated compounds in the bio-oil are associated with higher plastic feed composition. Synergetic effect is happened when plastic ratio is ≥50%. Composition of 12,5% corn cobs and 87,5% polypropylene plastic is found to produce the highest yield of bio-oil with the lowest oxygenates.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64373
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haisa Yuana
"Pengembangan terhadap pemanfaat biomassa sebagai sumber bahan bakar alternatif harus dilakukan, mengingat bio-oil yang dihasilkan dari pirolisis biomassa masih mengandung kadar senyawa oksigenat yang tinggi, yang menyebabkan bio-oil bersifat korosif, memiliki nilai kalor rendah, viskositas yang tinggi dan kurang stabil. Penggunaan limbah plastik sebagai bahan baku tambahan menjadi salah satu metode alternatif yang dapat menaikkan nilai kalor bio-oil, menurunkan sifat korosivitas, menurunkan viskositas dan meningkatkan kestabilannya.
Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan limbah plastik dalam meningkatkan kualitas bio-oil yang dihasilkan dari pirolisis batang jagung sehingga dapat menghasilkan bio-oil yang mempunyai kadar senyawa oksigenat yang rendah dan dapat digunakan sebagai biofuel. Metode yang digunakan dalam penelitian ini adalah slow co-pyrolysis, dengan jenis reaktor fixed bed. Bahan baku yang digunakan adalah batang jagung dan limbah plastik HDPE dan PP. Slow co-pyrolysis dilakukan dengan temperatur akhir 5000C, laju pemanasan 50C/menit, laju N2 sebesar 750 ml/menit, dan waktu penahan 30 menit.
Karakterisasi dilakuakn hanya terhadap fraksi minyak (bio-oil) yang mencakup analisis Gas Cromatrograph Mass Spectrometer (GC-MS), uji viskositas dan uji pH. Dengan penambahan plastik sebanyak 75%berat, kandungan senyawa non-oksigenat pada bio-oil mencapai 47,17 % sedangkan kandungan senyawa oksigenat 52,83%. Penggunaan plastik HDPE menghasilkan yield bio-oil yang lebih tinggi yaitu mencapai 28,05 %berat, dibandingkan dengan plastik PP yang mencapai 25,85 %berat. Penambahan limbah plastik menghasilkan bio-oil dengan pH 5 dan viskositas 4,2 cSt yang menyebabkan bio-oil menjdai tidak korosif dan lebih mudah menglair sehingga dapat dimanfaatkan lebih lanjut sebagai bahan bakar.

The development of biomass utilization for alternative fuel source needs to be done, considering the bio-oil produced from biomass pyrolysis still containts high level of oxygenate compounds, which causes the bio-oil to be corrosive, has a low heating value, and less stable. The use of plastic waste for bio-oil production is one of the alternative methods that can increase the heating value of bio-oil by reducing the oxygenates compounds on it.
This study aims to determine the effect of using plastic waste to improve the quality of bio-oil from corn cob, so that it has a lower oxygenate compounds. The method used in this study is slow co-pyrolysis, using fixed bed reactor. The raw materials are corn cob and HDPE and PP plastic wastes. Slow co-pyrolysis is done with final temperatur of 5000C, heating rate 50C/min, N2 flow rate 750 ml/min, and pirolysis time 30 minutes.
The bio-oil oil produced will be characterized using Gas Chromatpgraph Mass Spectometer (GC-MS), viscosity, and pH. With the addition of 75 %wt plastics, non-oxygenates compound in bio-oil reach 47,17 while the oxygenates compound are reduced to 52,33 %wt. The addition of HDPE plastic waste produces hihger bio-oil yield (28,05 %wt) than PP plastic waste (25,85 %wt). The bio-oil produced from biomass and plastic wastes become less corrosive ( pH 5) and viscos (4,2 cSt), so that it can be use as alternative fuel source.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59086
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saeful Pranata
"Bio-oil production from biomass has a disadvantage because it cannot be used as fuel since it contains a lot of oxygenates, so that the heating value is low and cannot be used as fuel. This study aims to generate oil palm empty fruit bunch-based bio-oil with better quality by adding plastic waste so that can produce Bio-oil with qualified specification as a fuel. The method used in this study is slow co-pyrolysis, where a mixture of biomass and plastic materials is pyrolyzed with the heating rate is low (5°C/min). With the addition of plastic, slow pyrolysis will behave like fast pyrolysis in which a high yield of Bio-oil as a result of increased heat transfer from the heater to the reactor for biomass materials. The independent variables in this study are type of plastic (PP and HDPE) and plastic-biomass composition in the mix, while the dependent variables in this study are Bio-oil’s viscosity, color, pH, and yield. In the pyrolysis reactor, plastic materials and biomass are mixed into cracking boat. Biomass, plastics, and Bio-oil produced were analyzed using GC-MS. The result obtained is addition of plastic waste can improve the quality of bio-oil in pH, viscosity, color stability, and oxygenate compounds.

Produksi bio-oil berbasis biomassa memiliki kendala dalam kualitas karena tidak dapat digunakan sebagai bahan bakar karena bio-oil yang dihasilkan masih mengandung banyak oxygenates (senyawa yang mengandung oksigen), sehingga heating value-nya rendah dan belum dapat digunakan sebagai bahan bakar. Penelitian ini bertujuan untuk menghasilkan bio-oil berbasis tandan kosong kelapa sawit dengan kualitas yang lebih baik melalui penambahan limbah plastik sehingga dapat menghasilkan Bio-oil yang dengan spesifikasi yang sesuai untuk digunakan sebagai bahan bakar. Metode yang digunakan dalam penelitian ini adalah slow co-pyrolysis, di mana campuran biomassa dan bahan plastik dipirolisis dengan heating rate yang rendah (5oC/menit). Dengan penambahan plastik, slow pyrolysis akan berkelakuan seperti fast pyrolysis di mana yield Bio-oil tinggi sebagai akibat dari peningkatan perpindahan panas dari pemanas pada reaktor ke bahan biomassa. Variabel bebas dalam penelitian ini adalah jenis plastik (PP dan HDPE) dan komposisi plastik-biomassa dalam campuran (0:100, 10:90, 25:75, 50:50, 75:25, 100:0), sedangkan variabel terikat dalam penelitian ini adalah viskositas, pH, warna, dan yield Bio-oil. Dalam reaktor pirolisis, bahan plastik dan biomassa dicampur ke dalam cracking boat. Biomassa, plastik, dan Bio-oil yang dihasilkan dianalisis menggunakan GC-MS. Hasil yang didapatkan adalah penambahan limbah plastik dapat meningkatkan kualitas bio-oil dari segi pH, viskositas, kestabilan warna, dan kandungan oksigenat.
"
Fakultas Teknik Universitas Indonesia, 2014
S59434
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yolla Miranda
"Bonggol jagung merupakan limbah dengan jumlah yang cukup banyak di Indonesia. Sejauh ini pemanfaatan utama untuk biomassa. Namun biomassa tersebut masih mengalami kendala karena tingginya senyawa oksigenat yang menyebabkan heating value-nya rendah. Plastik polipropilena diketahui memiliki rasio H/C yang lebih tinggi dan miskin akan oksigen sehingga slow co-pyrolysis biomassa dengan plastik dapat digunakan sebagai solusi upgrading bio-oil yang sederhana, efektif dan murah. Pencampuran biomassa dan plastik akan menghasilkan efek sinergetik dalam memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Berbagai penelitian pada slow co-pyrolysis telah dilakukan terutama pada reaktor tubular dengan rasio tinggi terhadap diameter, lebih dari 4. Tetapi untuk skala besar, bentuk reaktor seperti ini sangat sulit dilakukan scale-up.
Pada penelitian ini reaktor dibuat dengan rasio kurang dari 2. Perpindahan panas khususnya pada plastik yang memiliki konduktivitas termal rendah dibantu dengan adanya pengaduk untuk memperbaiki persebaran perpindahan panas tersebut. Identifikasi pengaruh efek sinergetik dilakukan dengan menganalisis bio-oil menggunakan FTIR dan GC-MS. Efek sinergetik yield bio-oil terjadi pada komposisi PP terhadap bonggol jagung sebesar 50-87,5 dengan 87,5 sebagai yield tertinggi. Sementara efek sinergetik kualitas bio-oil yang berupa peningkatan senyawa non-oksigenat terjadi pada komposisi PP 37,5-87,5.

Corn cob is a waste which has considerable amount in Indonesia. So far, its utilization especially for biomass. However, biomass still having problems because the high oxygenate compound which causes low heating value. The pure polypropylene plastic has a H C ratio higher and poor in oxygen, so slow co pyrolysis of biomass with plastic can be used for bio oil upgrading solutions which is simple, effective and inexpensive. By mixing the two feedstocks, a synergetic effect would be created to improve the quantity and quality of the bio oil produced. Various studies on the slow co pyrolysis has been carried out mainly in the tubular reactor with a high ratio of the diameter, more than 4. But for large scale, that reactor design will be very difficult to scale up.
This research, reactor was made with a ratio less than 2. The heat transfer especially on the plastic that has a low thermal conductivity helped by stirrer to improve the distribution of heat transfer. Identification of the synergetic effect was done by analyzing bio oil using FTIR and GC MS. Synergetic effects of bio oil yield occurred in the composition of the PP towards corn cobs of 50 to 87.5 which 87.5 as the highest yield. While the synergetic effect of the quality in bio oil as an increase in the composition of the non oxygenate which exist in PP composition 37.5 to 87.5.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S62753
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Nur Hidayati
"[Linear alkilbenzena sulfonat (LAS) adalah surfaktan dalam deterjen yang bersifat toksik terhadap organisme aquatik dan menurut Kepmenkes RI No. 492/MENKES/PER/IV/2010 kadar maksimum surfaktan dalam air adalah sebesar 0,5 mg/L. Degradasi LAS dilakukan dengan adsorpsi yang disimultan dengan peranan biofilm dari bakteri Acinetobacter baumanii yang terbentuk di atas permukaan karbon aktif jerami. Acinetobacter baumanii terbukti dapat membentuk biofilm diatas karbon aktif jerami dalam nutrient broth (NB), hal ini dibuktikan dengan adanya EPS (Extracellular Polymer Substance) pada Uji SEM dan FTIR. Analisis penurunan konsentrasi LAS dilakukan dengan menggunakan teknik MBAS (methylene blue active substance). Pada penelitian ini dilakukan degradasi LAS dengan dua variasi yaitu pertama variasi konsentrasi LAS 10 ppm, 20 ppm dan 30 ppm serta kedua variasi massa karbon aktif jerami yaitu 60 g, 100 g dan 150 mg. Hasil percobaan menunjukkan bahwa degradasi dengan konsentrasi 20 ppm pada massa karbon 150 gram memberikan hasil persen degradasi yang lebih besar, mencapai 96% pada hari ke-4 diikuti oleh degradasi LAS dengan konsentrasi 10 ppm yang mencapai 95% dan terkahir konsentrasi 30 ppm mencapai 56,25%.
;Linear Alkylbenzene Sulfonates (LAS) one of a kind surfactants in detergents and which is toxic to aquatic organisms, and according to Kepmenkes RI No. 492/MENKES/PER/IV/2010 the maximum levels of surfactant in water are 0.5 mg/L. LAS degradation conducted by adsorption simultaneously with the role of bacteria Acinetobacter baumannii biofilms formed on the surface of activated carbons straw. Acinetobacter baumannii shown to form biofilms on activated carbon straw in nutrient broth (NB), proven by the EPS (Extracellular Polymer Substance) presence in SEM and FTIR test. Degradation Analysis of LAS concentration was conducted by MBAS (Methylene Blue Active Substance). This research conducted with two variations: first variation is LAS concentration there are 10 ppm, 20 ppm and 30 ppm, and a second variation of the mass of activated carbon straw which are 60 g, 100 g and 150 g. The results showed that the LAS degradation with concentration 20 ppm at 150 grams have percentage degradation higher, reached 96% on day 4 followed by 95% for 10 ppm and the last 30 ppm, that is 56,25%.
;Linear Alkylbenzene Sulfonates (LAS) one of a kind surfactants in detergents and which is toxic to aquatic organisms, and according to Kepmenkes RI No. 492/MENKES/PER/IV/2010 the maximum levels of surfactant in water are 0.5 mg/L. LAS degradation conducted by adsorption simultaneously with the role of bacteria Acinetobacter baumannii biofilms formed on the surface of activated carbons straw. Acinetobacter baumannii shown to form biofilms on activated carbon straw in nutrient broth (NB), proven by the EPS (Extracellular Polymer Substance) presence in SEM and FTIR test. Degradation Analysis of LAS concentration was conducted by MBAS (Methylene Blue Active Substance). This research conducted with two variations: first variation is LAS concentration there are 10 ppm, 20 ppm and 30 ppm, and a second variation of the mass of activated carbon straw which are 60 g, 100 g and 150 g. The results showed that the LAS degradation with concentration 20 ppm at 150 grams have percentage degradation higher, reached 96% on day 4 followed by 95% for 10 ppm and the last 30 ppm, that is 56,25%.
, Linear Alkylbenzene Sulfonates (LAS) one of a kind surfactants in detergents and which is toxic to aquatic organisms, and according to Kepmenkes RI No. 492/MENKES/PER/IV/2010 the maximum levels of surfactant in water are 0.5 mg/L. LAS degradation conducted by adsorption simultaneously with the role of bacteria Acinetobacter baumannii biofilms formed on the surface of activated carbons straw. Acinetobacter baumannii shown to form biofilms on activated carbon straw in nutrient broth (NB), proven by the EPS (Extracellular Polymer Substance) presence in SEM and FTIR test. Degradation Analysis of LAS concentration was conducted by MBAS (Methylene Blue Active Substance). This research conducted with two variations: first variation is LAS concentration there are 10 ppm, 20 ppm and 30 ppm, and a second variation of the mass of activated carbon straw which are 60 g, 100 g and 150 g. The results showed that the LAS degradation with concentration 20 ppm at 150 grams have percentage degradation higher, reached 96% on day 4 followed by 95% for 10 ppm and the last 30 ppm, that is 56,25%.
]"
2015
S59374
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julianto
"ABSTRAK
Pada penggunaan stirred tank reaktor dengan rasio Length/Diameter yang rendah, terjadi beberapa masalah dalam transfer panas, karena itu, fasa polar pada hasil pirolisis masih memiliki panjang rantai karbon yang panjang. Dengan mengubah cara feeding dari twice feeding, menjadi gradual feeding, diharapkan dapat meningkatkan jumlah fasa polar pada panjang rantai karbon rendah. Bonggol jagung dipilih sebagai biomassa karena kandungan total selulosanya yang tinggi dan ketersediaannya yang melimpah di Indonesia. Polipropilena adalah jenis plastik yang cukup banyak dihasilkan di Indonesia dan selain itu memiliki ratio Hydrogen/Carbon yang tinggi. Dengan mencampurkan keduanya, sebuah efek sinergetik akan tercipta untuk memperbaiki kuantitas dan kualitas bio-oil yang dihasilkan. Kondisi operasi dengan suhu maksimum sebesar 500oC, laju alir N2 sebesar 0,75 L/menit, holding time 10 menit dan heating rate 5oC/menit digunakan selama eksperimen berlangsung. Dari eksperimen ini terlihat bahwa proses slow co pyrolysis memiliki 2 regime yang dapat terlihat dari jumlah peningkatan yield bio-oil dan peningkatan signifikan pada volume polar. Hasil FTIR dan GC-MS menunjukan adanya fasa polar yang dominan oleh karboksilat dan fenol, pada fasa polar dominan oleh alkena. Untuk digunakan sebagai bio-fuel, bio-oil memiliki nilai TAN total acid number yang rendah pada fasa polar, dan viskositas yang mendekati dengan bahan bakar komersial.

ABSTRACT
In the use of stirred tank reactors with low Length Diameter ratios, there are some problems in heat transfer, therefore, the polar phase on the pyrolysis results still has long carbon chain length. By changing the way feeding of the two step feeds, to gradual feeding, is expected to increase the number of polar phases at low carbon chain lengths. Corncobs are selected as biomass because of their high total cellulose content and abundant availability in Indonesia. Polypropylene is a type of plastic that is widely produced in Indonesia and other than it has a high Hydrogen Carbon ratio. By mixing the two, a synergetic effect will be created to improve the quantity and quality of the resulting bio oil. Operating conditions with a maximum temperature of 500oC, N2 flow rate of 0.75 L min, holding time of 10 min and a heating rate of 5oC min were used during the experiment. From this experiment we can see that the slow co pyrolysis process has 2 regimes that can be seen from the increasing amount of bio oil yield and the significant increase in polar volume. FTIR and GC MS results show the dominant polar phase by carboxylic and phenol, in the polar phase dominant by alkene. For use as bio fuel, bio oil has a low TAN value total acid number in polar phase, and viscosity is close to commercial fuel."
2017
S67872
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taufik Hidayat Abdullah
"Mikroalga dapat digunakan sebagai bahan baku bioenergi. Namun, kultivasi mikroalga perlu dioptimalkan agar biaya produksi biodiesel minimal. Pada penelitian ini, Nannochloropsis sp. dan Chlorella vulgaris dikultivasi masing-masing pada medium ekstrak cair kompos daun kering dengan variasi konsentrasi yang berbeda. Laju pertumbuhan diamati selama 198 jam periode kultivasi. Akumulasi lipid diuji pada akhir periode kultivasi. Kultivasi Nannochloropsis sp. pada medium ekstrak cair kompos menunjukkan hasil biomassa sebesar 1,52 g/L, laju pertumbuhan 0,0193 jam-1 dan akumulasi lipid sebesar 4,66%. Kultivasi Chlorella vulgaris vulgaris menunjukkan hasil biomassa sebesar 0,41 g/L, laju pertumbuhan 0,0359 jam-1 dan akumulasi lipid sebesar 13,35%.

Microalgae can be used as raw material for bioenergy. However, cultivation of microalgae still need to be reduce production cost. In this study, Nannochloropsis sp. and Chlorella vulgaris are cultivated in liquid extract of leaf compost medium. The rate of growth is monitored during the cultivation period of 198 hours. Lipid accumulation is examined at the end of the cultivation period. Nannochloropsis sp. cultivation on leaf compost medium showed biomass yield 1,52 g/L, growth rate of 0,0193 1/hour and lipid yield of 4,66%. Chlorella vulgaris vulgaris cultivation showed biomass yield 0,41 g/L, growth rate of 0,0359 hour-1 and lipid yield of 13,35%."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59082
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoksandi
"Natural Deep Eutetic Solvent (NADES) telah mendapatkan perhatian karena potensinya sebagai solven ektraksi yang ramah lingkungan. Zat antioksidan banyak terdapat pada kulit buah manggis (Gracinia mangostana L.) untuk diektraksi, yang selama ini hanya menjadi limbah dan tidak dimanfaatkan. Kulit buah manggis mengandung senyawa bioaktif mangostin yang tinggi dan dapat dikemas menjadi obat anti-kanker dalam bentuk pelepasan obat terkendali. Dalam penelitian ini, ekstraksi untuk memperoleh senyawa mangostin murni dilakukan dengan menggunakan natural deep eutectic solvent (NADES) sebagai pelarut yang ramah lingkungan sekaligus aman bagi kesehatan. Garam digunakan dalam penelitian ini adalah betain yang akan dicampurkan dengan berbagai macam senyawa HBD dari golongan alkohol yaitu propanediol. Pencampuran antara betain dengan senyawa HBD dilakukan dengan berbagai variasi komposisi, dan ekstraksinya dilakukan dalam berbagai variasi waktu dan variasi suhu. Dari penelitian ini akan dihasilkan data konsentrasi senyawa mangostin dan dilakukan analisis menggunakan HPLC (High Performance Liquid Chromatography) untuk mengetahui kondisi ektraksi yang optimum. Kemudian untuk memperoleh senyawa mangostin murni dilakukan separasi dengan pelarut organik non-polar etil asetat. Hasil akhir menunjukkan waktu terbaik ekstraksi pada suhu ruang adalah 4 jam dan suhu ekstraksi terbaik dari rentang 27-75oC adalah 55oC.Selain itu, perolehan kembali dengan senyawa NADES ini adalah sebesar 88%.
Natural Deep Eutectic Solvents (NADES) have received considerable attention due to their potential as green solvent substituting conventional organicsolvents which are high in toxicity and harmful to the environment. NADES haveunique properties, such as negligible volatility at room temperature, high solubility for wide range of compounds, low toxicity profile, and adjustable selectivity. In this study, NADES were being evaluated for their application as extraction solvents for bioactive compound, α-mangostin, from mangosteen (Garcinia mangostana L.). Mangosteen is chosen as object of study due to itshighly beneficial bioactive compounds for health and its high availability in Indonesia. NADES were made by mixing quaternary ammonium salt withhydrogen bond donor (HBD) in various ratios. Extraction was done by shakingin room temperature and ultrasonikation. The extracts were analysed by HighPerformance Liquid Chromatography (HPLC). α-mangostin successfully extracted by NADES, with highest yield obtained by NADES composed of betaine and 1,2-propanediol. Separation is done by using ethyl acetate. This study shows thepotential of NADES for application in extraction of bioactive compounds fromnatural sources. The result is that the best extraction time is 4 hours and the best extraction temperature between 27-75oC is 55oC. Besides, the best recovery percentage of NADES tested is 88%."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59375
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>